Logics for Reasoning about Knowledge and Conditional Probability

Š. Dautović¹ D. Doder² Z. Ognjanović¹

¹Mathematical Institute of SASA, Serbia

²Utrecht University, The Netherlands

LAP 2021

Overview

Goal:

We provide logics for reasoning about knowledge and conditional probabilities together

The main results:

- Sound and strongly complete axiomatization for logics
- Decision procedure for propositional case

Methods:

- Completeness: Henkin-style method
- Decidability: Method of filtration and reduction to a system of inequalities

Starting points

Epistemic logic + Probabilistic logic

Starting points

- Fagin, R., Halpern, J.Y.: Reasoning about knowledge and probability
 - Formula: $K_i(w_i(\alpha) \ge r)$
 - Linear Weight Formulas (FHM90): $a_1w_i(\alpha_1) + \cdots + a_nw_i(\alpha_n) \geq r$ Not applicable for axiomatizing conditional probabilities

Our logic CKL

 \bullet CKL logic for reasoning about conditional probabilities and knowledge

Our logic CKL

ullet CKL logic for reasoning about conditional probabilities and knowledge

"According to the agent i the conditional probability of α given that the agent j knows β , is at least r"

CKL - Syntax

- Formulas: $\alpha, \beta \dots$
- $\{p, q, r, \dots\}$
- $K_i \alpha$ "Agent i knows α "
- $a_1w_i(\alpha_1, \alpha_1') + \dots + a_kw_i(\alpha_k, \alpha_k') \ge r$,
 - $w_i(lpha,eta)$ "Conditional probability of lpha given eta according to the agent i"
- $\neg \alpha, \alpha \wedge \beta$

CKL - Semantics

Definition

 $M = (W, \mathcal{K}, Prob, v)$

- ullet W is a nonempty set of worlds,
- $v: W \times P \longrightarrow \{true, false\}$
- $\mathcal{K} = \{\mathcal{K}_i \mid i \in \mathbf{A}\}$ is a set of binary equivalence relations on W, where $\mathcal{K}_i(u) = \{u' \mid (u', u) \in \mathcal{K}_i\}$, and $u\mathcal{K}_iu'$ if $u' \in \mathcal{K}_i(u)$,
- $Prob(i, u) = (W_i(u), H_i(u), \mu_i(u))$ such that
 - $W_i(u)$ is a non-empty subset of W,
 - \bullet $H_i(u)$ is an algebra of subsets of $W_i(u)$
 - $\mu_i(u): H_i(u) \longrightarrow [0,1]$ is a finitely additive measure

Satisfiability

•
$$M, u \models K_i \alpha$$
 iff $M, u' \models \alpha$ for all $u' \in K_i(u)$

 $\bullet \ M, u \models w_i(\alpha,\beta) \geq r \ \text{if} \ \mu_i(u)(\{u' \in W_i(u) \mid M, u' \models \beta\}) > 0 \\ \text{and} \\ \mu_i(u)(\{u' \in W_i(u) \mid M, u' \models \alpha\} | \{u' \in W_i(u) \mid M, u' \models \beta\}) \geq r \\$

Axiomatization

- Propositional reasoning
- Reasoning about knowledge
- Reasoning about linear inequalities
- Reasoning about conditional probabilities

Axiomatization

- Propositional reasoning
- Reasoning about knowledge
- Reasoning about linear inequalities
- Reasoning about conditional probabilities
- Infinitary inference rule:
 - From the set of premises

$$\{w_i(\alpha, \beta) \ge r - \frac{1}{k} \mid k \in \mathcal{N}\}$$
 infer $w_i(\alpha, \beta) \ge r$

If the conditional probability is arbitrary close to r, it is at least r.

Our results

Theorem (Soundness and completeness)

A set of formulas T is consistent iff T is satisfiable.

• Adaptation of Henkin's construction

Theorem (Decidability)

Satisfiability problem for CKL is decidable

• Combination of the method of filtration and reduction to a system of inequalities

Technical details

• Henkin's construction

Technical details

Henkin's construction

Technical details

Henkin's construction

First-order extension FOCKL

 ${\sf Language}\;({\sf FOCKL}) = {\sf Language}\;({\sf CKL}) + \;{\sf Language}\;({\sf CFO})$

FOCKL-Semantics

Definition

$$M = (W, D, I, \mathcal{K}, Prob)$$

- ullet W is a nonempty set of worlds,
- D is nonempty domain,
- I is an interpretation for every world,
- $\mathcal{K} = \{\mathcal{K}_i \mid i \in \mathbf{A}\}$ is a set of binary equivalence relations on W
- $Prob(i, u) = (W_i(u), H_i(u), \mu_i(u))$ such that
 - ullet $W_i(u)$ is a non-empty subset of W,
 - $H_i(u)$ is an algebra of subsets of $W_i(u)$
 - $\mu_i(u): H_i(u) \longrightarrow [0,1]$ is a finitely additive measure

Domain is fixed and the terms are rigid.

Axiomatization

- Axiomatization of CKL
- $(\forall x)(\alpha \to \beta) \to (\alpha \to \forall x\beta)$, where x is not free-variable in α
- $(\forall x)\alpha(x) \to \alpha(t/x)$, where $\alpha(t/x)$ is obtained by substituting all free occurrences of x in $\alpha(x)$ by the term t which is free for x in $\alpha(x)$
- $\forall x K_i \alpha(x) \to K_i \forall x \alpha(x)$ (Barcan formula)
- From α infer $(\forall x)\alpha$.

Axiomatization

- Axiomatization of CKL
- $(\forall x)(\alpha \to \beta) \to (\alpha \to \forall x\beta)$, where x is not free-variable in α
- $(\forall x)\alpha(x) \to \alpha(t/x)$, where $\alpha(t/x)$ is obtained by substituting all free occurrences of x in $\alpha(x)$ by the term t which is free for x in $\alpha(x)$
- $\forall x K_i \alpha(x) \to K_i \forall x \alpha(x)$ (Barcan formula)
- From α infer $(\forall x)\alpha$.

Theorem (Soundness and completeness)

A theory T is consistent iff T is satisfiable.

Conclusion

In this work:

- Propositional logic of knowledge and conditional probability
- First-order extension

Conclusion

In this work:

- Propositional logic of knowledge and conditional probability
- First-order extension

No semantic relationship between the modalities for knowledge and probability.

Conclusion

In this work:

- Propositional logic of knowledge and conditional probability
- First-order extension

No semantic relationship between the modalities for knowledge and probability.

CKL

Š.Dautović, D. Doder, Z. Ognjanović *An epistemic probabilistic logic with conditional probabilities*

The end

