A Probabilistic Temporal Epistemic Logic

Zoran Ognjanović, Angelina Ilić Stepić, Aleksandar Perović

LAP 2021, Dubrovnik

Outline

Blockchain protocol -basic concepts

2 The logic PTEL

Modeling of the blockchain protocol

Logical Framework for Proving the Correctness of the Chord Protocol

Bojan Marinković, Paola Glavan and Zoran Ognjanović

 Blockchain is a multiagent dynamically distributed system without third authority, which synchronizes and maintains copies of a distributed append-only ledger which records transactions (transfers of some units of crypto-currency, smart contracts, etc.)

- Protcol defines hard problem, a cryptographic puzzle, and each agent tries to solve this problem
- If an agent solves the problem first, his solution is accepted and all other agents add that solution to their own ledger
- It may happen, with small probability that (two) agents have different solutions
- Fork is situation when agents simultaneously receive several solutions. This happens with low probability

• For this purpose we develop a complex logic that has temporal epistemic and probabilistic aspects

- N-the set of nonnegative integers,
- ullet $[0,1]_{\mathbb{Q}}$ the set of all rational numbers from the unit interval
- $\mathbb{P}(A)$ the powerset set of a set A
- \mathbb{A} the set of agents $\{a_1, \ldots, a_m\}$, where m is a positive integer.

The formal language of **PTEL** consists of a nonempty at most countable set of propositional letters denoted **Var** and the following operators:

- classical: ¬, ∧,
- temporal: ○, U, ●, S,
- epistemic: K_a , C, where $a \in A$,
- probabilistic: $P_{\geqslant s}$, $P_{a,\geqslant s}$, where $a\in \mathbb{A}$, $s\in [0,1]_{\mathbb{Q}}$.

- Var $\supseteq \mathbf{A} = \{A_a | a \in \mathbb{A}\}$
- A_a: "agent a is active"
- For denotes the set of formulas defined in the usual way.
- the lowercase Latin letters *p* and *q*, possibly with indices, denote propositional variables, and
- the lowercase Greek letters α , β , γ , ... denote formulas.

$$\mathbf{E}\alpha =_{def} \bigwedge_{\mathbf{a} \in \mathbf{A}} \mathbf{K}_{\mathbf{a}}\alpha$$

•
$$F\alpha =_{def} (\alpha \rightarrow \alpha)U\alpha$$
,

•
$$P\alpha =_{def} (\alpha \to \alpha) S\alpha$$
,

•
$$G\alpha =_{def} \neg F \neg \alpha$$

•
$$H\alpha =_{def} \neg P \neg \alpha$$

Definition

A model \mathcal{M} is any tuple $\langle \mathbf{R}, \mathcal{A}, \mathcal{K}, \mathcal{P} \rangle$ such that

- R is a non-empty set of runs, where:
 - Every run r is a function from \mathbb{N} to $\mathbb{P}(\mathbf{Var})$.
 - The pair (r, n), where $r \in \mathbf{R}$ and $n \in \mathbb{N}$, is called a *possible world*; the set of all possible worlds in \mathcal{M} is denoted by \mathbf{W} .
- \mathcal{A} is a function from the set of possible world \mathbf{W} to $\mathbb{P}(\mathbb{A})$, where:
 - A((r, n)) denotes the set of *active agents* associated to the possible world (r, n), and
 - $a \in \mathcal{A}((r,n))$ iff $A_a \in r(n)$.

Definition

- $\mathcal{K} = \{\mathcal{K}_a : a \in \mathbb{A}\}$ is the set of symmetric and transitive binary *accessibility relations* on \mathbf{W} , such that:
 - $a \notin \mathcal{A}((r,n))$ iff $(r,n)\mathcal{K}_a(r',n')$ is false for all (r',n').
 - $\mathcal{K}_a(r,n)$ denotes the set of all possible worlds accessible, according to the agent a, from (r,n).
 - If $a \in \mathcal{A}((r, n))$, then $(r, n)\mathcal{K}_a(r, n)$.

Definition

- \bullet \mathcal{P} is a functions defined on \mathbf{W} , where
 - $\mathcal{P}((r,n)) = \langle H^{(r,n)}, \mu^{(r,n)}, \{\mathcal{P}_a : a \in \mathbb{A}\} \rangle$,
 - $H^{(r,n)}$ is an algebra of subsets of **R**,
 - $\mu^{(r,n)}: H^{(r,n)} \to [0,1]$ is a finitely-additive probability measure on $H^{(r,n)}$,
 - $\{\mathcal{P}_a: a \in \mathbb{A}\}$ is the set of functions defined on \mathbf{W} , where $\mathcal{P}_a((r,n)) = \langle \mathbf{W}_a^{(r,n)}, H_a^{(r,n)}, \mu_a^{(r,n)} \rangle$ is a probability space such that:
 - $\mathbf{W}_{a}^{(r,n)}$ is a non-empty subset of \mathbf{W} ,
 - $H_a^{(r,n)}$ is an algebra of subsets of $\mathbf{W}_a^{(r,n)}$, and
 - $\mu_a^{(r,n)}: H_a^{(r,n)} \xrightarrow{\smile} [0,1]$ is a finitely-additive probability measure.

$$\mu_{\mathbf{A},\mathbf{A}}^{(r,n)}(\mathbf{X}) = \sup\{\mu_{\mathbf{A}}^{(r,n)}(\mathbf{Y}) : \mathbf{Y} \subset \mathbf{X}, \mathbf{Y} \in H_{\mathbf{A}}^{(r,n)}\}$$

Definition

Let $\mathcal{M} = \langle \mathbf{R}, \mathcal{A}, \mathcal{K}, \mathcal{P} \rangle$ be a model. The satisfiability relation \models fulfils:

- 1. if $p \in \mathbf{Var}$, $(r, n) \models p$ iff $p \in r(n)$,
- 2. $(r, n) \models \alpha \land \beta$ iff $(r, n) \models \alpha$ and $(r, n) \models \beta$,
- 3. $(r, n) \models \neg \beta$ iff not $(r, n) \models \beta$ (i.e., $(r, n) \not\models \beta$),
- 4. $(r, n) \models \bigcirc \beta$ iff $(r, n + 1) \models \beta$,
- 5. $(r, n) \models \alpha U\beta$ iff there is an integer $j \geqslant n$ such that $(r, j) \models \beta$, and for every integer k, such that $n \leqslant k < j$, $(r, k) \models \alpha$,
- 6. $(r, n) \models \bullet \beta$ iff n = 0, or $n \geqslant 1$ and $(r, n 1) \models \beta$,
- 7. $(r, n) \models \alpha S\beta$ iff there is an integer $j \in [0, n]$ such that $(r, j) \models \beta$, and for every integer k, such that $j < k \le n$, $(r, k) \models \alpha$

Definition

- 8. $(r, n) \models K_a \beta$ iff $(r', n') \models \beta$ for all $(r', n') \in \mathcal{K}_a(r, n)$,
- 9. $(r, n) \models C\beta$ iff for every integer $k \geqslant 0$, $(r, n) \models E^k\beta$,
- 10. $(r,n) \models \mathbb{P}_{\geqslant s}\beta$ iff $\mu_{\star}^{(r,n)}(\{r \in \mathbb{R} : (r,0) \models \beta\}) \geqslant s$.
- 11. $(r, n) \models P_{a, \geq s} \beta$ iff $\mu_{\star, a}^{(r, n)}(\{(r', n') \in \mathbf{W}_{a}^{(r, n)} : (r', n') \models \beta\}) \geqslant s$.

Non-compactness

- $\{\bigcirc^k \alpha : k \in \mathbb{N}\} \cup \{\neg G\alpha\},$
- $\{\mathbb{E}^k \alpha : k \in \mathbb{N}\} \cup \{\neg \mathbb{C}\alpha\},\$
- $\bullet \ \{\mathcal{P}_{\leqslant 1/k}\alpha \ : \ k \in \mathbb{N}\} \cup \{\neg \mathcal{P}_{=0}\alpha\}, \ \mathsf{etc}.$

I Propositional axioms and rules

Prop. All instances of classical propositional tautologies

MP.
$$\frac{\alpha, \alpha \to \beta}{\beta}$$

APlacktriangle. Placktriangle

Strongly complete axiomatization, system Ax_{PTEL}

II Axioms and rules for reasoning about time

$$\begin{array}{lll} \mathsf{A}\bigcirc\neg . & \neg \bigcirc \alpha \leftrightarrow \bigcirc\neg\alpha \\ \mathsf{A}\bigcirc\rightarrow . & \bigcirc(\alpha \to \beta) \to (\bigcirc\alpha \to \bigcirc\beta) \\ \mathsf{A}U\bigcirc. & \alpha \mathsf{U}\beta \leftrightarrow \beta \lor (\alpha \land \bigcirc(\alpha \mathsf{U}\beta)) \\ \mathsf{A}\mathsf{UF}. & \alpha \mathsf{U}\beta \to \mathsf{F}\beta \\ \mathsf{A}\bullet\neg . & \neg \bullet \neg\alpha \to \bullet\alpha \\ \mathsf{A}\bullet \to . & \bullet(\alpha \to \beta) \to (\bullet\alpha \to \bullet\beta) \\ \mathsf{A}\bullet \land . & (\bullet\alpha \land \bullet\beta) \to \bullet(\alpha \land \beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \bullet\beta) \to \bullet(\alpha \land \beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \bullet \circ\beta) \to \bullet(\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \bullet \circ\beta) \to \bullet(\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \bullet \circ\beta) \to \bullet(\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \bullet \circ\beta) \to (\bullet\alpha \land \bullet \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \bullet \circ\beta) \to (\bullet\alpha \land \bullet \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bigcirc\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . & (\bullet\alpha \land \circ\beta) \to (\bullet\alpha \land \circ\beta) \\ \mathsf{A}\bullet\bullet . &$$

II Axioms and rules for reasoning about time

- $\bullet \ \mathsf{R} \bigcirc \mathsf{N}. \ \frac{\alpha}{\bigcirc \alpha}$
- R•N. $\frac{\alpha}{\bullet \alpha}$
- RU. $\frac{\{\Phi_{k,\mathbf{B},\mathbf{X}}(\neg((\bigwedge_{l=0}^{i-1}\bigcirc^{l}\alpha)\wedge\bigcirc^{i}\beta)):i\in\mathbb{N}\}}{\Phi_{k,\mathbf{B},\mathbf{X}}(\neg(\alpha\mathbb{U}\beta))}$
- RS. $\frac{\{\Phi_{k,\mathbf{B},\mathbf{X}}(\neg((\bigwedge_{l=0}^{i-1} \bullet^{l} \alpha) \wedge (\bigwedge_{l=0}^{i} \neg \bullet^{l} (\alpha \wedge \neg \alpha)) \wedge \bullet^{i} \beta)) : i \in \mathbb{N}\}}{\Phi_{k,\mathbf{B},\mathbf{X}}(\neg(\alpha S \beta))}$

III Axioms and rules for reasoning about knowledge

AK
$$\rightarrow$$
. $K_{a}(\alpha \rightarrow \beta) \rightarrow (K_{a}\alpha \rightarrow K_{a}\beta)$
AKR. $A_{a} \rightarrow (K_{a}\alpha \rightarrow \alpha)$
AKA. $A_{a} \rightarrow K_{a}A_{a}$
AKDE. $\neg A_{a} \rightarrow K_{a}(\alpha \wedge \neg \alpha)$
AKS. $K_{a}\neg \alpha \rightarrow K_{a}\neg K_{a}\alpha$
AKT. $K_{a}\alpha \rightarrow K_{a}K_{a}\alpha$
ACE. $C\alpha \rightarrow E^{m}\alpha, m \in \mathbb{N}$
RK_aN. $\frac{\alpha}{K_{a}\alpha}$
RC. $\frac{\{\Phi_{k,\mathbf{B},\mathbf{X}}(E^{i}\alpha): i \in \mathbb{N}\}}{\Phi_{k,\mathbf{B},\mathbf{X}}(C\alpha)}$

IV Axioms and rules for reasoning about probability on runs

$$\begin{array}{ll} \mathsf{AGP1.} & \mathsf{P}_{\geqslant 0}\alpha \\ \mathsf{AGP2.} & \mathsf{P}_{\leqslant r}\alpha \to \mathsf{P}_{< t}\alpha, \ t > r \\ \mathsf{AGP3.} & \mathsf{P}_{< t}\alpha \to \mathsf{P}_{\leqslant t}\alpha \\ \mathsf{AGP4.} & (\mathsf{P}_{\geqslant r}\alpha \wedge \mathsf{P}_{\geqslant t}\beta \wedge \mathsf{P}_{\geqslant 1}\neg(\alpha \wedge \beta)) \to \mathsf{P}_{\geqslant \min(1,r+t)}(\alpha \vee \beta) \\ \mathsf{AGP5.} & (\mathsf{P}_{\leqslant r}\alpha \wedge \mathsf{P}_{< t}\alpha) \to \mathsf{P}_{< r+t}(\alpha \vee \beta), \ r+t \leqslant 1 \\ \mathsf{AGP} \bullet. & \mathsf{P}_{\geqslant 1} \bullet (\alpha \wedge \neg \alpha) \\ \mathsf{RGPN.} & \frac{\alpha}{\mathsf{P}_{\geqslant 1}\alpha} \\ \mathsf{RGA.} & \frac{\{\Phi_{k,\mathbf{B},\mathbf{X}}(\mathsf{P}_{\geqslant r-\frac{1}{i}}\alpha) : i \geqslant \frac{1}{r}\}}{\Phi_{k,\mathbf{B},\mathbf{X}}(\mathsf{P}_{> r}\alpha)}, \ r \in (0,1]_{\mathbb{Q}} \end{array}$$

V Axioms and rules for reasoning about probability on possible worlds

$$\begin{array}{ll} \mathsf{AP1.} & \mathsf{P}_{\mathsf{a},\geqslant 0}\alpha \\ \mathsf{AP2.} & \mathsf{P}_{\mathsf{a},\leqslant r}\alpha \to \mathsf{P}_{\mathsf{a},< t}\alpha, \ t > r \\ \mathsf{AP3.} & \mathsf{P}_{\mathsf{a},< t}\alpha \to \mathsf{P}_{\mathsf{a},\leqslant t}\alpha \\ \mathsf{AP4.} & (\mathsf{P}_{\mathsf{a},\geqslant r}\alpha \land \mathsf{P}_{\mathsf{a},\geqslant t}\beta \land \mathsf{P}_{\mathsf{a},\geqslant 1}\neg(\alpha \land \beta)) \to \mathsf{P}_{\mathsf{a},\geqslant \min(1,r+t)}(\alpha \lor \beta) \\ \mathsf{AP5.} & (\mathsf{P}_{\mathsf{a},\leqslant r}\alpha \land \mathsf{P}_{\mathsf{a},\geqslant t}\beta \land \mathsf{P}_{\mathsf{a},\geqslant 1}\neg(\alpha \land \beta)) \to \mathsf{P}_{\mathsf{a},\geqslant \min(1,r+t)}(\alpha \lor \beta) \\ \mathsf{AP5.} & (\mathsf{P}_{\mathsf{a},\leqslant r}\alpha \land \mathsf{P}_{\mathsf{a},\geqslant t}\beta \land \mathsf{P}_{\mathsf{a},\geqslant 1}\neg(\alpha \land \beta)) \to \mathsf{P}_{\mathsf{a},\geqslant \min(1,r+t)}(\alpha \lor \beta) \\ \mathsf{RPN.} & \frac{\alpha}{\mathsf{P}_{\mathsf{a},\geqslant 1}\alpha} \\ \mathsf{RA.} & \frac{\{\Phi_{\mathsf{k},\mathsf{B},\mathsf{X}}(\mathsf{P}_{\mathsf{a},\geqslant r-\frac{1}{i}}\alpha) \mid i\geqslant \frac{1}{r}\}}{\Phi_{\mathsf{k},\mathsf{B},\mathsf{X}}(\mathsf{P}_{\mathsf{a},\geqslant r}\alpha)}, \ r\in(0,1]_{\mathbb{Q}} \end{array}$$

Strong completeness of Ax_{PTEL}

Theorem

[Soundness for Ax_{PTEL}] $\vdash \beta$ implies $\models \beta$.

Theorem

[Deduction theorem] If $T \subset For$, then

$$\mathbf{T}, \{\alpha\} \vdash \beta \text{ iff } \mathbf{T} \vdash \alpha \rightarrow \beta.$$

Theorem

[Strong necessitation] If $T \subset For$ and $T \vdash \gamma$, then

- \bullet \cap **T** \vdash $\cap \gamma$,
- \bullet **T** \vdash $\bullet \gamma$, and
- **3** $K_a \mathbf{T} \vdash K_a \gamma$, for every $a \in \mathbf{A}$.

Strong completeness of Ax_{PTEL}

Theorem

[Lindenbaum's theorem] Every Ax_{PTEL} -consistent set of formulas T can be extended to a maximal Ax-consistent set T^* .

$\mathsf{Theorem}$

[Strong completeness for A_{XPTEL}] A set **T** of formulas is A_{XPTEL} -consistent iff it is satisfiable.

Decidability of PTEL

• The class of all measurable PTEL-models is denoted by Mod

Theorem

The Mod-satisfiability problem for PTEL, PSAT, is decidable.

0

Theorem

The Mod-satisfiability problem for PTEL is in 2-EXPTIME.

•

Blockain

- STEP 1 New transactions are broadcast to all nodes.
- STEP 2 Each node collects new transactions into a block.
- STEP 3 Each node works on finding a difficult proof-of-work for its block.
- STEP 4 When a node finds a proof-of-work, it broadcasts the block to all nodes.
- STEP 5 Nodes accept the block only if all transactions in it are valid and not already spent.
- STEP 6 Nodes express their acceptance of the block by working on creating the next block in the chain, using the hash of the accepted block as the previous hash.

Fork

- Nodes always consider the longest chain (the one containing the most proofs-of-work) to be the correct one and will keep working on extending it
- If two nodes broadcast different versions of the next block simultaneously, some nodes may receive one or the other first
- In that case, they work on the first one they received, but save the other branch in case it becomes longer
- The tie will be broken when the next proof-of-work is found and one branch becomes longer; the nodes that were working on the other branch will then switch to the longer one.

Let a, b and c denote agents from A.

- **POW** := $\{pow_{a,i}|a\in\mathbb{A},i\in\mathbb{N}\}$ is a set of atomic propositions, with the intended meaning of $pow_{a,i}$ that the agent a produces a proof-of-work for round i,
- ACC := $\{acc_{a,b,i}|a,b\in\mathbb{A},i\in\mathbb{N}\}$ is a set of atomic propositions, with the intended meaning of $acc_{a,b,i}$ that the agent a accepts the proof-of-work produced for round i by the agent b,
- $e_{a,i} := \bigwedge_{b \in \mathbb{A}} (A_b \to \operatorname{acc}_{b,a,i})$, with the intended meaning that every active agent accepts the proof-of-work produced for round i by the agent a, and
- $ech_{b,i} := \bigvee_{a \in \mathbb{A}} acc_{b,a,i}$, with the intended meaning that the agent b accepts some proof-of-work produced for round i.

AB1	$\bigvee_a A_a$	There is always at least
		one agent active.
AB2	$acc_{b,a,i} o pow_{a,i}$	One can only accept
	·	proof-of-work that has
		been produced.
AB3	$acc_{b,a,i} o \mathtt{K}_b acc_{b,a,i}$	The agents know if they
		accept some proof-of-
		work.
AB4	$acc_{b,a,i} o \neg acc_{b,c,i}$, for	An agent accepts at most
	$acc_{b,a,i} o \neg acc_{b,c,i}$, for $each\ c eq a$	one proof-of-work for a
		given round.

AB5 $| acc_{a,c,j} \land \bigcirc acc_{b,a,i} \rightarrow | If \ a \ accepts \ c's \ proof \ of \ work | \bigcirc acc_{b,c,i}, \ for \ j < i | for \ round \ j \ and \ (in \ the \ next \ accepts \ c's \ proof \ of \ work | conditions \ c's \ proof \ of \ work | conditions \ c's \ proof \ of \ work | conditions \ c's \ proof \ of \ work | conditions \ c's \ proof \ of \ work | conditions \ c's \ proof \ of \ work | c's \ proof \ of \ proof \ proof$

	3,79	step) b accepts a's proof-of-work for a later round, then b must also accept c's proof-of-work for round j. This essen-
		tially means that if b accepts
		a's proof-of-work, then b ac-
		cepts the whole history of a.
AB6	$A_b \wedge \bigvee_a pow_{a,i} \to ech_{b,i}$	If proofs-of-work for some
		round are produced, then each
		active agent must accept one
		of them. Note that we do not
		have any assumption on how
		an agent accepts a proof . ■

AB7	$ech_{a,i} o \mathcal{A}_a$	Only active agents can accept
		proofs-of-work.
AB8	$ech_{a,i+1} o ech_{a,i}$	If an agent accepts some proof-
		of-work for round $i+1$, then the
		agent also accepts some proof-
		of-work for round i.

AB9	$\operatorname{ech}_{b,i} o igcircle \bigvee_a \operatorname{pow}_{a,i+1}$	If an agent accepts some proof-of-work for round i , then in the next round a proof-of-work for round $i+1$ must be available.
AB10	$\neg ech_{a,i} o \neg \bigcirc pow_{a,i+1}$	Only an agent that has accepted a proof-of-work for round i can create (in the next step) a proof-of-work for round $i+1$. This models the fact that a proof-of-work depends on the previously accepted history.

AB11	$igwedge_{a\in\mathbf{X}}P_{\geqslant s_a}pow_{a,i}$ $ o$	Necessary condition for independence of pow's.
	$P_{\geqslant s} \bigwedge pow_{a,i}$	
	$s = \prod_{a \in X} s_a, X \subseteq A$	
AB12	A	Necessary condition for
	a∈X	independence of pow's.
	$P_{\leqslant s} \bigwedge pow_{a,i}$,	
	a∈X	
	$s=\prod_{a\in\mathbf{X}}s_a,\ \mathbf{X}\subseteq\mathbb{A}$	

AB13	$P_{\leqslant \varepsilon} pow_{a,i}$	The probability that an agent creates proof-of-work for round <i>i</i> is low.
AB14	$\bigvee_{a\in\mathbb{A}}pow_{a,i}$	In each round at leats one agent produces proof-of-work.
AB15	$P_{\geqslant s}\alpha \to K_a P_{\geqslant s}\alpha$	Every agent knows probabilities of runs.

Consistency: it is common knowledge among agents that that with a high probability agents achieve consensus about a long prefix of the public ledger.

• BCTP
$$\vdash P_{\geqslant 1-(1-(1-\varepsilon^2)^k)^z}(\bigvee_{j=i}^{i+z}\bigvee_{b_j\in\mathbf{A}}\bigwedge_{c\in\mathbf{A}}(A_c\to \mathrm{acc}_{c,b_j,j})).$$

Consistency: it is common knowledge among agents that that with a high probability agents achieve consensus about a long prefix of the public ledger.

$$\bullet \ \, \mathbf{BCTP} \vdash \mathbf{P}_{\geqslant 1-(1-(1-\varepsilon^2)^k)^z}(\bigvee_{j=i}^{i+z}\bigvee_{b_j\in\mathbf{A}}\bigwedge_{c\in\mathbf{A}}(A_c\to \mathsf{acc}_{c,b_j,j})).$$

• Fix some position i and some integer z. Then, there is integer j between i and i+z such that the probability of the follo wing event "agent b_j produces the proof-of-work (pow) and all active agents accept this pow" is equal or greater then $1-(1-(1-\varepsilon^2)^k)^z$

Consistency: it is common knowledge among agents that that with a high probability agents achieve consensus about a long prefix of the public ledger.

$$\bullet \ \, \mathbf{BCTP} \vdash \mathtt{P}_{\geqslant 1-(1-(1-\varepsilon^2)^k)^z}(\bigvee_{j=i}^{i+z}\bigvee_{b_j\in\mathbf{A}}\bigwedge_{c\in\mathbf{A}}(A_c\to \mathsf{acc}_{c,b_j,j})).$$

• Fix some position i and some integer z. Then, there is integer j between i and i+z such that the probability of the follo wing event "agent b_j produces the proof-of-work (pow) and all active agents accept this pow" is equal or greater then $1-(1-(1-\varepsilon^2)^k)^z$

Theorem

$$\mathsf{BCTP} \vdash C\mathtt{P}_{\geqslant 1-(1-(1-\varepsilon^2)^k)^z}(\bigvee_{j=i}^{i+z}\bigvee_{b_i\in \mathbf{A}}\bigwedge_{c\in \mathbf{A}}(A_c\to \mathsf{acc}_{c,b_j,j})).$$