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@ Blockchain is a multiagent dynamically distributed system
without third authority, which synchronizes and maintains
copies of a distributed append-only ledger which records
transactions (transfers of some units of crypto-currency, smart
contracts, etc.)
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@ Protcol defines hard problem, a cryptographic puzzle, and
each agent tries to solve this problem

@ If an agent solves the problem first, his solution is accepted
and all other agents add that solution to their own ledger

@ It may happen, with small probabiliy that (two) agents have
different solutions

o Fork is situation when agents simultaneously receive several
solutions. This happens with low probability
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@ For this purpose we develop a complex logic that has temporal
epistemic and probabilistic aspects
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Syntax and semantics

@ N-the set of nonnegative integers,
e [0,1]g the set of all rational numbers from the unit interval
o P(A) the powerset set of a set A

@ A - the set of agents {a1,...,am}, where m is a positive
integer.
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Syntax and semantics

The formal language of PTEL consists of a nonempty at most
countable set of propositional letters denoted Var and the
following operators:

@ classical: =, A,
e temporal: (), U, @, S,
@ epistemic: K,, C, where a € A,

@ probabilistic: P>s, P,>s, where a € A, s € [0, 1]g.
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Syntax and semantics

Var D A = {A,Jlac A}

A, “agent a is active”

For denotes the set of formulas defined in the usual way.

@ the lowercase Latin letters p and g, possibly with indices,
denote propositional variables, and

the lowercase Greek letters «, 3, 7, ...denote formulas.

Ea =gef /\ Ko
acA
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Syntax and semantics

@ Fa =4 (v — a)Uq,
@ Pa =4 (v — a)Saq,
0 G =gef "Fx

@ Ha =4 "Px
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Syntax and semantics

A model M is any tuple (R, A, K, P) such that

@ R is a non-empty set of runs, where:

o Every run ris a function from N to P(Var).
o The pair (r,n), where r € R and n € N, is called a possible
world; the set of all possible worlds in M is denoted by W.
e A is a function from the set of possible world W to P(A),
where:

o A((r,n)) denotes the set of active agents associated to the
possible world (r, n), and

e ac A((r,n)) iff Ay € r(n).
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Syntax and semantics

Definition
o K ={K,:ae€ A} is the set of symmetric and transitive
binary accessibility relations on W, such that:
o ad A((r,n)) iff (r,n)K,(r', n") is false for all (r’, n’).
e IC,(r, n) denotes the set of all possible worlds accessible,
according to the agent a, from (r, n).
o If a € A((r,n)), then (r,n)K,(r, n).
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Syntax and semantics

@ P is a functions defined on W, where

o P((r,n) = (H"", ulron) (P, a € A}),

o H("" is an algebra of subsets of R,

o putrm  HnM 5 [0,1] is a finitely-additive probability measure
on H(r:n)

o {P,:ae€ A} is the set of functions defined on W, where
Pa((r,n)) = (WS HE™, 1) s a probability space such
that:

o W™ is a non-empty subset of W,

o H™ is an algebra of subsets of w" and

o u"™ : H"™ - [0,1] is a finitely-additive probability measure.
|

,Uifén)(X) = sup{u(ar’")(Y) :YCXYe H‘grm)}
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Syntax and semantics

Let M = (R, A, K, P) be a model. The satisfiability relation =
fulfils:
if p € Var, (r,n) = piff p € r(n),
(r,n) =EaApBiff (r,n) =« and (r,n) E 5,
(r,n) = =B iff not (r, n) |= B (i, () I A),
(r,n) = OB iff (r,n+1) k= B,
(r,n) = aUP iff there is an integer j > n such that (r,)) = 83,
and for every integer k, such that n < k < j, (r, k) | «,

(r,n) =@Biffn=0,orn>1and (r,n—1) S,
(r,n) = aSp iff there is an integer j € [0, n] such that
(r,j) E B, and for every integer k, such that j < k < n,
(

r k) =«

—

SRR CORNS

N o

™ = = =
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Syntax and semantics

Definition
8. (r,n) EX,Biff (r',n') =B for all (r',n") € K,(r,n),
9. (r,n) |= CB iff for every integer k > 0, (r, n) |= EX3,
10. (r,n) |= PssB iff u""({r € R: (r,0) = B}) > s.
11. (r, n; = Po>sf iff

(r,n

uEPA ) e WS (0 = BY) > .
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Non-compactness

o {Oka : ke N}U{-Ga},
o {Eka : k € N}uU{-Ca},
o {Pqa @ ke N}U{=P=oa}, etc.
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Strongly complete axiomatization, system Axprg,

| Propositional axioms and rules

Prop. All instances of classical propositional tautologies
o, —
MP. ’76
B
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Strongly complete axiomatization, system Axprg,

Il Axioms and rules for reasoning about time

AOﬁ. - O a <~ Q—\a

AO—.  Ola— B) = (Oa — OB)
AUQ.  aUf < BV (aAO(aup))

AUF. alUB — FB

Ae—. @ — @«

Ae—. @(a—pj3)— (ea— @p)

AeN. (@aNe@f)— @(aNp)

ADe. (Qea <« «a

AC®C:. Coa — @O«

AOOC:. ~@(yA—y) = (Oea — @O a)
Ase. asf < [BV (—@(a A —-a) Ao @(ass)])]
APe. rP@s
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Strongly complete axiomatization, system Axprg,

Il Axioms and rules for reasoning about time

o RON. &
(0%
o ReN. a
( JoY . .
o Ry, 126Ex(2((Ai55 O'a) A O'B)) = i €N}
' Py g x(—(aUpB))
e RS.

(ke x(~((NZ; @) A (N\|—, —@'(a A—a)) A @B)) : i€ N}
P B x(~(a8p))
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Strongly complete axiomatization, system Axprg,

11l Axioms and rules for reasoning about knowledge

AK—.
AKR.
AKA.
AKDE.
AKS.
AKT.
ACE.

RK,N.

RC.

Ki(a = B) — (Kaax = K, f)
As = (Ko — «)

A; — K A,

—A; = Ka(a A —a)

Koo — K- Ko

Ka — KK«

Cao —E"a, me N
«

Ko

{¢k,B,x(Eia) NS N}
<Dk,B,x(Ca)
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Strongly complete axiomatization, system Axprg,

IV Axioms and rules for reasoning about probability on runs

AGP1. P>oo

AGP2. Pga— P, t>r

AGP3. P.;a — P

AGP4.  (Pora AP APz17(a A B)) = Pominrr) (e V B)
AGP5.  (P<,aAPota) > Poppe(aVp), r+t<1

AGPe®. P.i@(a A —a)

RGPN. -2

>10
roa,  Lokex(Psrg) 72 2 0,1
. ¢k7B,X(P>ra)  re ( ) ]Q
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Strongly complete axiomatization, system Axprg,

V Axioms and rules for reasoning about probability on
possible worlds

AP1. P, oa

AP2. Pa<ra — Py o, t>r
AP3. Py<ta — Py crax
AP4. (Pazra APyt APaz1i—(a N B)) — Pa,}min(l,r+t)(a 2e)
AP5. (Pa,<ra@ APy cta) = Py crit(aV p), r+t<1
RPN. a
Pa7>104

{Pkpx(P, s, 10)|i > 1}

r

RA.

, re(0,1
kB x(Pazra) (0.3l
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Strong completeness of Axpre;

[Soundness for Axpre | F B implies |= 5.

[Deduction theorem] If T C For, then

T {a}FBIiffTEa—p.

[Strong necessitation] If T C For and T - ~y, then
Q@ OTFOn,
Q oT+- @y, and
© K,TFK,v, for every a € A.
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Strong completeness of Axpre;

[Lindenbaum’s theorem] Every Axptg,-consistent set of formulas T
can be extended to a maximal Ax-consistent set T*.

[Strong completeness for Axprg ] A set T of formulas is
AxpTEgL-consistent iff it is satisfiable.
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Decidability of PTEL

@ The class of all measurable PTEL-models is denoted by Mod

The Mod—satisfiability problem for PTEL, PSAT, is decidable.

The Mod-satisfiability problem for PTEL is in 2-EXPTIME.
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Blockain

STEP 1 New transactions are broadcast to all nodes.
STEP 2 Each node collects new transactions into a block.

STEP 3 Each node works on finding a difficult proof-of-work for its
block.

STEP 4 When a node finds a proof-of-work, it broadcasts the block to
all nodes.

STEP 5 Nodes accept the block only if all transactions in it are valid
and not already spent.

STEP 6 Nodes express their acceptance of the block by working on
creating the next block in the chain, using the hash of the
accepted block as the previous hash.



Modeling of the blockchain protocol
0®00000000

@ Nodes always consider the longest chain (the one containing
the most proofs-of-work) to be the correct one and will keep
working on extending it

o If two nodes broadcast different versions of the next block
simultaneously, some nodes may receive one or the other first

@ In that case, they work on the first one they received, but save
the other branch in case it becomes longer

@ The tie will be broken when the next proof-of-work is found

and one branch becomes longer; the nodes that were working
on the other branch will then switch to the longer one.
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Blockain theory - BCTP

Let a, b and ¢ denote agents from A.

o POW := {pow,;la € A,ic N} is a set of atomic
propositions, with the intended meaning of pow, ; that the
agent a produces a proof-of-work for round i,

o ACC := {acc,pila,b € A, i€ N} is a set of atomic
propositions, with the intended meaning of acc, ;, ; that the
agent a accepts the proof-of-work produced for round i by the
agent b,

® e;; = Apea(Ap — accp 5 ), with the intended meaning that
every active agent accepts the proof-of-work produced for
round / by the agent a, and

@ echp; = \/aGA accy i, with the intended meaning that the
agent b accepts some proof-of-work produced for round i.
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AB1

\/a Aa

There is always at least
one agent active.

AB2

acCCp i — pOWa’,-

One can only accept
proof-of-work that has
been produced.

AB3

acCp a,; — Kpaccy 4

The agents know if they
accept some proof-of-
work.

AB4

accCp,; — —accy i, for
each c # a

An agent accepts at most
one proof-of-work for a
given round.




Modeling of the blockchain protocol
0000®00000

Blockain theory - BCTP

AB5 | accacj A (Qaccpai — | If a accepts c's proof of work
accp e j, for j <i for round j and (in the next
step) b accepts a's proof-of-
work for a later round, then b
must also accept c's proof-of-
work for round j. This essen-
tially means that if b accepts
a's proof-of-work, then b ac-
cepts the whole history of a.
AB6 | Ay A\, pow,; — echp; | If proofs-of-work for some
round are produced, then each
active agent must accept one
of them. Note that we do not
have any assumption on how
an agent accepts a proof:
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Blockain theory - BCTP

AB7 | ech,; — A, Only active agents can accept
proofs-of-work.
AB8 | ech, ;i1 — ech,; If an agent accepts some proof-

of-work for round i+1, then the
agent also accepts some proof-
of-work for round i.
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Blockain theory - BCTP

AB9

echp;i = OV, pow, ;i1

If an agent accepts some
proof-of-work for round i,
then in the next round
a proof-of-work for round
i + 1 must be available.

AB10

_‘eCha,i — 7 O POW, jt1

Only an agent that has
accepted a proof-of-work
for round i can create (in
the next step) a proof-
of-work for round i +
1. This models the fact
that a proof-of-work de-
pends on the previously
accepted history.
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Blockain theory - BCTP

AB11 /\ P>s,pow, ; — | Necessary condition for
acX independence of pow'’s.
P>s /\ pow, ;,
aeX
5= Lexsn XC A
AB12 /\ P<s,pow, ; — | Necessary condition for
acX independence of pow's.
Pgs /\ pow, ;,
aeX
5= Lexsn XC A
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Blockain theory - BCTP

AB13 | P<.pow,; The probability that an agent
creates proof-of-work for round
i is low.
AB14 \/ pow,, ; In each round at leats one agent
acA produces proof-of-work.
AB15 | Pysa — K Pssax Every agent knows probabilities
of runs.
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Consistency: it is common knowledge among agents that

that with a high probability agents achieve consensus
about a long prefix of the public ledger.

o BCTP P>17(17(1752)k)2(\/§i7 VbjeA Ncea(Ac — aCCc,bj,j))-
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Consistency: it is common knowledge among agents that

that with a high probability agents achieve consensus
about a long prefix of the public ledger.

o BCTP P>17(17(1752)k)2(\/§i7 VbjeA Ncea(Ac — aCCc,bj,j))-

@ Fix some position i and some integer z. Then, there is integer
J between i and i 4 z such that the probability of the follo
wing event "agent b; produces the proof-of-work (pow) and
all active agents accept this pow” is equal or greater then
1—(1—(1-¢e?)k)z
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Consistency: it is common knowledge among agents that

that with a high probability agents achieve consensus
about a long prefix of the public ledger.

o BCTP P>17(17(1752)k)2(\/§i7 VbjeA Ncea(Ac — aCCc,bj,j))-

@ Fix some position i and some integer z. Then, there is integer
J between i and i 4 z such that the probability of the follo
wing event "agent b; produces the proof-of-work (pow) and
all active agents accept this pow” is equal or greater then
1—(1—(1-¢e?)k)z

i+z
BCTP - CPoy 1__cye:(\/ \V \(Ac = acec ).
Jj=i bjeA ceA

—— =% =
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