Computable approximations of semicomputable chainable continua

Vedran Čačić, Marko Horvat, Zvonko Iljazović

21/09/21

Theorem (IP2018)

Let (X,d,α) be a computable metric space and $S\subseteq X$ a semicomputable, decomposable, chainable continuum. Then for every $\varepsilon>0$ there exist computable points $\hat{a},\hat{b}\in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S}\approx_{\varepsilon} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

 $\begin{array}{c} > (X, d) \\ 2: N \rightarrow X \text{ dense} \\ (i,j) \mapsto d(x_i, a_j) \\ di \xrightarrow{a_j} \end{array}$

Theorem (IP2018)

Let (X, d, α) be a computable metric space and $S \subseteq X$ a semicomputable, decomposable, chainable continuum. Then for every $\varepsilon > 0$ there exist computable points $\hat{a}, \hat{b} \in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S} \approx_{\varepsilon} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

Theorem (IP2018)

Let (X, d, α) be a computable metric space and $S \subseteq X$ a semicomputable, decomposable, chainable continuum. Then for every $\varepsilon > 0$ there exist computable points $\hat{a}, \hat{b} \in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S} \approx_{\varepsilon} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

Communician:

Compacted

metric

Theorem (IP2018)

Let (X,d,α) be a computable metric space and $S\subseteq X$ a semicomputable, decomposable, chainable continuum. Then for every $\varepsilon>0$ there exist computable points $\hat{a},\hat{b}\in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S}\approx_{\varepsilon} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

deconposable Kr continuum:

Theorem (IP2018)

Let (X,d,α) be a computable metric space and $S\subseteq X$ a semicomputable, decomposable, chainable continuum. Then for every $\varepsilon>0$ there exist computable points $\hat{a},\hat{b}\in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S}\approx_{\varepsilon} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

decomposable:

Kr

Chainable:

ADDOS

continuum;

L: N -X dense (i,j) + d(x; x;) dio-----as;

Theorem (IP2018)

Let (X,d,α) be a computable metric space and $S\subseteq X$ a semicomputable, decomposable, chainable continuum. Then for every $\varepsilon>0$ there exist computable points $\hat{a},\hat{b}\in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S}\approx_{\varepsilon} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

decomposable: continuum:

Compact

Connected

metric

li-j|>1 \in CinC_i=0

Theorem (IP2018)

Let (X,d,α) be a computable metric space and $S\subseteq X$ a semicomputable, decomposable chainable continuum. Then for every $\varepsilon>0$ there exist computable points $\hat{a},\hat{b}\in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S}\approx_{\varepsilon} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

decomposable:

Continuum;

Compad

Connected

metric

li-j|>1 \in CinC_j=0

Theorem (IP2018)

Let (X, d, α) be a computable metric space and $S \subseteq X$ a semicomputable, decomposable, chainable continuum. Then for every $\varepsilon > 0$ there exist computable points $\hat{a}, \hat{b} \in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S} \approx_{\varepsilon} S$ and \hat{S} is chainable from â to b.

continuum: deconposable

Theorem (IP2018)

Let (X,d,α) be a computable metric space and $S\subseteq X$ a semicomputable, decomposable, chainable continuum. Then for every $\varepsilon>0$ there exist computable points $\hat{a},\hat{b}\in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S}\approx_{\varepsilon} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

decomposable

Kr

Chainable:

continuum:

2/7

Theorem (IP2018)

Let (X,d,α) be a computable metric space and $S\subseteq X$ a semicomputable, decomposable, chainable continuum. Then for every $\varepsilon>0$ there exist computable points $\hat{a},\hat{b}\in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S}\approx_{\varepsilon} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

decomposable:

chainable:

A STATE OF THE STA

continuum:

S Compad

Connected

Theorem (IP2018)

Let (X, d, α) be a computable metric space and $S \subseteq X$ a semicomputable, decomposable, chainable continuum. Then for every $\varepsilon > 0$ there exist computable points $\hat{a}, \hat{b} \in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S} \approx_{\varepsilon} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

Theorem (IP2018)

Let (X, d, α) be a computable metric space and $S \subseteq X$ a semicomputable, decomposable, chainable continuum. Then for every $\varepsilon > 0$ there exist computable points $\hat{a}, \hat{b} \in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S} \approx_{\varepsilon} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

Theorem (ČHI?)

Let $(X, \mathcal{T}, (I_i))$ be a computable topological space and $S \subseteq X$ a semicomputable, decomposable, chainable Hausdorff continuum. Then for every open cover \mathcal{U} of (X, \mathcal{T}) there exist computable points $\hat{a}, \hat{b} \in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S} \approx_{\mathcal{U}} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

Theorem (IP2018)

Let (X, d, α) be a computable metric space and $S \subseteq X$ a semicomputable, decomposable, chainable continuum. Then for every $\varepsilon > 0$ there exist computable points $\hat{a}, \hat{b} \in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S} \approx_{\varepsilon} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

Theorem (ČHI?)

Let $(X, \mathcal{T}, (I_i))$ be a computable topological space and $S \subseteq X$ a semicomputable, decomposable, chainable Hausdorff continuum. Then for every open cover \mathcal{U} of (X, \mathcal{T}) there exist computable points $\hat{a}, \hat{b} \in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S} \approx_{\mathcal{U}} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

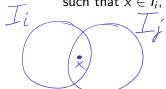
LytreS Jyes [x,y]=Uell

Definition

- 1. if $i, j \in \mathbb{N}$ and $i \in \mathcal{C} j$, then $I_i \subseteq I_j$;
- 2. if $i, j \in \mathbb{N}$ and $i \mathcal{D} j$, then $I_i \cap I_j = \emptyset$;
- 3. if $i, j \in \mathbb{N}$, $x \in X$ and $x \in I_i \cap I_j$, then there exists $k \in \mathbb{N}$ such that $x \in I_k$, $k \in I$ and $k \in I$;
- 4. if $x, y \in X$ and $x \neq y$, then there exist $i, j \in \mathbb{N}$ such that $x \in I_i$, $y \in I_j$ and $i \mathcal{D} j$.

Definition

- 1. if $i, j \in \mathbb{N}$ and $i \in \mathcal{C} j$, then $I_i \subseteq I_j$;
- 2. if $i, j \in \mathbb{N}$ and $i \mathcal{D} j$, then $I_i \cap I_j = \emptyset$;
- 3. if $i, j \in \mathbb{N}$, $x \in X$ and $x \in I_i \cap I_j$, then there exists $k \in \mathbb{N}$ such that $x \in I_k$, $k \in I$ and $k \in I$;
- 4. if $x, y \in X$ and $x \neq y$, then there exist $i, j \in \mathbb{N}$ such that $x \in I_i$, $y \in I_j$ and $i \mathcal{D} j$.



Definition

- 1. if $i, j \in \mathbb{N}$ and $i \in \mathcal{C} j$, then $I_i \subseteq I_j$;
- 2. if $i, j \in \mathbb{N}$ and $i \mathcal{D} j$, then $I_i \cap I_j = \emptyset$;
- 3. if $i, j \in \mathbb{N}$, $x \in X$ and $x \in I_i \cap I_j$, then there exists $k \in \mathbb{N}$ such that $x \in I_k$, $k \in I$ and $k \in I$;
- 4. if $x, y \in X$ and $x \neq y$, then there exist $i, j \in \mathbb{N}$ such that $x \in I_i$, $y \in I_j$ and $i \mathcal{D} j$.

Definition

- 1. if $i, j \in \mathbb{N}$ and $i \in \mathcal{C} j$, then $I_i \subseteq I_j$;
- 2. if $i, j \in \mathbb{N}$ and $i \mathcal{D} j$, then $I_i \cap I_j = \emptyset$;
- 3. if $i, j \in \mathbb{N}$, $x \in X$ and $x \in I_i \cap I_j$, then there exists $k \in \mathbb{N}$ such that $x \in I_k$, $k \in I$ and $k \in I$;
- 4. if $x, y \in X$ and $x \neq y$, then there exist $i, j \in \mathbb{N}$ such that $x \in I_i$, $y \in I_j$ and $i \mathcal{D} j$.

Definition

- 1. if $i, j \in \mathbb{N}$ and $i \in \mathcal{C} j$, then $I_i \subseteq I_j$;
- 2. if $i, j \in \mathbb{N}$ and $i \mathcal{D} j$, then $I_i \cap I_j = \emptyset$;
- 3. if $i, j \in \mathbb{N}$, $x \in X$ and $x \in I_i \cap I_j$, then there exists $k \in \mathbb{N}$ such that $x \in I_k$, $k \in I$ and $k \in I$;
- 4. if $x, y \in X$ and $x \neq y$, then there exist $i, j \in \mathbb{N}$ such that $x \in I_i$, $y \in I_j$ and $i \mathcal{D} j$.

Definition

- 1. if $i, j \in \mathbb{N}$ and $i \in \mathcal{C} j$, then $I_i \subseteq I_j$;
- 2. if $i, j \in \mathbb{N}$ and $i \mathcal{D} j$, then $I_i \cap I_j = \emptyset$;
- 3. if $i, j \in \mathbb{N}$, $x \in X$ and $x \in I_i \cap I_j$, then there exists $k \in \mathbb{N}$ such that $x \in I_k$, $k \in I$ and $k \in I$;
- 4. if $x, y \in X$ and $x \neq y$, then there exist $i, j \in \mathbb{N}$ such that $x \in I_i$, $y \in I_j$ and $i \mathcal{D} j$.
- 5. \mathcal{D} is symmetric;
- 6. C is reflexive and transitive;
- 7. if $i, j, k \in \mathbb{N}$, $k \in \mathcal{C}$ i and $i \in \mathcal{D}$ j, then $k \in \mathcal{D}$ j.

Definition

- 1. if $i, j \in \mathbb{N}$ and $i \in \mathcal{C} j$, then $I_i \subseteq I_j$;
- 2. if $i, j \in \mathbb{N}$ and $i \mathcal{D} j$, then $I_i \cap I_j = \emptyset$;
- 3. if $i, j \in \mathbb{N}$, $x \in X$ and $x \in I_i \cap I_j$, then there exists $k \in \mathbb{N}$ such that $x \in I_k$, $k \in I$ and $k \in I$;
- 4. if $x, y \in X$ and $x \neq y$, then there exist $i, j \in \mathbb{N}$ such that $x \in I_i$, $y \in I_j$ and $i \mathcal{D} j$.
- 5. \mathcal{D} is symmetric;
- 6. C is reflexive and transitive;
- 7. if $i, j, k \in \mathbb{N}$, $k \in \mathbb{C}$ i and $i \in \mathcal{D}$ j, then $k \in \mathcal{D}$ j.

Definition

- 1. if $i, j \in \mathbb{N}$ and $i \in \mathcal{C} j$, then $I_i \subseteq I_j$;
- 2. if $i, j \in \mathbb{N}$ and $i \mathcal{D} j$, then $I_i \cap I_j = \emptyset$;
- 3. if $i, j \in \mathbb{N}$, $x \in X$ and $x \in I_i \cap I_j$, then there exists $k \in \mathbb{N}$ such that $x \in I_k$, $k \in I$ and $k \in I$;
- 4. if $x, y \in X$ and $x \neq y$, then there exist $i, j \in \mathbb{N}$ such that $x \in I_i$, $y \in I_j$ and $i \mathcal{D} j$.
- 5. \mathcal{D} is symmetric;
- 6. C is reflexive and transitive;
- 7. if $i, j, k \in \mathbb{N}$, $k \in \mathbb{C}$ i and $i \in \mathcal{D}$ j, then $k \in \mathcal{D}$ j.

Computable points and sets

Let $[\cdot]$ be a recursive function which enumerates all nonempty finite subsets of \mathbb{N} (every such set is [j] for some $j \in \mathbb{N}$).

We fix $(X, \mathcal{T}, (I_i))$ and for $j \in \mathbb{N}$, we define $J_j = \bigcup_{i \in [j]} I_i$.

Definition

Let $x \in X$ and $S \subseteq X$.

- x is a computable point in $(X, \mathcal{T}, (I_i))$ if $\{i \in \mathbb{N} : x \in I_i\}$ is c.e.
- *S* is computably enumerable (or c.e.) in $(X, \mathcal{T}, (I_i))$ if *S* is closed in (X, \mathcal{T}) and $\{i \in \mathbb{N} : I_i \cap S \neq \emptyset\}$ is c.e.
- *S* is semicomputable in $(X, \mathcal{T}, (I_i))$ if *S* is compact in (X, \mathcal{T}) and $\{j \in \mathbb{N} : S \subseteq J_i\}$ is c.e.
- S is computable in $(X, \mathcal{T}, (I_i))$ if S is semicomputable and c.e. in $(X, \mathcal{T}, (I_i))$.

Starting with a simpler and more concrete statement

Theorem

Let $(S, \mathcal{T}, (I_i))$ be a semicomputable, decomposable, chainable Hausdorff continuum. Then for every open cover \mathcal{U} of (S, \mathcal{T}) there exist computable points $\hat{a}, \hat{b} \in S$ and a computable subcontinuum \hat{S} of S such that $\hat{S} \approx_{\mathcal{U}} S$ and \hat{S} is chainable from \hat{a} to \hat{b} .

Theorem

Let $(S,\mathcal{T},(I_i))$ be a semicomputable, chainable Hausdorff continuum. Let K_1 and K_2 be subcontinua of S such that $S=K_1\cup K_2$ and let $a\in K_1\setminus K_2$ and $b\in K_2\setminus K_1$. Finally, let $\alpha,\beta\in\mathbb{N}$ such that $a\in I_\alpha$ and $b\in I_\beta$. Then there exist computable points $\hat{a},\hat{b}\in S$ and a computable subcontinuum \hat{S} of S such that $\hat{a}\in I_\alpha$, $\hat{b}\in I_\beta$ and \hat{S} is chainable from \hat{a} to \hat{b} .

 $(S, \mathcal{T}, (I_i))$ semicomp., chainable Hausdorff cont., K_1 and K_2 subc. of S, $S = K_1 \cup K_2$, $a \in K_1 \setminus K_2$, $b \in K_2 \setminus K_1$, $\alpha, \beta \in \mathbb{N}$, $a \in I_{\alpha}$, $b \in I_{\beta}$. Then there exist comp. points $\hat{a}, \hat{b} \in S$ and a comp. subc. \hat{S} of S such that $\hat{a} \in I_{\alpha}$, $\hat{b} \in I_{\beta}$ and \hat{S} is chainable from \hat{a} to \hat{b} .

- 1. Enlarge K_1, K_2 to $J_{\tilde{a}}, J_{\tilde{b}}$ so that $a \in S \setminus J_{\tilde{b}}$ and $b \in S \setminus J_{\tilde{a}}$
- 2. The set of chains that cover S so that the first two links are in $J_{\tilde{a}}$, the last two in $J_{\tilde{b}}$, and the rest in $J_{\tilde{a}}$ and $J_{\tilde{b}}$ is c.e.
- 3. Rec. select a "falling" sequence $((p'_n, I_n, q'_n))_n$ of these and let $\hat{S} = \bigcap_{n \in \mathbb{N}} (\overline{J_{(I_n)_0}} \cup \ldots \cup \overline{J_{(I_n)_{\overline{I_n}}}}), \hat{a} \in \bigcap_{n \in \mathbb{N}} \overline{J_{(I_n)_0}}, \hat{b} \in \bigcap_{n \in \mathbb{N}} \overline{J_{(I_n)_{\overline{I_n}}}}$

 $(S, \mathcal{T}, (I_i))$ semicomp., chainable Hausdorff cont., K_1 and K_2 subc. of S, $S = K_1 \cup K_2$, $a \in K_1 \setminus K_2$, $b \in K_2 \setminus K_1$, $\alpha, \beta \in \mathbb{N}$, $a \in I_{\alpha}$, $b \in I_{\beta}$. Then there exist comp. points $\hat{a}, \hat{b} \in S$ and a comp. subc. \hat{S} of S such that $\hat{a} \in I_{\alpha}$, $\hat{b} \in I_{\beta}$ and \hat{S} is chainable from \hat{a} to \hat{b} .

- 1. Enlarge K_1, K_2 to $J_{\tilde{a}}, J_{\tilde{b}}$ so that $a \in S \setminus J_{\tilde{b}}$ and $b \in S \setminus J_{\tilde{a}}$
- 2. The set of chains that cover S so that the first two links are in $J_{\tilde{a}}$, the last two in $J_{\tilde{b}}$, and the rest in $J_{\tilde{a}}$ and $J_{\tilde{b}}$ is c.e.
- 3. Rec. select a "falling" sequence $((p'_n, l_n, q'_n))_n$ of these and let $\hat{S} = \bigcap_{n \in \mathbb{N}} (\overline{J_{(l_n)_n}} \cup \ldots \cup \overline{J_{(l_n)_{\overline{l_n}}}}), \hat{a} \in \bigcap_{n \in \mathbb{N}} \overline{J_{(l_n)_0}}, \hat{b} \in \bigcap_{n \in \mathbb{N}} \overline{J_{(l_n)_{\overline{l_n}}}}$

 $(S,\mathcal{T},(I_i))$ semicomp., chainable Hausdorff cont., K_1 and K_2 subc. of S, $S=K_1\cup K_2$, $a\in K_1\setminus K_2$, $b\in K_2\setminus K_1$, $\alpha,\beta\in\mathbb{N}$, $a\in I_\alpha$, $b\in I_\beta$. Then there exist comp. points $\hat{a},\hat{b}\in S$ and a comp. subc. \hat{S} of S such that $\hat{a}\in I_\alpha$, $\hat{b}\in I_\beta$ and \hat{S} is chainable from \hat{a} to \hat{b} .

- 1. Enlarge K_1, K_2 to $J_{\tilde{a}}, J_{\tilde{b}}$ so that $a \in S \setminus J_{\tilde{b}}$ and $b \in S \setminus J_{\tilde{a}}$
- 2. The set of chains that cover S so that the first two links are in $J_{\tilde{a}}$, the last two in $J_{\tilde{b}}$, and the rest in $J_{\tilde{a}}$ and $J_{\tilde{b}}$ is c.e.
- 3. Rec. select a "falling" sequence $((p'_n, I_n, q'_n))_n$ of these and let $\hat{S} = \bigcap_{n \in \mathbb{N}} (\overline{J_{(I_n)_0}} \cup \ldots \cup \overline{J_{(I_n)_{\overline{I_n}}}}), \hat{a} \in \bigcap_{n \in \mathbb{N}} \overline{J_{(I_n)_0}}, \hat{b} \in \bigcap_{n \in \mathbb{N}} \overline{J_{(I_n)_{\overline{I_n}}}}$

 $(S, \mathcal{T}, (I_i))$ semicomp., chainable Hausdorff cont., K_1 and K_2 subc. of S, $S = K_1 \cup K_2$, $a \in K_1 \setminus K_2$, $b \in K_2 \setminus K_1$, $\alpha, \beta \in \mathbb{N}$, $a \in I_{\alpha}$, $b \in I_{\beta}$. Then there exist comp. points $\hat{a}, \hat{b} \in S$ and a comp. subc. \hat{S} of S such that $\hat{a} \in I_{\alpha}$, $\hat{b} \in I_{\beta}$ and \hat{S} is chainable from \hat{a} to \hat{b} .

Construction stages for \hat{S} , \hat{a} , \hat{b} .

- 1. Enlarge K_1, K_2 to $J_{\tilde{a}}, J_{\tilde{b}}$ so that $a \in S \setminus J_{\tilde{b}}$ and $b \in S \setminus J_{\tilde{a}}$
- 2. The set of chains that cover S so that the first two links are in $J_{\tilde{a}}$, the last two in $J_{\tilde{b}}$, and the rest in $J_{\tilde{a}}$ and $J_{\tilde{b}}$ is c.e.
- 3. Rec. select a "falling" sequence $((p'_n, I_n, q'_n))_n$ of these and let $\hat{S} = \bigcap_{n \in \mathbb{N}} (\overline{J_{(I_n)_0}} \cup \ldots \cup \overline{J_{(I_n)_{\overline{I_n}}}}), \hat{a} \in \bigcap_{n \in \mathbb{N}} \overline{J_{(I_n)_0}}, \hat{b} \in \bigcap_{n \in \mathbb{N}} \overline{J_{(I_n)_{\overline{I_n}}}}$

6/7

 $(S, \mathcal{T}, (I_i))$ semicomp., chainable Hausdorff cont., K_1 and K_2 subc. of S, $S = K_1 \cup K_2$, $a \in K_1 \setminus K_2$, $b \in K_2 \setminus K_1$, $\alpha, \beta \in \mathbb{N}$, $a \in I_{\alpha}$, $b \in I_{\beta}$. Then there exist comp. points $\hat{a}, \hat{b} \in S$ and a comp. subc. \hat{S} of S such that $\hat{a} \in I_{\alpha}$, $\hat{b} \in I_{\beta}$ and \hat{S} is chainable from \hat{a} to \hat{b} .

- 1. Enlarge K_1, K_2 to $J_{\tilde{a}}, J_{\tilde{b}}$ so that $a \in S \setminus J_{\tilde{b}}$ and $b \in S \setminus J_{\tilde{a}}$
- 2. The set of chains that cover S so that the first two links are in $J_{\tilde{a}}$, the last two in $J_{\tilde{b}}$, and the rest in $J_{\tilde{a}}$ and $J_{\tilde{b}}$ is c.e.
- 3. Rec. select a "falling" sequence $((p'_n, I_n, q'_n))_n$ of these and let $\hat{S} = \bigcap_{n \in \mathbb{N}} (\overline{J_{(I_n)_0}} \cup \ldots \cup \overline{J_{(I_n)_{\overline{I_n}}}}), \hat{a} \in \bigcap_{n \in \mathbb{N}} \overline{J_{(I_n)_0}}, \hat{b} \in \bigcap_{n \in \mathbb{N}} \overline{J_{(I_n)_{\overline{I_n}}}}$

A simple corollary

A topological space A is an **arc** if there exists a homeomorphism $f:[0,1]\to A$. We say that f(0) and f(1) are the **endpoints** of A.

Corollary

Let $(X, \mathcal{T}, (I_i))$ be a computable topological space, S a semicomputable set which is an arc as a subspace of (X, \mathcal{T}) . Then for all $\alpha, \beta \in \mathbb{N}$ such that I_{α} and I_{β} intersect S, there exist different computable points $a \in I_{\alpha} \cap S$ and $b \in I_{\beta} \cap S$ such that the subarc of S with endpoints S and S is a computable set in S in S such that the subarc of S with endpoints S and S is a computable set in S such that the subarc of S with endpoints S and S is a computable set in S.