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Goal of this work

Theorem (1P2018)

Let (X, d,«) be a computable metric space and S C X a
semicomputable, decomposable, chainable continuum. Then for
every ¢ > 0 there exist computable points 3,b € S and a
computable subcontinuum S of S such that S ~. S and S is
chainable from 3 to b.
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Computable topological space

Definition

(X, T) topological space, {/; : i € N} base for 7.

(X, T, (l;)) is a computable topological space if there exist c.e.
relations C, D C N? such that:

1.
2.
3.

if i,jeNandiCj, then [; C I;;
ifi,jeNandiDj, then ;N [; = 0;

ifi,jeN xeXandxe Nl
then there exists k € N such that x € I, kCi and kC

. if x,y € X and x # y, then there exist i,j € N

such that x € [;, y € liand i Dj.
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Computable points and sets

Let [-] be a recursive function which enumerates all nonempty finite
subsets of N (every such set is [j] for some j € N).
We fix (X, T, (/;)) and for j € N, we define J; = Uiepi i-
Definition
Let x € X and S C X.
e x is a computable point in (X, T, (/;))
if {ieN:xel}isce.
e S is computably enumerable (or c.e.) in (X, T, (/;))
if Sis closed in (X, 7)and {ieN: NS #0}isce.
e S is semicomputable in (X, T, (/;))
if Sis compactin (X,7)and {j e N:SC J;i}isce.
e S is computable in (X, T, (/)
if S is semicomputable and c.e. in (X, T, (/;)).
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Starting with a simpler and more concrete statement

Theorem

Let (S,T, (l,-)) be a semicomputable, decomposable, chainable
Hausdorff continuum. Then for every open cover U of (S,T ) there
exist computable points 4, b € S and a computable subcontinuum
S of S such that § ~;; S and S is chainable from 4 to b.

Theorem

Let (S, T,(l;)) be a semicomputable, chainable Hausdorff
continuum. Let K1 and K> be subcontinua of S such that

S=Ki UK, and let a € K3 \ Ky and b € Ky \ Ki. Fina//y, let

a, 3 € N such that a € I, and b € I3. Then there exist computable
points 4,b € S and a computable subcontinuum S of S such that
acl,, belgandS is chainable from 4 to b.
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The theorem and the construction stages

(S,T, (l,-)) semicomp., chainable Hausdorff cont., Ky and K5 subc.
of §, S = K1 U K>, aGKl\K2, be KZ\K]_, a,0e€N,acl,,

b € Ig. Then there exist comp. points 4, b e S and a comp. subc.
S of S such that 4 € I, be I3 and S is chainable from 3 to b.

Construction stages for §, a, b.

1. Enlarge K1, K> to Js, Jy sothat ae S\ Jpand be S\ Js
2. The set of chains that cover S so that the first two links are in
Js, the last two in J;, and the rest in J; and Jj is c.e.

3. Rec. select a ,falling” sequence ((p},, In, g,,))n of these and let
S = Mnen(in)o Y-+ -U )8 € Nien Jn)or b € Miew i)
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A simple corollary

A topological space A is an arc if there exists a homeomorphism
f :]0,1] — A. We say that f(0) and f(1) are the endpoints of A.

Corollary

Let (X, T,(l;)) be a computable topological space, S a
semicomputable set which is an arc as a subspace of (X, T ). Then
for all o, p € N such that I, and g intersect S, there exist different
computable points a € I, 'S and b € I3 N S such that the subarc
of S with endpoints a and b is a computable set in (X, T, (I;)).
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