n-bisimulation for generalised Veltman semantics

Sebastijan Horvat, Tin Perkov, Mladen Vuković

Faculty of science, University of Zagreb 21/9/2021

Logic and Applications 2021

This talk is partly supported by Croatian Science Foundation (HRZZ) under the projects UIP-2017-05-9219 and IP-2018-01-7459.

Introduction

- Modal (n-)equivalence and (n-)bisimulation
- (*n*-)bisimulation implies (*n*-)equivalence
- Transforming Veltman models into generalised ones
- Modal equivalence doesn't imply bisimularity
- Games and bisimulations
- Final remarks

We will assume that you're familiar with the following concepts:

- interpretability logic IL, Veltman frames and Veltman models
- generalised Veltman frame
- A generalised Veltman model is a quadruple $\mathfrak{M} = (W, R, \{S_w \mid w \in W\}, \Vdash)$, where the first three components form a generalised Veltman frame and where *V* is a valuation mapping propositional variables to subsets of *W*. The forcing relation $\mathfrak{M}, w \Vdash A$ is defined as in definition of Veltman models with the difference that now

$$\mathfrak{M}, w \Vdash A \rhd B \quad \Leftrightarrow \quad \forall u \Big(w R u \& u \Vdash A \Rightarrow \exists V (u S_w V \& V \Vdash B) \Big).$$

V. Čačić, D. Vrgoč, A Note on Bisimulation and Modal Equivalence in Provability Logic and Interpretability Logic, Studia Logica 101(2013), 31–44

Modal depth is a mapping $d : Form_{IL} \rightarrow \mathbb{N}$ defined as follows:

- d(p) = 0 for all $p \in Prop$,
- $d(\perp) = 0$,
- $d(\neg F) = d(F)$,
- $d(F \lor G) = \max \{ d(F), d(G) \},\$
- $d(F \triangleright G) = 1 + \max \{ d(F), d(G) \}.$

Let $\mathfrak{M} = (W, R, (S_w)_w, V)$ and $\mathfrak{M}' = (W', R', (S'_{w'})_{w'}, V')$ be two Veltman models, and let $w \in W$ and $w' \in W'$ be worlds in them. Let $n \in \mathbb{N}$. We say that w and w' are

• modally equivalent, and write $\mathfrak{M}, w \equiv \mathfrak{M}', w'$, if for every IL-formula F,

 $\mathfrak{M}, w \Vdash F$ iff $\mathfrak{M}', w' \Vdash F$,

• modally *n*-equivalent, and write $\mathfrak{M}, w \equiv_n \mathfrak{M}', w'$, if for every IL-formula *F* of modal depth not more than *n*,

 $\mathfrak{M}, w \Vdash F$ iff $\mathfrak{M}', w' \Vdash F$,

• propositional equivalent if they agree on all propositional variables.

n-bisimulations (1/2)

Let $n \in \mathbb{N}$. An *n*-bisimulation between two generalised Veltman models $\mathfrak{M} = (W, R, S, \Vdash)$ and $\mathfrak{M}' = (W', R', S', \Vdash')$ is a decreasing sequence of relations

$$Z_n \subseteq Z_{n-1} \subseteq \cdots \subseteq Z_1 \subseteq Z_0 \subseteq W \times W'$$

that possesses the following properties:

(at) for every
$$(w, w') \in Z_0$$
, for every $p \in Prop$,

 $w \Vdash p$ iff $w' \Vdash' p$,

(forth) for every *i* from 1 to *n*:

for every $(w, w') \in Z_i$, for every u such that wRu, there exists u' such that $uZ_{i-1}u'$, w'R'u', and for every V' such that $u'S'_{w'}V'$, there exists V such that uS_wV , and for every $v \in V$ there exists $v' \in V'$ such that $vZ_{i-1}v'$,

(back) for every *i* from 1 to *n*:

for every $(w, w') \in Z_i$, for every u' such that w'R'u', there exists u such that $uZ_{i-1}u'$, wRu, and for every V such that uS_wV , there exists V' such that $u'S'_{w'}V'$, and for every $v' \in V'$ there exists $v \in V$ such that $vZ_{i-1}v'$.

We say that $w \in W$ and $w' \in W'$ are *n*-bisimilar, and write $\mathfrak{M}, w \Leftrightarrow_n \mathfrak{M}', w'$, if there is an *n*-bisimulation $Z_n \subseteq \cdots \subseteq Z_1 \subseteq Z_0 \subseteq W \times W'$, such that wZ_nw' .

The (forth) property

Theorem

Let $\mathfrak{M} = (W, R, S, \Vdash)$ and $\mathfrak{M}' = (W', R', S', \Vdash')$ be two generalised Veltman models. Then for every $n \in \mathbb{N}$,

 $\mathfrak{M}, w \simeq_n \mathfrak{M}', w'$ implies $\mathfrak{M}, w \equiv_n \mathfrak{M}', w'$,

for all $w \in W$ and $w' \in W'$.

- easy inductive proof
- we will show that the converse does not hold

Let $\mathfrak{M} = (W, R, \{S'_w : w \in W\}, \Vdash')$ be a Veltman model.

We define the generalised Veltman model Gen $\mathfrak{M} = (W, R, \{S_w : w \in W\}, \Vdash)$, where for every $w \in W$, $V \subseteq R[w]$ and $v \in R[w]$, we define

 vS_wV iff $(\exists u \in V)(vS'_wu)$.

The forcing relation \Vdash is defined such that it agrees with \Vdash' on propositional variables, and is extended by definition on complex formulas.

• Similarly one could define the generalised Veltman frame Gen \mathfrak{F} for Veltman frame $\mathfrak{F}.$

- It is easy to check that $Gen \mathfrak{M}$ is a generalised Veltman model.
- By induction on the complexity of a formula we can prove the following equivalence:

Theorem

Let $\mathfrak{M} = (W, R, S', \Vdash')$ be a Veltman model, and let $Gen \mathfrak{M} = (W, R, S, \Vdash)$ be a generalised Veltman model. For all formulas F and every $w \in W$ we have

 $\mathfrak{M}, w \Vdash' F$ iff Gen $\mathfrak{M}, w \Vdash F$.

Bisimulation

An **bisimulation** between two generalised Veltman models $\mathfrak{M} = (W, R, S, \Vdash)$ and $\mathfrak{M}' = (W', R', S', \Vdash')$ is a relation $Z \subseteq W \times W'$ that possesses the following properties:

(gen-at) for every $(w, w') \in Z$, for every $p \in Prop$, $w \Vdash p$ iff $w' \Vdash p$,

(gen-forth) for every $(w, w') \in Z$, for every u such that wRu, there exists u' such that uZu', w'R'u', and for every V' such that $u'S'_{w'}V'$, there exists V such that $uS_w V$, and for every $v \in V$ there exists $v' \in V'$ such that vZv',

(gen-back) for every $(w, w') \in Z$, for every u' such that w'R'u', there exists u such that uZu', wRu, and for every V such that uS_wV , there exists V' such that $u'S'_{w'}V'$, and for every $v' \in V'$ there exists $v \in V$ such that vZv'.

We say that $w \in W$ and $w' \in W$ are **bisimilar**, and write $\mathfrak{M}, w \simeq \mathfrak{M}', w'$, if there is a bisimulation $Z \subseteq W \times W'$ such that wZw'.

Theorem

Let $\mathfrak{M} = (W, R, \{S_w : w \in W\}, \Vdash)$ and $\mathfrak{M}' = (W', R', \{S'_w : w \in W\}, \Vdash')$ be two Veltman models and $w_0 \in W, w'_0 \in W'$ be worlds in them, respectively. Then

 $Gen \mathfrak{M}, w_0 \Leftrightarrow Gen \mathfrak{M}', w_0' \quad \text{iff} \quad \mathfrak{M}, w_0 \Leftrightarrow \mathfrak{M}', w_0'.$

• Preservation of *n*-bisimulation can be proven analogously.

Modal equivalence does not imply bisimilarity

Kripke models:

Slika: w and w' are modally equivalent but not bisimilar

Modal equivalence does not imply bisimilarity

Veltman models:

Slika: w and w' are modally equivalent but not bisimilar

Modal equivalence does not imply bisimilarity

A method for obtaining Veltman models from GL-models

• Let $\mathfrak{N} = (W, R, V)$ be a **GL**-model. For every $w \in W$ we define

 $uS_w v$ iff $wRu\underline{R}v$,

where we denote the reflexive closure of *R* with <u>*R*</u>. We denote $(W, R, \{S_w : w \in W\}, V)$ by *Vel* \mathfrak{N} .

Theorem

The worlds w_1 and w_2 , in Veltman models $\mathfrak{M}_1 \equiv \text{Vel } \mathfrak{N}_1$ and $\mathfrak{M}_2 \equiv \text{Vel } (\mathfrak{N}_1 \dot{+} \mathfrak{N}_2)$, are modally equivalent but not bisimilar.

Bisimulation is strictly stronger than modal equivalence

Theorem

The worlds w_1 and w_2 (from prevolus slide), in **generalised Veltman models** Gen \mathfrak{M}_1 and Gen \mathfrak{M}_2 , are modally equivalent but not bisimilar.

Games and bisimulations

References:

• the notion of game for Kripke models:

V. Goranko, M. Otto, *Model theory for modal logic*, In: P. Blackburn P., J. van Benthem, F. Wolter (eds.) Handbook of Modal Logic, pp.249-329, Elsevier, Amsterdam (2006)

• the notion of game for Veltman models:

V. Čačić, D. Vrgoč, A Note on Bisimulation and Modal Equivalence in *Provability Logic and Interpretability Logic*, Studia Logica 101(2013), 31–44

Bisimulation game for generalised Veltman semantics

- Let 𝔐_i = (W_i, R_i, {S⁽ⁱ⁾_w : 𝑐 ∈ W_i}, ⊨_i), i ∈ {0, 1}, be two generalised Veltman models.
- The **bisimulation game** is played by two players, *challenger* and *defender* who move from one configuration to another in a series of consecutive rounds.
- A configuration is a 4-tuple $(\mathfrak{M}_0, w_0, \mathfrak{M}_1, w_1)$, where $w_0 \in W_0$ and $w_1 \in W_1$. Each round starts with some configuration $(\mathfrak{M}_0, w_0, \mathfrak{M}_1, w_1)$. At the beginning of each round it is checked that $\mathfrak{M}_0, w_0 \equiv_0 \mathfrak{M}_1, w_1$. If that check fails, challenger wins.

A single round, starting with the configuration $(\mathfrak{M}_0, w_0, \mathfrak{M}_1, w_1)$, is played as follows:

- Challenger chooses $i \in \{0, 1\}$, index of one generalised Veltman model. We denote j := 1 i, the index of another model.
- 2 Challenger picks $u_i \in W_i$ such that $w_i R_i u_i$. If there are no such worlds, the defender wins and game is over.
- Solution Defender picks $u_j \in W_j$ such that $w_j R_j u_j$. If there are no such worlds, the challenger wins and game is over.
- Challenger picks $V_j \subseteq W_j$ such that $u_j S_{w_j}^{(j)} V_j$.
- **(**) Defender picks $V_i \subseteq W_i$ such that $u_i S_{w_i}^{(i)} V_i$.

The next round is then played from the configuration $(\mathfrak{M}_0, w, \mathfrak{M}_1, w')$ where

(i) challenger chooses u_i or $v_i \in V_i$.

(ii) In case the challenger has chosen u_i , the next round is played from configuration $(\mathfrak{M}_0, u_0, \mathfrak{M}_1, u_1)$. In case the challenger has chosen $v_i \in V_i$, then **the defender chooses** $v_j \in V_j$, and the next round is played from configuration $(\mathfrak{M}_0, v_0, \mathfrak{M}_1, v_1)$.

- notice the difference between definition of bisimulation games for Veltman models and generalised Veltman models

Remarks

• for every $n \in \mathbb{N}$, one can define an *n*-game:

An *n*-game is a bisimulation game with the following rule added: if n rounds have been played, and challenger hasn't won, then defender wins and the game ends.

- An 0-game is a bisimulation game without any round played. In an 0-game that starts from the configuration (𝔅, 𝑘₀, 𝑘₁, 𝑘₁), defender has a winning strategy if 𝔅₀, 𝑘₀ ≡₀ 𝔅₁, 𝑘₁.
- Note that steps 4. and 5. can always be played. For instance, because relation S^(j)_{wi} is quasi-reflexive, challenger can always pick V_j := {u_j}.

• it can easily be proven:

Proposition
Every bisimulation game ends, i.e., there are no infinite games.

- Some results on bisimulation games can be found in:
 - V. Čačić, D. Vrgoč, A Note on Bisimulation and Modal Equivalence in Provability Logic and Interpretability Logic, Studia Logica 101(2013), 31–44
 - T. Perkov, M. Vuković, A bisimulation characterization for interpretability logic, Logic Journal of the IGLP 22(2014), 872–879

Proposition

Let \mathfrak{M}_0 and \mathfrak{M}_1 be two generalised Veltman models and $w_0 \in W_0$, $w_1 \in W_1$ be worlds in them, respectively. For every $n \in \mathbb{N}$, defender has a winning strategy in an *n*-game with a starting configuration $(\mathfrak{M}_0, w_0, \mathfrak{M}_1, w_1)$ iff $\mathfrak{M}_0, w_0 \cong_n \mathfrak{M}_1, w_1$.

Questions?

Sebastijan Horvat, Tin Perkov, Mladen Vuković n-bisimulation for generalised Veltman semantics

25/25