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How to give an appropriate answer
to the data analyst while
preserving privacy of individuals in
the database?
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e D € D - a database/dataset;
@ g - a query, function applied on a database;

@ M - a mechanism which for every query g creates a new randomized
query by adding noise M(D) = q(D) + noise.

Neighbouring Databases
D ~ D’ - adjacent/neighbouring datasets (differs in at most one entry) J
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Definition: e-differential privacy
Let € > 0 . A mechanism M is e-differentially private iff for every pair of
adjacent databases D, D’ and for every S C range(M):

PriM(D) € S] < exp(e)PriM(D’) € S],

where the probability space is over the coin flips of the mechanism M.

[4 Dwork., C. Differential privacy: A survey of results. In Manindra
Agrawal, Dingzhu Du, Zhenhua Duan, and Angsheng Li, editors,
Theory and Applications of Models of Computation, pages 1-19,
Springer, Berlin, Heidelberg, 2008.
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What differential privacy promises?
computation
"difference" at most ¢
computation
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What kind of noise to use?

Probability

M(D") e

. M(D)

8 ' —_[Ratic bounded by e*

PriM(D) € S]
PriM(D’) € S]

< exp(e)
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Laplace Distribution?
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Laplace Mechanism

Definition: Global Sensitivity
The global sensitivity of a query g : D — R is
A(q) = D) — q(D’
(9) = max|la(D) = a(D)

for all neighbouring D and D’.

Theorem: Laplace Mechanism

For a query g, a mechanism M(x) = g(x) + Y satisfies e-differential

privacy, where Y is a random variable with Laplace distribution with mean

0 and scales @
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Figure: Laplace mechanism offering
0.5-differential privacy for a query with
sensitivity 1
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Scenario: Raw Location Sharing

M
. Original location
I~ T
User

Differentially

Reported locati
private mechanism

Methods:

on .
@ Distance-based Method:;
@ Obfuscation-based Method;

@ Anonymity-based Method.
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Distance-based Method

@ X - aset of user's
possible locations

. : @rooms ivo
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Definition: e-geo-indistinguishability

A mechanism M satisfies e-geo-indistinguishability iff for every r > 0 and
for every pair x,x’ € X : dy(x,x') < r and every S C Z:

PriM(x) € 8] < exp (er)Pr[M(X") € S]
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Geo-indistinguishability
Differential Privacy

Differential Privacy <= Geo-indistinguishability 77

PriM(x) € 8] < exp (edx(x, x"))PriM(x") € S]

PriM(D) € S] < exp (e - 1)Pr[M(D’) € S]
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Geo-indistinguishability
Differential Privacy

Differential Privacy <= Geo-indistinguishability 77

PriM(x) € 8] < exp (edx(x, x"))PriM(x") € S]

PriM(D) € S] < exp (e - 1)Pr[M(D’) € S]

1 =dn(D, D’) for adjacent databases
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dp- the Hamming distance (number of records at which corresponding
databases differ)
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What kind of noise to use?

f(x; 1, b) = 1 5p &P (—Lb“')

Laplace distribution
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What kind of noise to use?

1 X —
f(x;p,b) = %exp (——| M’)

b
Laplace distribution

2
3}
DE(“) = %

exp (—ed(x, ;1))

Planar Laplace Distribution
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Datasets as graphs

Many datasets can be represented as graphs:
o friendships in online social networks;
e financial transactions;

@ e-mail communacations and so on.

Social Graph G(V, E)
@ V/-set of vertices or nodes;

@ E-set of edges.
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Edge Differential Privacy
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Edge Differential Privacy

Two graphs are neighbors if they differ in one edge.
dedge(G,G') =1

o = = E = 9acn




Node Differential Privacy

Two graphs are neighbors if one can be obtained from the other by
deleting a node and its adjacent edges (or by adding a node).

o = = E = 9acn
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Node Differential Privacy

Two graphs are neighbors if one can be obtained from the other by
deleting a node and its adjacent edges (or by adding a node).

dnode(G7 G/) =1

Differential Privacy



Definition: Node (edge)-differential privacy

Let e > 0 . A mechanism M is e-node (edge)-differentially private iff for
every pair of neighbouring graphs G, G’ and for every S C range(M):

PriM(G) € S] < exp(e)Pr[M(G’) € S].

[4 Kasiviswanathan S.P., Nissim K., Raskhodnikova S., Smith A. :
Analyzing Graphs with Node Differential Privacy. In: Sahai A. (eds)
Theory of Cryptography. TCC 2013. Lecture Notes in Computer
Science, vol 7785. Springer, Berlin, Heidelberg, 2013.
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Edge differential privacy

Node differential privacy

PriM(G) € S] < exp(e - 1)Pr[M(G’) € S]

dedge(G,G') =1

PriM(G) € S] < exp(e - 1)Pr[M(G’) € S]

dnode (G, G') =1
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Different applications - different
distance metrics!

o = = E = 9acn




Concluding Remarks

o Differential privacy - motivation and definition;

@ Applications of differential privacy.

Ongoing Work:
@ Impact of new metrics on differential privacy;

@ Application of differential privacy in blockchain technology.
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