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Statystical Analysis
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Figure: Statistical Analysis
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How to give an appropriate answer
to the data analyst while

preserving privacy of individuals in
the database?
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Figure: Adding Noise
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D ∈ D - a database/dataset;

q - a query, function applied on a database;

M - a mechanism which for every query q creates a new randomized
query by adding noise M(D) = q(D) + noise.

Neighbouring Databases

D ∼ D ′ - adjacent/neighbouring datasets (differs in at most one entry)
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Definition: ε-differential privacy

Let ε > 0 . A mechanism M is ε-differentially private iff for every pair of
adjacent databases D,D ′ and for every S ⊆ range(M):

Pr [M(D) ∈ S ] ≤ exp(ε)Pr [M(D ′) ∈ S ],

where the probability space is over the coin flips of the mechanism M.

Dwork., C. Differential privacy: A survey of results. In Manindra
Agrawal, Dingzhu Du, Zhenhua Duan, and Angsheng Li, editors,
Theory and Applications of Models of Computation, pages 1–19,
Springer, Berlin, Heidelberg, 2008.
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What differential privacy promises?
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What kind of noise to use?

Pr [M(D) ∈ S ]

Pr [M(D ′) ∈ S ]
≤ exp(ε)
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Laplace Distribution?

f (x ;µ, b) =
1

2b
exp

(
−|x − µ|

b

)
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Laplace Mechanism

Definition: Global Sensitivity

The global sensitivity of a query q : D → R is

∆(q) = max
D,D′
||q(D)− q(D ′)||1

for all neighbouring D and D ′.

Theorem: Laplace Mechanism

For a query q, a mechanism M(x) = q(x) + Y satisfies ε-differential
privacy, where Y is a random variable with Laplace distribution with mean

0 and scales
∆(q)

ε
.
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Figure: Laplace mechanism offering
0.5-differential privacy for a query with
sensitivity 1
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Scenario: Raw Location Sharing

Methods:

Distance-based Method;

Obfuscation-based Method;

Anonymity-based Method.
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Distance-based Method

X - a set of user’s
possible locations

Z - a set of possible
reported locations

dX - a distance
metrics

l1 r1

l2 r2
l3 r3

Definition: ε-geo-indistinguishability

A mechanism M satisfies ε-geo-indistinguishability iff for every r > 0 and
for every pair x , x ′ ∈ X : dX (x , x ′) < r and every S ⊆ Z:

Pr [M(x) ∈ S] ≤ exp (εr)Pr [M(x ′) ∈ S]
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Differential Privacy ⇐⇒ Geo-indistinguishability ??

Geo-indistinguishability

Pr [M(x) ∈ S] ≤ exp (εdX (x , x ′))Pr [M(x ′) ∈ S]

Differential Privacy

Pr [M(D) ∈ S] ≤ exp (ε · 1)Pr [M(D ′) ∈ S]

1 = dh(D,D ′) for adjacent databases
dh- the Hamming distance (number of records at which corresponding

databases differ)
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What kind of noise to use?

f (x ;µ, b) =
1

2b
exp

(
−|x − µ|

b

)
Laplace distribution

Dε(µ) =
ε2

2π
exp (−εd(x , µ))

Planar Laplace Distribution
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Datasets as graphs

Many datasets can be represented as graphs:

friendships in online social networks;

financial transactions;

e-mail communacations and so on.

Social Graph G (V ,E )

V -set of vertices or nodes;

E -set of edges.
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Edge Differential Privacy

Two graphs are neighbors if they differ in one edge.

dedge(G ,G ′) = 1
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Node Differential Privacy

Two graphs are neighbors if one can be obtained from the other by
deleting a node and its adjacent edges (or by adding a node).

dnode(G ,G ′) = 1
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Node Differential Privacy
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Definition: Node (edge)-differential privacy

Let ε > 0 . A mechanism M is ε-node (edge)-differentially private iff for
every pair of neighbouring graphs G ,G ′ and for every S ⊆ range(M):

Pr [M(G ) ∈ S ] ≤ exp(ε)Pr [M(G ′) ∈ S ].

Kasiviswanathan S.P., Nissim K., Raskhodnikova S., Smith A. :
Analyzing Graphs with Node Differential Privacy. In: Sahai A. (eds)
Theory of Cryptography. TCC 2013. Lecture Notes in Computer
Science, vol 7785. Springer, Berlin, Heidelberg, 2013.
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Edge differential privacy

Pr [M(G ) ∈ S ] ≤ exp(ε · 1)Pr [M(G ′) ∈ S ]

dedge(G ,G ′) = 1

Node differential privacy

Pr [M(G ) ∈ S ] ≤ exp(ε · 1)Pr [M(G ′) ∈ S ]

dnode(G ,G ′) = 1
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Different applications - different
distance metrics!
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Concluding Remarks

Differential privacy - motivation and definition;

Applications of differential privacy.

Ongoing Work:

Impact of new metrics on differential privacy;

Application of differential privacy in blockchain technology.
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