Computable sequences and isometries ¹

Zvonko Iljazović, Lucija Validžić

University of Zagreb lucija.validzic@math.hr

Logic and Applications 2021

¹This work has been fully supported by Croatian Science Foundation under the project 7459 CompStruct.

A triple (X, d, α) is a **computable metric space** if (X, d) is a metric space, and α a dense sequence such that $(i, j) \mapsto d(\alpha_i, \alpha_j)$ is computable $(\alpha$ is **an effective separating sequence**).

A triple (X, d, α) is a **computable metric space** if (X, d) is a metric space, and α a dense sequence such that $(i, j) \mapsto d(\alpha_i, \alpha_j)$ is computable $(\alpha$ is **an effective separating sequence**).

• $x \in X$ is a computable point in (X, d, α) if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that $d(x, \alpha_{f(k)}) < 2^{-k}$, for each $k \in \mathbb{N}$.

A triple (X, d, α) is a **computable metric space** if (X, d) is a metric space, and α a dense sequence such that $(i, j) \mapsto d(\alpha_i, \alpha_j)$ is computable $(\alpha$ is **an effective separating sequence**).

- $x \in X$ is a computable point in (X, d, α) if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that $d(x, \alpha_{f(k)}) < 2^{-k}$, for each $k \in \mathbb{N}$.
- $\beta: \mathbb{N} \to \mathbb{N}$ is a computable sequence in (X, d, α) if there exists a computable function $F: \mathbb{N}^2 \to \mathbb{N}$ such that $d(\beta_i, \alpha_{F(i,k)}) < 2^{-k}$, for all $i, k \in \mathbb{N}$.

A triple (X, d, α) is a **computable metric space** if (X, d) is a metric space, and α a dense sequence such that $(i, j) \mapsto d(\alpha_i, \alpha_j)$ is computable $(\alpha$ is **an effective separating sequence**).

- $x \in X$ is a computable point in (X, d, α) if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that $d(x, \alpha_{f(k)}) < 2^{-k}$, for each $k \in \mathbb{N}$.
- $\beta: \mathbb{N} \to \mathbb{N}$ is a computable sequence in (X, d, α) if there exists a computable function $F: \mathbb{N}^2 \to \mathbb{N}$ such that $d(\beta_i, \alpha_{F(i,k)}) < 2^{-k}$, for all $i, k \in \mathbb{N}$.
- a compact set K is **computable** in (X, d, α) if there exists a computable function $f: \mathbb{N} \to \mathbb{N}$ such that $K \approx_{2^{-k}} \Lambda_{f(k)}$, for each $k \in \mathbb{N}$.

A triple (X, d, α) is a **computable metric space** if (X, d) is a metric space, and α a dense sequence such that $(i, j) \mapsto d(\alpha_i, \alpha_j)$ is computable $(\alpha$ is **an effective separating sequence**).

- $x \in X$ is a computable point in (X, d, α) if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that $d(x, \alpha_{f(k)}) < 2^{-k}$, for each $k \in \mathbb{N}$.
- $\beta: \mathbb{N} \to \mathbb{N}$ is a computable sequence in (X, d, α) if there exists a computable function $F: \mathbb{N}^2 \to \mathbb{N}$ such that $d(\beta_i, \alpha_{F(i,k)}) < 2^{-k}$, for all $i, k \in \mathbb{N}$.
- a compact set K is **computable** in (X, d, α) if there exists a computable function $f: \mathbb{N} \to \mathbb{N}$ such that $K \approx_{2^{-k}} \Lambda_{f(k)}$, for each $k \in \mathbb{N}$.

Are those notions defined by the metric space itself?

 α , β two effective separating sequences in (X, d)

 α , β two effective separating sequences in (X, d)

 α is computable in (X, d, β) iff β is computable in (X, d, α)

 α , β two effective separating sequences in (X, d)

 α is computable in (X, d, β) iff β is computable in (X, d, α) We say that α and β are **equivalent**, $\alpha \sim \beta$.

 α , β two effective separating sequences in (X, d)

 α is computable in (X, d, β) iff β is computable in (X, d, α) We say that α and β are **equivalent**, $\alpha \sim \beta$.

If \mathcal{S}_{α} and \mathcal{S}_{β} are the corresponding sets of computable sequences, then

$$\alpha \sim \beta \iff \mathcal{S}_{\alpha} = \mathcal{S}_{\beta}.$$

 α , β two effective separating sequences in (X, d)

 α is computable in (X, d, β) iff β is computable in (X, d, α) We say that α and β are **equivalent**, $\alpha \sim \beta$.

If \mathcal{S}_{α} and \mathcal{S}_{β} are the corresponding sets of computable sequences, then

$$\alpha \sim \beta \iff \mathcal{S}_{\alpha} = \mathcal{S}_{\beta}.$$

Under which circumstances are all effective separating sequences equivalent?

([0,1],d,q)

- if β is an effective separating sequence, 0 is computable in $([0,1],d,\beta)$
- $i \mapsto d(0, \beta_i)$ is computable, so $\beta : \mathbb{N} \to \mathbb{R}$ is computable
- $q \sim \beta$

([0,1], d, q)

- if β is an effective separating sequence, 0 is computable in $([0,1],d,\beta)$
- $i\mapsto d(0,\beta_i)$ is computable, so $\beta:\mathbb{N}\to\mathbb{R}$ is computable
- $q \sim \beta$

(S^1,d,α)

- if x is a computable point and y a non-computable point, there exists a rotation f such that f(x) = y
- $f \circ \alpha$ is an effective separating sequence and g is computable in $(S^1, d, f \circ \alpha)$
- $f \circ \alpha \nsim \alpha$

Difference: the number of isometries of the underlying metric space!

Difference: the number of isometries of the underlying metric space!

 (X,d,α) is an effectively (or computably) compact computable metric space if (X,d) is complete and there exists a computable function $f:\mathbb{N}\to\mathbb{N}$ such that $X=\bigcup_{i=0}^{f(k)}B(\alpha_i,2^{-k})$, for each $k\in\mathbb{N}$.

Difference: the number of isometries of the underlying metric space!

 (X,d,α) is an effectively (or computably) compact computable metric space if (X,d) is complete and there exists a computable function $f: \mathbb{N} \to \mathbb{N}$ such that $X = \bigcup_{i=0}^{f(k)} B(\alpha_i, 2^{-k})$, for each $k \in \mathbb{N}$.

Theorem (Iljazović, 2010)

Let (X,d,α) be an effectively compact computable metric space such that there exist only finitely many isometries of the metric space (X,d). If β is an effective separating sequence in (X,d), then $\beta \sim \alpha$.

New result

Theorem

Let (X,d,α) be an effectively compact metric space and K a computable compact set in (X,d,α) such that there are only finitely many isometries $f:X\to X$ such that $f(K)\subseteq K$. If β is an effective separating sequence in (X,d) such that K is computable in (X,d,β) , then $\alpha\sim\beta$.

Consequence:

Proposition

Assume that (X, d, α) is an effectively compact computable metric space and x_0, \ldots, x_n computable points in (X, d, α) such that there are only finitely many isometries $f: X \to X$ such that $f(x_i) = x_i$, $i = 0, \ldots, n$. If β is an effective separating sequence such that x_0, \ldots, x_n are computable points in (X, d, β) , then $\alpha \sim \beta$.

 α an effective separating sequence, f an isometry $\Rightarrow f \circ \alpha$ is an effective separating sequence and $f(S_{\alpha}) = S_{f \circ \alpha}$

 α an effective separating sequence, f an isometry $\Rightarrow f \circ \alpha$ is an effective separating sequence and $f(S_{\alpha}) = S_{f \circ \alpha}$

If β is an efffective separating sequence such that $\beta \sim f \circ \alpha$, for some isometry f, we say that α and β are **equivalent up to an isometry**, $\alpha \sim_{\mathsf{iso}} \beta$.

 α an effective separating sequence, f an isometry $\Rightarrow f \circ \alpha$ is an effective separating sequence and $f(S_{\alpha}) = S_{f \circ \alpha}$

If β is an efffective separating sequence such that $\beta \sim f \circ \alpha$, for some isometry f, we say that α and β are **equivalent up to an isometry**, $\alpha \sim_{\mathsf{iso}} \beta$.

A metric space is **computably categorical** if every two effective separating sequences are equivalent up to an isometry.

 (\mathbb{R}^n, d, q)

- if α is an effective separating sequence, then exists an isometry f such that $f\circ\alpha$ is a computable sequence
- $q \sim_{\mathsf{iso}} \alpha$

(\mathbb{R}^n, d, q)

- if α is an effective separating sequence, then exists an isometry f such that $f\circ\alpha$ is a computable sequence
- $q \sim_{\mathsf{iso}} \alpha$

$([0,\gamma],d,lpha)$, γ left computable, not computable

- β an effective separating sequence such that $\frac{\gamma}{2}$ is computable in $([0,\gamma],d,\beta)$
- $\frac{\gamma}{2}$ is a fixed point of each isometry and is not computable in $([0,\gamma],d,\alpha)$
- $\alpha \not\sim_{\mathsf{iso}} \beta$

 S^1

 α , β two effective separating sequences

S^1

 α , β two effective separating sequences

x a computable point in (S^1, d, α), y a computable point in (S^1, d, β)

 α , β two effective separating sequences

 ${\it x}$ a computable point in (S^1, d, α), y a computable point in (S^1, d, β)

There is a rotation f such that f(x) = y.

 α , β two effective separating sequences

x a computable point in (S^1,d,α) , y a computable point in (S^1,d,β)

There is a rotation f such that f(x) = y.

 (S^1,d,β) and $(S^1,d,f\circ\alpha)$ have a common computable point y, and there are only two isometries which fix y.

 α , β two effective separating sequences

x a computable point in (S^1,d,α) , y a computable point in (S^1,d,β)

There is a rotation f such that f(x) = y.

 (S^1, d, β) and $(S^1, d, f \circ \alpha)$ have a common computable point y, and there are only two isometries which fix y.

Proposition $\Rightarrow \beta \sim f \circ \alpha \Rightarrow \beta \sim_{iso} \alpha$

The main question

The main question

If a metric space admits a structure of effectively compact computable metric space, is it computably categorical?

The main question

If a metric space admits a structure of effectively compact computable metric space, is it computably categorical? (focus on spaces with infinitely many isometries)

C.e. and co-c.e. sets

C.e. and co-c.e. sets

 $au_1, au_2 : \mathbb{N} \to \mathbb{N}$ computable, $\{(au_1(i), au_2(i)) \mid i \in \mathbb{N}\} = \mathbb{N}^2$ $q : \mathbb{N} \to \mathbb{Q}$ computable, $\operatorname{Im} q = \mathbb{Q}_{>0}$ $I_i = B(\alpha_{\tau_1(i)}, q_{\tau_2(i)})$ a rational open ball

C.e. and co-c.e. sets

 $au_1, au_2 : \mathbb{N} o \mathbb{N}$ computable, $\{(au_1(i), au_2(i)) \mid i \in \mathbb{N}\} = \mathbb{N}^2$ $q : \mathbb{N} o \mathbb{Q}$ computable, $\operatorname{Im} q = \mathbb{Q}_{>0}$ $I_i = B(lpha_{ au_1(i)}, q_{ au_2(i)})$ a rational open ball

S a closed set in (X, d)

C.e. and co-c.e. sets

$$au_1, au_2 : \mathbb{N} \to \mathbb{N}$$
 computable, $\{(au_1(i), au_2(i)) \mid i \in \mathbb{N}\} = \mathbb{N}^2$ $q : \mathbb{N} \to \mathbb{Q}$ computable, $\operatorname{Im} q = \mathbb{Q}_{>0}$ $I_i = B(\alpha_{\tau_1(i)}, q_{\tau_2(i)})$ a rational open ball

S a closed set in (X, d)

• If $\{i \in \mathbb{N} \mid S \cap I_i \neq \emptyset\}$ is c.e., we say that S is computably enumerable in (X, d, α) .

C.e. and co-c.e. sets

$$au_1, au_2 : \mathbb{N} \to \mathbb{N}$$
 computable, $\{(au_1(i), au_2(i)) \mid i \in \mathbb{N}\} = \mathbb{N}^2$ $q : \mathbb{N} \to \mathbb{Q}$ computable, $\operatorname{Im} q = \mathbb{Q}_{>0}$ $I_i = B(lpha_{ au_1(i)}, q_{ au_2(i)})$ a rational open ball

S a closed set in (X, d)

- If $\{i \in \mathbb{N} \mid S \cap I_i \neq \emptyset\}$ is c.e., we say that S is computably enumerable in (X, d, α) .
- If there is a c.e. set Ω in $\mathbb N$ such that

$$X \setminus S = \bigcup_{i \in \Omega} I_i$$

we say that S is **co-computably enumerable** in (X, d, α) .

Orbits of computable points

Theorem

If (X, d, α) is an effectively compact computable metric space and x_0 a computable point in this space, then

$$Orb(x_0) = \{f(x_0) \mid f \in Iso(X, d)\}\$$

is a co-c.e. set.

Computable categoricity of unions of concentric spheres

Computable categoricity of unions of concentric spheres

Computable categoricity of unions of concentric spheres

Theorem

Suppose X is an effectively compact subset of \mathbb{R}^n which is a union of concentric spheres, i.e. there is a point $x_0 \in \mathbb{R}^n$ and $R \subseteq [0,+\infty)$ such that

$$X=\bigcup_{r\in R}S(x_0,r).$$

Then X is computably categorical.

(1) Assume that $X \subseteq \mathbb{R}^n$, d Euclidean metric on X, (X, d, α) effectively compact. Then there exists an isometry f of \mathbb{R}^n such that $f \circ \alpha$ is a computable sequence in \mathbb{R}^n . For that isometry f, the set f(X) is computable in \mathbb{R}^n .

- (1) Assume that $X \subseteq \mathbb{R}^n$, d Euclidean metric on X, (X, d, α) effectively compact. Then there exists an isometry f of \mathbb{R}^n such that $f \circ \alpha$ is a computable sequence in \mathbb{R}^n . For that isometry f, the set f(X) is computable in \mathbb{R}^n .
- (2) Assume that α and β computable sequences in \mathbb{R}^n such that

$$\overline{\{\alpha_i \mid i \in \mathbb{N}\}} = \overline{\{\beta_i \mid i \in \mathbb{N}\}}.$$

Then $\alpha \sim \beta$.

- (1) Assume that $X \subseteq \mathbb{R}^n$, d Euclidean metric on X, (X, d, α) effectively compact. Then there exists an isometry f of \mathbb{R}^n such that $f \circ \alpha$ is a computable sequence in \mathbb{R}^n . For that isometry f, the set f(X) is computable in \mathbb{R}^n .
- (2) Assume that α and β computable sequences in \mathbb{R}^n such that

$$\overline{\{\alpha_i \mid i \in \mathbb{N}\}} = \overline{\{\beta_i \mid i \in \mathbb{N}\}}.$$

Then $\alpha \sim \beta$.

(3) In an effectively compact computable metric space any co-c.e. topological sphere is computable.

x a computable point in $(X,d,\alpha) \Longrightarrow f(x)$ a computable point in $(f(X),d,f\circ\alpha)$

x a computable point in $(X,d,\alpha) \Longrightarrow f(x)$ a computable point in $(f(X),d,f\circ\alpha)$

 $Orb(f(x)) = S(f(x_0), r)$ is a co-c.e. sphere in a computable set f(X)

x a computable point in $(X,d,\alpha) \Longrightarrow f(x)$ a computable point in $(f(X),d,f\circ\alpha)$

 $\operatorname{Orb}(f(x)) = S(f(x_0), r)$ is a co-c.e. sphere in a computable set $f(X) \Longrightarrow S(f(x_0), r)$ is computable

x a computable point in $(X,d,\alpha) \Longrightarrow f(x)$ a computable point in $(f(X),d,f\circ\alpha)$

 $\operatorname{Orb}(f(x)) = S(f(x_0), r)$ is a co-c.e. sphere in a computable set $f(X) \Longrightarrow S(f(x_0), r)$ is computable $\Longrightarrow f(x_0)$ is a computable point in \mathbb{R}^n , as well as $g(x_0)$

x a computable point in $(X,d,\alpha) \Longrightarrow f(x)$ a computable point in $(f(X),d,f\circ\alpha)$

 $\operatorname{Orb}(f(x)) = S(f(x_0), r)$ is a co-c.e. sphere in a computable set $f(X) \Longrightarrow S(f(x_0), r)$ is computable $\Longrightarrow f(x_0)$ is a computable point in \mathbb{R}^n , as well as $g(x_0)$

 $t(x) = x - f(x_0) + g(x_0)$ is a computable translation which maps f(X) to g(X)

x a computable point in $(X,d,\alpha) \Longrightarrow f(x)$ a computable point in $(f(X),d,f\circ\alpha)$

 $\operatorname{Orb}(f(x)) = S(f(x_0), r)$ is a co-c.e. sphere in a computable set $f(X) \Longrightarrow S(f(x_0), r)$ is computable $\Longrightarrow f(x_0)$ is a computable point in \mathbb{R}^n , as well as $g(x_0)$

 $t(x) = x - f(x_0) + g(x_0)$ is a computable translation which maps f(X) to $g(X) \Longrightarrow t \circ f \circ \alpha$ and $g \circ \beta$ are computable and dense in g(X)

x a computable point in $(X,d,\alpha) \Longrightarrow f(x)$ a computable point in $(f(X),d,f\circ\alpha)$

 $\operatorname{Orb}(f(x)) = S(f(x_0), r)$ is a co-c.e. sphere in a computable set $f(X) \Longrightarrow S(f(x_0), r)$ is computable $\Longrightarrow f(x_0)$ is a computable point in \mathbb{R}^n , as well as $g(x_0)$

 $t(x) = x - f(x_0) + g(x_0)$ is a computable translation which maps f(X) to $g(X) \Longrightarrow t \circ f \circ \alpha$ and $g \circ \beta$ are computable and dense in $g(X) \Longrightarrow t \circ f \circ \alpha \sim g \circ \beta$

x a computable point in $(X,d,\alpha) \Longrightarrow f(x)$ a computable point in $(f(X),d,f\circ\alpha)$

 $\operatorname{Orb}(f(x)) = S(f(x_0), r)$ is a co-c.e. sphere in a computable set $f(X) \Longrightarrow S(f(x_0), r)$ is computable $\Longrightarrow f(x_0)$ is a computable point in \mathbb{R}^n , as well as $g(x_0)$

 $t(x) = x - f(x_0) + g(x_0)$ is a computable translation which maps f(X) to $g(X) \Longrightarrow t \circ f \circ \alpha$ and $g \circ \beta$ are computable and dense in $g(X) \Longrightarrow t \circ f \circ \alpha \sim g \circ \beta \Longrightarrow \alpha \sim ((t \circ f)^{-1} \circ g) \circ \beta$

Important fact:

Important fact:

If X is a compact subset of \mathbb{R}^2 which has infinitely many isometries, then X is a union of concentric circles.

Important fact:

If X is a compact subset of \mathbb{R}^2 which has infinitely many isometries, then X is a union of concentric circles.

Conclusion for \mathbb{R}^2 :

Important fact:

If X is a compact subset of \mathbb{R}^2 which has infinitely many isometries, then X is a union of concentric circles.

Conclusion for \mathbb{R}^2 :

Theorem

Any compact subset of \mathbb{R}^2 which admits a structure of an effectively compact computable metric space is computably categorical.

p is the **line of symmetry** of $X \subseteq \mathbb{R}^3$ if $X = \bigcup_{i \in I} S_i$, where $\{S_i \mid i \in I\}$ are circles with centers on the line p which lie in parallel planes perpendicular to p.

p is the **line of symmetry** of $X \subseteq \mathbb{R}^3$ if $X = \bigcup_{i \in I} S_i$, where $\{S_i \mid i \in I\}$ are circles with centers on the line p which lie in parallel planes perpendicular to p.

Theorem

Suppose $X \subseteq \mathbb{R}^3$ is an effectively compact metric space with the line of symmetry p. Then X is computably categorical.

- (1) Assume that $X \subseteq \mathbb{R}^n$, d Euclidean metric on X, (X, d, α) effectively compact. Then there exists an isometry f of \mathbb{R}^n such that $f \circ \alpha$ is a computable sequence in \mathbb{R}^n . For that isometry f, the set f(X) is computable in \mathbb{R}^n .
- (2) Assume that α and β computable sequences in \mathbb{R}^n such that

$$\overline{\{\alpha_i \mid i \in \mathbb{N}\}} = \overline{\{\beta_i \mid i \in \mathbb{N}\}}.$$

Then $\alpha \sim \beta$.

- (1) Assume that $X \subseteq \mathbb{R}^n$, d Euclidean metric on X, (X, d, α) effectively compact. Then there exists an isometry f of \mathbb{R}^n such that $f \circ \alpha$ is a computable sequence in \mathbb{R}^n . For that isometry f, the set f(X) is computable in \mathbb{R}^n .
- (2) Assume that α and β computable sequences in \mathbb{R}^n such that

$$\overline{\{\alpha_i\mid i\in\mathbb{N}\}}=\overline{\{\beta_i\mid i\in\mathbb{N}\}}.$$

Then $\alpha \sim \beta$.

(3) If X is a computable set in \mathbb{R}^3 with at least two points and p is its line of symmetry, then p is computably enumerable.

Future work

Future work

effective compactness $\stackrel{?}{\Longrightarrow}$ computable categoricity