Fixed-Template Promise Model Checking Problems

Kristina Asimi ${ }^{1}$ joint work with L. Barto ${ }^{1}$ and S. Butti ${ }^{2}$
${ }^{1}$ Department of Algebra, Faculty of Mathematics and Physics, Charles University, Czechia
${ }^{2}$ Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain

LAP, Dubrovnik, September 2022

Outline

1 Model Checking Problem (MC)

2 Promise Model Checking Problem (PMC)

3 Preliminaries
$4\{\exists, \wedge, \vee\}-\mathrm{PMC}$
$5\{\exists, \forall, \wedge, \vee\}-P M C$

6 Open problems

Model Checking Problem

Model checking problem :
We define the model checking problem over a logic \mathcal{L} to have
■ Input : a structure \mathbb{A} (model), a sentence ϕ of \mathcal{L}

- Question : does $\mathbb{A} \vDash \phi$

First-order model checking problem parameterized by the model :
For any $\mathcal{L} \subseteq\{\exists, \forall, \wedge, \vee,=, \neq, \neg\}$ we define the problem \mathcal{L}-MC($\mathbb{A})$ to have
\square Input : a sentence ϕ of \mathcal{L}-FO
■ Output : yes if $\mathbb{A} \vDash \phi$, no otherwise

\mathcal{L}-MC($\mathbb{A})$	Complexity
$\{\exists, \wedge\}-\mathrm{MC}(\mathbb{A})(\mathrm{CSP})$	P or NP-complete
$\{\exists, \forall, \wedge\}-\mathrm{MC}(\mathbb{A})(\mathrm{QCSP})$	$?$
$\{\exists, \wedge, \vee\}-\mathrm{MC}(\mathbb{A})$	L or NP-complete
$\{\exists, \forall, \wedge, \vee\}-\mathrm{MC}(\mathbb{A})$	L, NP-complete, coNP-complete, PSPACE-complete

Figure - Known complexity results for \mathcal{L}-MC(\mathbb{A}).

Promise Model Checking Problem

$$
\left.\begin{array}{l}
\mathbb{A}=\left(A ; R_{1}^{\mathbb{A}}, R_{2}^{\mathbb{A}}, \ldots, R_{n}^{\mathbb{A}}\right) \\
\mathbb{B}=\left(B ; R_{1}^{\mathbb{B}}, R_{2}^{\mathbb{B}}, \ldots, R_{n}^{\mathbb{B}}\right)
\end{array}\right\} \text { similar relational structures }
$$

Definition

A pair of similar structures (\mathbb{A}, \mathbb{B}) is called an \mathcal{L}-PMC template if $\mathbb{A} \vDash \phi$ implies $\mathbb{B} \vDash \phi$ for every \mathcal{L}-sentence ϕ in the signature of \mathbb{A} and \mathbb{B}.
Given an \mathcal{L}-PMC template (\mathbb{A}, \mathbb{B}), the \mathcal{L}-Promise Model Checking Problem over (\mathbb{A}, \mathbb{B}), denoted $\mathcal{L}-\mathrm{PMC}(\mathbb{A}, \mathbb{B})$, is the following problem.
Input : an \mathcal{L}-sentence ϕ in the signature of \mathbb{A} and \mathbb{B};
Output: yes if $\mathbb{A} \vDash \phi$; no if $\mathbb{B} \nvdash \phi$.

\mathcal{L}-PMC($\mathbb{A}, \mathbb{B})$	Condition	Complexity
\exists, \forall, \wedge -PMC {fec9c7df3-331b-43d6-8914-a802bc8730f6}		L/NP-complete
	L	
	A-smuhom and E-smuhom	NP \cap coNP
	A-smuhom, no E-smuhom	NP-complete
	E-smuhom, no A-smuhom	coNP-complete
	no A-smuhom, no E-smuhom	NP-hard and coNP-hard

Figure - Complexity results for \mathcal{L} - $\mathrm{PMC}(\mathbb{A}, \mathbb{B})$.

Preliminaries

Let \mathbb{A} and \mathbb{B} be two similar relational structures.
\square A function $f: A \rightarrow B$ is called a homomorphism from \mathbb{A} to \mathbb{B} if $f(\mathbf{a}) \in R^{\mathbb{B}}$ for any $\mathbf{a} \in R^{\mathbb{A}}$, where $f(\mathbf{a})$ is computed component-wise.

- A multi-valued function f from A to B is a mapping from A to $\mathcal{P}_{\neq \emptyset} B$.

■ It is called surjective if for every $b \in B$, there exists $a \in A$ such that $b \in f(a)$.

- A multi-valued function f from A to B is called a multi-homomorphism from \mathbb{A} to \mathbb{B} if for any R in the signature and any $\mathbf{a} \in R^{\mathbb{A}}$, we have $f(\mathbf{a}) \subseteq R^{\mathbb{B}}$.
■ $\operatorname{MuHom}(\mathbb{A}, \mathbb{B})$ - the set of all multi-homomorphisms from \mathbb{A} to \mathbb{B} $\operatorname{SMuHom}(\mathbb{A}, \mathbb{B})$ - the set of all surjective multi-homomorphisms from \mathbb{A} to \mathbb{B}

We say that a relation $S \subseteq A^{n}$ is \mathcal{L}-definable from \mathbb{A} if there exists an \mathcal{L}-formula $\psi\left(v_{1}, \ldots, v_{n}\right)$ such that, for all $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$, we have $\left(a_{1}, \ldots, a_{n}\right) \in S$ if and only if $\mathbb{A} \vDash \psi\left(a_{1}, \ldots, a_{n}\right)$.

Definition

Assume $\neg \notin \mathcal{L}$ and let (\mathbb{A}, \mathbb{B}) be a pair of similar structures. We say that a pair of relations (S, T), where $S \subseteq A^{n}$ and $T \subseteq B^{n}$, is promise- \mathcal{L}-definable (or p - \mathcal{L}-definable) from (\mathbb{A}, \mathbb{B}) if there exist relations S^{\prime} and T^{\prime} and an \mathcal{L}-formula $\psi\left(v_{1}, \ldots, v_{n}\right)$ such that $S \subseteq S^{\prime}, T^{\prime} \subseteq T, \psi\left(v_{1}, \ldots, v_{n}\right)$ defines S^{\prime} in \mathbb{A}, and $\psi\left(v_{1}, \ldots, v_{n}\right)$ defines T^{\prime} in \mathbb{B}.
We say that an \mathcal{L}-PMC template (\mathbb{C}, \mathbb{D}) is p - \mathcal{L}-definable from (\mathbb{A}, \mathbb{B}) (the signatures can differ) if ($Q^{\mathbb{C}}, Q^{\mathbb{D}}$) is p - \mathcal{L}-definable from (\mathbb{A}, \mathbb{B}) for each relation symbol Q in the signature of \mathbb{C} and \mathbb{D}.

Theorem

Assume $\neg \notin \mathcal{L}$. If (\mathbb{A}, \mathbb{B}) and (\mathbb{C}, \mathbb{D}) are \mathcal{L}-PMC templates such that (\mathbb{C}, \mathbb{D}) is $p-\mathcal{L}$-definable from (\mathbb{A}, \mathbb{B}), then $\mathcal{L}-\operatorname{PMC}(\mathbb{C}, \mathbb{D}) \leq \mathcal{L}-\operatorname{PMC}(\mathbb{A}, \mathbb{B})$.

$\{\exists, \wedge, \vee\}-\mathrm{PMC}$

A pair (\mathbb{A}, \mathbb{B}) of similar structures is an $\{\exists, \wedge, \vee\}$-PMC template if and only if there exists a homomorphism from \mathbb{A} to \mathbb{B}.

Theorem

Let (\mathbb{A}, \mathbb{B}) and (\mathbb{C}, \mathbb{D}) be $\{\exists, \wedge, \vee\}$-PMC templates such that $A=C$ and $B=D$. Then
(\mathbb{C}, \mathbb{D}) is $p-\{\exists, \wedge, \vee\}$-definable from (\mathbb{A}, \mathbb{B}) if and only if
$\operatorname{MuHom}(\mathbb{A}, \mathbb{B}) \subseteq \operatorname{MuHom}(\mathbb{C}, \mathbb{D})$. Moreover, in such a case,
$\{\exists, \wedge, \vee\}-\operatorname{PMC}(\mathbb{C}, \mathbb{D}) \leq\{\exists, \wedge, \vee\}-\operatorname{PMC}(\mathbb{A}, \mathbb{B})$.

Theorem

Let (\mathbb{A}, \mathbb{B}) be an $\{\exists, \wedge, \vee\}$-PMC template. If there is a constant homomorphism from \mathbb{A} to \mathbb{B}, then $\{\exists, \wedge, \vee\}-\operatorname{PMC}(\mathbb{A}, \mathbb{B})$ is in L , otherwise $\{\exists, \wedge, \vee\}-\mathrm{PMC}(\mathbb{A}, \mathbb{B})$ is NP-complete.

$\{\exists, \forall, \wedge, \vee\}$-PMC

A pair (\mathbb{A}, \mathbb{B}) of similar structures is an $\{\exists, \forall, \wedge, \vee\}$-PMC template if and only if there exists a surjective multi-homomorphism from \mathbb{A} to \mathbb{B}.

Theorem

Let (\mathbb{A}, \mathbb{B}) and (\mathbb{C}, \mathbb{D}) be $\{\exists, \forall, \wedge, \vee\}$-PMC templates such that $A=C$ and $B=D$.
Then (\mathbb{C}, \mathbb{D}) is $p-\{\exists, \forall, \wedge, \vee\}$-definable from (\mathbb{A}, \mathbb{B}) if and only if
$\operatorname{SMuHom}(\mathbb{A}, \mathbb{B}) \subseteq \operatorname{SMuHom}(\mathbb{C}, \mathbb{D})$. Moreover, in such a case,
$\{\exists, \forall, \wedge, \vee\}-\operatorname{PMC}(\mathbb{C}, \mathbb{D}) \leq\{\exists, \forall, \wedge, \vee\}-\operatorname{PMC}(\mathbb{A}, \mathbb{B})$.
Let f be a surjective multi-homomorphism from \mathbb{A} to \mathbb{B}. We say that :
$\square f$ is an A-smuhom if there exists $a^{*} \in A$ such that $f\left(a^{*}\right)=B$.

- f is an E-smuhom if $f^{-1}\left(b^{*}\right)=A$ for some $b^{*} \in B$.

■ f is an AE-smuhom if it is simultaneously an A-smuhom and an E-smuhom.

Theorem

Let (\mathbb{A}, \mathbb{B}) be an $\{\exists, \forall, \wedge, \vee\}$-PMC template. Then the following holds.
1 If (\mathbb{A}, \mathbb{B}) admits an A-smuhom, then $\{\exists, \forall, \wedge, \vee\}-\operatorname{PMC}(\mathbb{A}, \mathbb{B})$ is in NP.
2 If (\mathbb{A}, \mathbb{B}) admits an E -smuhom, then $\{\exists, \forall, \wedge, \vee\}-\mathrm{PMC}(\mathbb{A}, \mathbb{B})$ is in coNP.
3 If (\mathbb{A}, \mathbb{B}) admits an $A E-$ smuhom, then $\{\exists, \forall, \wedge, \vee\}-\operatorname{PMC}(\mathbb{A}, \mathbb{B})$ is in L .

Theorem

Let (\mathbb{A}, \mathbb{B}) be an $\{\exists, \forall, \wedge, \vee\}$-PMC template.
1 If there is no E -smuhom from \mathbb{A} to \mathbb{B}, then $\{\exists, \forall, \wedge, \vee\}-\mathrm{PMC}(\mathbb{A}, \mathbb{B})$ is NP-hard.
2 If there is no A-smuhom from \mathbb{A} to \mathbb{B}, then $\{\exists, \forall, \wedge, \vee\}-\mathrm{PMC}(\mathbb{A}, \mathbb{B})$ is coNP-hard.

Open problems

Examples of templates that admit both an A-smuhom and an E-smuhom, but no AE-smuhom :

$$
\begin{aligned}
& \mathbb{A}=([3] ;\{(1,2,3)\}), \quad \mathbb{B}=([3] ;\{1,2,3\} \times\{2\} \times\{3\} \cup\{1,2\} \times\{2\} \times\{2,3\}) \\
& \mathbb{A}=([3] ;\{12\},\{13\}), \quad \mathbb{B}=([3] ;\{12,22,32\},\{12,13,22,23,33\})
\end{aligned}
$$

Is $\{\exists, \forall, \wedge, \vee\}$ - $\operatorname{PMC}(\mathbb{A}, \mathbb{B})$ in L ?
Examples of templates that admit neither an A-smuhom nor an E-smuhom :

$$
\begin{aligned}
& \mathbb{A}=([3] ;\{(1,2,3)\}), \quad \mathbb{B}=([3] ;\{2,3\} \times\{1,3\} \times\{1,2\}) \\
& \mathbb{A}=([3] ;\{(1,2,3)\}), \quad \mathbb{B}=([3] ;\{1,2\} \times\{1,2\} \times\{3\} \cup\{1,3\} \times\{2\} \times\{2\}) \\
& \mathbb{A}=([4] ;\{12,34\}), \quad \mathbb{B}=([4] ;\{12,13,14,23,24,34,32\})
\end{aligned}
$$

Is $\{\exists, \forall, \wedge, \vee\}-\operatorname{PMC}(\mathbb{A}, \mathbb{B})$ PSPACE-complete?

Thank you for your attention!

