	Model Checking Problem (MC) O	Promise Model Checking Problem (PMC) 00				
--	----------------------------------	--	--	--	--	--

Fixed-Template Promise Model Checking Problems

Kristina Asimi¹ joint work with L. Barto¹ and S. Butti²

¹Department of Algebra, Faculty of Mathematics and Physics, Charles University, Czechia ²Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain

LAP, Dubrovnik, September 2022

Model Checking Problem (MC) O	Promise Model Checking Problem (PMC)	Preliminaries	$\substack{\{\exists,\forall,\wedge,\vee\}\text{-}\mathrm{PMC}\\OO}$	Open problems

Outline

- 1 Model Checking Problem (MC)
- 2 Promise Model Checking Problem (PMC)
- 3 Preliminaries
- 4 $\{\exists, \land, \lor\}$ -PMC
- 5 $\{\exists, \forall, \land, \lor\}$ -PMC
- 6 Open problems

Model Checking Problem

Model checking problem :

We define the model checking problem over a logic $\ensuremath{\mathcal{L}}$ to have

- Input : a structure \mathbb{A} (model), a sentence ϕ of \mathcal{L}
- **Question** : does $\mathbb{A} \vDash \phi$

First-order model checking problem parameterized by the model :

For any $\mathcal{L} \subseteq \{\exists, \forall, \land, \lor, =, \neq, \neg\}$ we define the problem \mathcal{L} -MC(A) to have

- Input : a sentence ϕ of \mathcal{L} -FO
- Output : yes if $\mathbb{A} \models \phi$, no otherwise

$\mathcal{L} ext{-MC}(\mathbb{A})$	Complexity
{∃, ∧}-MC(A) (CSP)	P or NP-complete
$\{\exists, \forall, \wedge\}$ -MC(A) (QCSP)	?
$\{\exists, \land, \lor\}$ -MC(A)	L or NP-complete
$\{\exists, \forall, \land, \lor\}$ -MC(A)	L, NP-complete, coNP-complete, PSPACE-complete

Figure – Known complexity results for \mathcal{L} -MC(A).

Promise Model Checking Problem

$$\begin{split} & \mathbb{A} = (A; R_1^{\mathbb{A}}, R_2^{\mathbb{A}}, \dots, R_n^{\mathbb{A}}) \\ & \mathbb{B} = (B; R_1^{\mathbb{B}}, R_2^{\mathbb{B}}, \dots, R_n^{\mathbb{B}}) \end{split} \text{similar relational structures}$$

Definition

A pair of similar structures (\mathbb{A}, \mathbb{B}) is called an \mathcal{L} -PMC **template** if $\mathbb{A} \vDash \phi$ implies $\mathbb{B} \vDash \phi$ for every \mathcal{L} -sentence ϕ in the signature of \mathbb{A} and \mathbb{B} . Given an \mathcal{L} -PMC template (\mathbb{A}, \mathbb{B}) , the \mathcal{L} -Promise Model Checking Problem over (\mathbb{A}, \mathbb{B}) , denoted \mathcal{L} -PMC (\mathbb{A}, \mathbb{B}) , is the following problem. Input : an \mathcal{L} -sentence ϕ in the signature of \mathbb{A} and \mathbb{B} ; Output : yes if $\mathbb{A} \vDash \phi$; no if $\mathbb{B} \nvDash \phi$.

Model Checking Problem (MC)	Promise Model Checking Problem (PMC)	Preliminaries		Open problems
	00	00	òo í	00

$\mathcal{L} extsf{-} extsf{PMC}(\mathbb{A},\mathbb{B})$	Condition	Complexity
$\{\exists, \forall, \wedge\}$ -PMC(\mathbb{A}, \mathbb{B})		L/NP-complete
	AE-smuhom	L
	A-smuhom and E-smuhom	$NP \cap coNP$
$\{\exists, \forall, \land, \lor\}$ -PMC(\mathbb{A}, \mathbb{B})	A-smuhom, no E-smuhom	NP-complete
	E-smuhom, no A-smuhom	coNP-complete
	no A-smuhom, no E-smuhom	NP -hard and coNP -hard

Figure – Complexity results for \mathcal{L} -PMC(\mathbb{A}, \mathbb{B}).

Model Checking Problem (MC) O	Promise Model Checking Problem (PMC) 00		$\substack{\{\exists, \forall, \land, \lor\}\text{-PMC}\\ \texttt{OO}}$	

Preliminaries

Let $\mathbb A$ and $\mathbb B$ be two similar relational structures.

- A function $f : A \to B$ is called a homomorphism from \mathbb{A} to \mathbb{B} if $f(\mathbf{a}) \in R^{\mathbb{B}}$ for any $\mathbf{a} \in R^{\mathbb{A}}$, where $f(\mathbf{a})$ is computed component-wise.
- A multi-valued function *f* from *A* to *B* is a mapping from *A* to $\mathcal{P}_{\neq \emptyset} B$.
- It is called **surjective** if for every $b \in B$, there exists $a \in A$ such that $b \in f(a)$.
- A multi-valued function *f* from *A* to *B* is called a multi-homomorphism from A to B if for any *R* in the signature and any $\mathbf{a} \in R^{\mathbb{A}}$, we have $f(\mathbf{a}) \subseteq R^{\mathbb{B}}$.
- MuHom(A, B) the set of all multi-homomorphisms from A to B SMuHom(A, B) - the set of all surjective multi-homomorphisms from A to B

Model Checking Problem (MC)	Promise Model Checking Problem (PMC)	Preliminaries		Open problems
	00	00	00	00

We say that a relation $S \subseteq A^n$ is \mathcal{L} -definable from \mathbb{A} if there exists an \mathcal{L} -formula $\psi(v_1, \ldots, v_n)$ such that, for all $(a_1, \ldots, a_n) \in A^n$, we have $(a_1, \ldots, a_n) \in S$ if and only if $\mathbb{A} \vDash \psi(a_1, \ldots, a_n)$.

Definition

Assume $\neg \notin \mathcal{L}$ and let (\mathbb{A}, \mathbb{B}) be a pair of similar structures. We say that a pair of relations (S, T), where $S \subseteq A^n$ and $T \subseteq B^n$, is **promise-\mathcal{L}-definable** (or **p-\mathcal{L}-definable**) from (\mathbb{A}, \mathbb{B}) if there exist relations S' and T' and an \mathcal{L} -formula $\psi(v_1, \ldots, v_n)$ such that $S \subseteq S', T' \subseteq T, \psi(v_1, \ldots, v_n)$ defines S' in \mathbb{A} , and $\psi(v_1, \ldots, v_n)$ defines T' in \mathbb{B} . We say that an \mathcal{L} -PMC template (\mathbb{C}, \mathbb{D}) is p- \mathcal{L} -definable from (\mathbb{A}, \mathbb{B}) (the signatures can differ) if $(Q^{\mathbb{C}}, Q^{\mathbb{D}})$ is p- \mathcal{L} -definable from (\mathbb{A}, \mathbb{B}) for each relation symbol Q in the signature of \mathbb{C} and \mathbb{D} .

Theorem

Assume $\neg \notin \mathcal{L}$. If (\mathbb{A}, \mathbb{B}) and (\mathbb{C}, \mathbb{D}) are \mathcal{L} -PMC templates such that (\mathbb{C}, \mathbb{D}) is *p*- \mathcal{L} -definable from (\mathbb{A}, \mathbb{B}) , then \mathcal{L} -PMC $(\mathbb{C}, \mathbb{D}) \leq \mathcal{L}$ -PMC (\mathbb{A}, \mathbb{B}) .

$\{\exists,\wedge,\vee\}\text{-}\mathrm{PMC}$

A pair (\mathbb{A}, \mathbb{B}) of similar structures is an $\{\exists, \land, \lor\}$ -PMC template if and only if there exists a homomorphism from \mathbb{A} to \mathbb{B} .

Theorem

Let (\mathbb{A}, \mathbb{B}) and (\mathbb{C}, \mathbb{D}) be $\{\exists, \land, \lor\}$ -PMC templates such that A = C and B = D. Then (\mathbb{C}, \mathbb{D}) is p- $\{\exists, \land, \lor\}$ -definable from (\mathbb{A}, \mathbb{B}) if and only if MuHom $(\mathbb{A}, \mathbb{B}) \subseteq$ MuHom (\mathbb{C}, \mathbb{D}) . Moreover, in such a case, $\{\exists, \land, \lor\}$ -PMC $(\mathbb{C}, \mathbb{D}) \leq \{\exists, \land, \lor\}$ -PMC (\mathbb{A}, \mathbb{B}) .

Theorem

Let (\mathbb{A}, \mathbb{B}) be an $\{\exists, \land, \lor\}$ -PMC template. If there is a constant homomorphism from \mathbb{A} to \mathbb{B} , then $\{\exists, \land, \lor\}$ -PMC (\mathbb{A}, \mathbb{B}) is in L, otherwise $\{\exists, \land, \lor\}$ -PMC (\mathbb{A}, \mathbb{B}) is NP-complete.

$\{\exists, \forall, \land, \lor\}$ -PMC

A pair (\mathbb{A}, \mathbb{B}) of similar structures is an $\{\exists, \forall, \land, \lor\}$ -PMC template if and only if there exists a surjective multi-homomorphism from \mathbb{A} to \mathbb{B} .

Theorem

Let (\mathbb{A}, \mathbb{B}) and (\mathbb{C}, \mathbb{D}) be $\{\exists, \forall, \land, \lor\}$ -PMC templates such that A = C and B = D. Then (\mathbb{C}, \mathbb{D}) is p- $\{\exists, \forall, \land, \lor\}$ -definable from (\mathbb{A}, \mathbb{B}) if and only if SMuHom $(\mathbb{A}, \mathbb{B}) \subseteq$ SMuHom (\mathbb{C}, \mathbb{D}) . Moreover, in such a case, $\{\exists, \forall, \land, \lor\}$ -PMC $(\mathbb{C}, \mathbb{D}) \leq \{\exists, \forall, \land, \lor\}$ -PMC (\mathbb{A}, \mathbb{B}) .

Let *f* be a surjective multi-homomorphism from \mathbb{A} to \mathbb{B} . We say that :

- *f* is an A-smuhom if there exists $a^* \in A$ such that $f(a^*) = B$.
- *f* is an \in -smuhom if $f^{-1}(b^*) = A$ for some $b^* \in B$.
- *f* is an AE-smuhom if it is simultaneously an A-smuhom and an E-smuhom.

Model Checking Problem (MC) O	Promise Model Checking Problem (PMC) 00		

Theorem

Let (\mathbb{A}, \mathbb{B}) be an $\{\exists, \forall, \land, \lor\}$ -PMC template. Then the following holds.

- If (\mathbb{A}, \mathbb{B}) admits an \mathbb{A} -smuhom, then $\{\exists, \forall, \land, \lor\}$ -PMC (\mathbb{A}, \mathbb{B}) is in NP.
- **2** If (\mathbb{A}, \mathbb{B}) admits an \mathbb{E} -smuhom, then $\{\exists, \forall, \land, \lor\}$ -PMC (\mathbb{A}, \mathbb{B}) is in coNP.
- **3** If (\mathbb{A}, \mathbb{B}) admits an AE-smuhom, then $\{\exists, \forall, \land, \lor\}$ -PMC (\mathbb{A}, \mathbb{B}) is in L.

Theorem

Let (\mathbb{A}, \mathbb{B}) be an $\{\exists, \forall, \land, \lor\}$ -PMC template.

- If there is no \mathbb{E} -smuhom from \mathbb{A} to \mathbb{B} , then $\{\exists, \forall, \land, \lor\}$ -PMC(\mathbb{A}, \mathbb{B}) is NP-hard.
- **2** If there is no A-smuhom from A to B, then $\{\exists, \forall, \land, \lor\}$ -PMC(A, B) is coNP-hard.

Open problems

Examples of templates that admit both an $A\mbox{-smuhom}$ and an $E\mbox{-smuhom},$ but no $AE\mbox{-smuhom}$:

$$\begin{split} \mathbb{A} &= ([3]; \ \{(1,2,3)\}), \quad \mathbb{B} = ([3]; \ \{1,2,3\} \times \{2\} \times \{3\} \ \cup \ \{1,2\} \times \{2\} \times \{2,3\}) \\ \mathbb{A} &= ([3]; \ \{12\}, \ \{13\}), \quad \mathbb{B} = ([3]; \ \{12,22,32\}, \ \{12,13,22,23,33\}) \end{split}$$

Is $\{\exists, \forall, \land, \lor\}$ -PMC(\mathbb{A}, \mathbb{B}) in L?

Examples of templates that admit neither an A-smuhom nor an $\mathsf{E}\operatorname{-smuhom}$:

$$\begin{split} &\mathbb{A} = ([3]; \ \{(1,2,3)\}), \quad \mathbb{B} = ([3]; \ \{2,3\} \times \{1,3\} \times \{1,2\}) \\ &\mathbb{A} = ([3]; \ \{(1,2,3)\}), \quad \mathbb{B} = ([3]; \ \{1,2\} \times \{1,2\} \times \{3\} \ \cup \ \{1,3\} \times \{2\} \times \{2\}) \\ &\mathbb{A} = ([4]; \ \{12,34\}), \quad \mathbb{B} = ([4]; \ \{12,13,14,23,24,34,32\}) \end{split}$$

Is $\{\exists, \forall, \land, \lor\}$ -PMC(\mathbb{A}, \mathbb{B}) PSPACE-complete?

	Promise Model Checking Problem (PMC) 00		

Thank you for your attention !