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analytic proof

I introduced by Gottfried Wilhelm Leibniz and Immanuel Kant

I a proof where all the information used in the proof is already
contained in the end-sequent

I idealization, however cut-free complete sequent calculi can be
considered since Gentzen 1934 as a close approximation

We refine the concept of analyticity by considering macros of
connectives and quantifiers (used to deal with explicit definitions,
handling of integrals as objects).
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In logic an analytic proof of a statement containing only macros of
connectives and quantifiers would itself be based on these macros.

Is it possible to form inference rules for macros that are compatible
with cut-elimination?

I “yes” for macros of connectives

I “no” if macros of quantifiers are considered in the framework
of usual eigenvariable conditions

In contrast an analytic framework can be constructed if globally
sound but possibly locally unsound concepts of proof are
introduced.
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Macros for Connectives

macro for connectives
A macro for connectives is a formula based on propositional
variables which is considered as a connective in its own right.

Example

The binary connective ↔:

A↔ B = (A ⊃ B) ∧ (B ⊃ A).

Proposition

To every macro for connectives � a left inference rule, denoted by
�l , and right inference rule, denoted by �r , are associated such
that LK extended by �l and �r admits cut-elimination.

Proof. Simple.
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Macros for Connectives

Example

For A↔ B = (A ⊃ B) ∧ (B ⊃ A) �r is defined via

A→ B ⊃r→ A ⊃ B
B → A ⊃r→ B ⊃ A ∧r→ (A ⊃ B) ∧ (B ⊃ A)

and �l is defined via

→ A,B A→ A ⊃l
B ⊃ A→ A

B → B A,B → ⊃l
B,B ⊃ A→ ⊃l

(A ⊃ B), (B ⊃ A)→ ∧l
(A ⊃ B) ∧ (B ⊃ A)→
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Macros for Connectives

Consequently, the inference rules for ↔ are

A, Γ→ ∆,B B, Γ→ ∆,A ↔r
Γ→ ∆,A↔ B

A,B, Γ→ ∆ Γ→ ∆,A,B ↔l
A↔ B, Γ→ ∆

The critical reduction step for ↔ in the cut-elimination procedure
of Gentzen is (contractions are hidden):

Γ1 → ∆1,A,B B, Γ2 → ∆2,A ∗
Γ1, Γ2 → ∆1,∆2,A

A, Γ3 → ∆3,B A,B, Γ4 → ∆4 ∗
A, Γ3, Γ4 → ∆3,∆4

cut
Γ1, Γ2, Γ3, Γ4 → ∆1,∆2,∆3,∆4

where ∗ is the mix rule.
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Macros for Quantifiers

macro for quantifiers

A macro for quantifiers M is a formula based on quantifiers
Qi ∈ {∀,∃}, 1 ≤ i ≤ n which is considered as a connective in its
own right:

Mx1,...,xnA(x1, . . . , xn) = Q1x1, . . . ,QnxnA(x1, . . . , xn).

Example

The quantifier macro Q:

Qx ,yA(x , y) = ∀x∃yA(x , y).

The language LQ is based on the usual language of first-order logic
with exception that the quantifiers are replaced by the quantifier Q.

7/44



The Calculus LQ: A First Approach

The calculus LQ is LK, where the quantifier rules are exchanged by

Γ→ ∆,A(a, t)
Qr

Γ→ ∆,Qx ,yA(x , y)

A(t ′, a′), Γ→ ∆
Ql

Qx ,yA(x , y), Γ→ ∆

where a does not occur in the lower sequent and a′ does not occur
in the lower sequent and in t ′.

The inferences Qr and Ql are derived from

Γ→ ∆,A(a, t)
∃r

Γ→ ∆,∃yA(a, y)
∀r

Γ→ ∆, ∀x∃yA(x , y)

A(t, a), Γ→ ∆
∃l∃yA(t, y), Γ→ ∆
∀l∀x∃yA(x , y), Γ→ ∆
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The Calculus LQ: A First Approach
The dual quantifier QD to Q can be defined in the usual dual way

QD
x ,yA(x , y) = ¬Qx ,y¬A(x , y) = ∃x∀y¬A(x , y).

The quantifier introduction rules for QD are

Γ→ ∆,A(t, a)
QD

r
Γ→ ∆,QD

x ,yA(x , y)

where a does not occur in the lower sequent and in t and

A(a, t), Γ→ ∆
QD

lQD
x ,yA(x , y), Γ→ ∆

where a does not occur in the lower sequent.

The usual quantifier rules of LK can be obtained by partial dummy
applications of Q.
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The Calculus LQ: A First Approach

Example

The sequent Qx ,yA(x , y)→ ∀x∃yA(x , y) is derivable in LQ:

A(a, b)→ A(a, b)
∃r

A(a, b)→ ∃yA(a, y)
Ql

Qx ,yA(x , y)→ ∃yA(a, y)
∀r

Qx ,yA(x , y)→ ∀x∃yA(x , y)

Theorem
LQ is sound.

Proof. The macro Q can be replaced by ∀∃ everywhere in the
derivation. The resulting derivation is an LK-derivation.

10/44



The Calculus LQ: A First Approach

Theorem
LQ admits cut-elimination.

Proof. The only difference to Gentzen’s proof is the reduction of
Q, which can be performed as follows:

Γ→ ∆,A(a, t)
Qr

Γ→ ∆,Qx ,yA(x , y)

A(t ′, a′),Π→ Λ
Ql

Qx ,yA(x , y),Π→ Λ
cut

Γ,Π→ ∆,Λ

(all occurrences of a, a′, t, t ′ are indicated). This can be reduced to

Γ→ ∆,A(t ′, t) A(t ′, t),Π→ Λ
cut

Γ,Π→ ∆,Λ

Corollary

Mid-sequent theorem.
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The Calculus LQ: A First Approach

Proposition

LQ is incomplete w.r.t. the sequents provable in LK.

Proof. Assume by contradiction the sequent

Qx ,yA(x , y)→ Qx ,y (A(x , y) ∨ C )

is provable. Then it is provable without cuts. A cut-free derivation
after deletion of weakenings and contractions has the initial form

A(a, b)→ A(a, b)

A(a, b)→ A(a, b) ∨ C

...

Due to the mixture of strong (eigenvariable dependent) and weak
positions in Q none of the inference rules Qr , Ql can be applied.

Corollary

Compound axioms A→ A cannot be reduced to atomic ones.
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The Calculus LQ: A First Approach
The usual quantifier shifts of classical logic are not derivable in LQ.
Let Q∗ ∈ {Q,QD} and ◦ ∈ {∧,∨}. Then the quantifier shifts for
the operators ∧,∨ are:

1. Q∗x ,y (A ◦ B(x , y))→ A ◦ Q∗x ,yB(x , y),

2. Q∗x ,y (A(x , y) ◦ B)→ Q∗x ,yA(x , y) ◦ B.

Let (Q∗,QD∗
) ⊆ {(Q,QD), (QD ,Q)}, then the quantifier shifts for

⊃ are:

3. Q∗x ,y (A ⊃ B(x , y))→ A ⊃ Q∗x ,yB(x , y),

4. Q∗x ,y (A(x , y) ⊃ B)→ QD∗
x ,yA(x , y) ⊃ B,

5. A ⊃ Q∗x ,yB(x , y)→ Q∗x ,y (A ⊃ B(x , y)),

6. QD∗
x ,yA(x , y) ⊃ B → Q∗x ,y (A(x , y) ⊃ B).

The quantifier shifts for ¬ are:

7. Q∗x ,y¬A(x , y)→ ¬QD∗
x ,yA(x , y),

8. ¬Q∗x ,yA(x , y)→ QD∗
x ,y¬A(x , y).
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The inherent incompleteness of LQ for trivial statements is a
consequence of the fact that Q represents a quantifier inference
macro combining a strong and a weak quantifier.

Solution: consider sequent calculi with concepts of proof which are
globally but not locally sound.
This means that all derived statements are true but that not every
subderivation is meaningful.
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(1) That Kurt Gödel is Austrian entails that Kurt Gödel is
Austrian.

(2) Hence, that Kurt Gödel is Austrian entails that everyone
is Austrian.

(3) That is, if Kurt Gödel is Austrian, then all people are
Austrian.

(4) Therefore, there exists a person such that, if that person
is Austrian, then all people are Austrian.
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A(a)→ A(a)

A(a)→ ∀yA(y)

→ A(a) ⊃ ∀yA(y)

→ ∃x(A(x) ⊃ ∀yA(y))
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The traditional way to ensure soundness

I Inferences are sound, i.e. only true conclusions result from
true premises.

I Derivations are hereditary, i.e. initial segments of proofs are
proofs themselves.
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Weak regularity

A(a)→ A(a)

A(a)→ ∀xA(x)

A(f (a))→ A(f (a))

∀xA(x)→ A(f (a))

A(a)→ A(f (a))

→ A(a) ⊃ A(f (a))

→ ∃x(A(x) ⊃ A(f (x)))
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LK+ and LK++

side variable relation <ϕ,LK

Let ϕ be an LK-derivation. We say b is a side variable of a in ϕ
(written a <ϕ,LK b) if ϕ contains a strong quantifier inference of
the form

Γ→ ∆,A(a, b, c)
∀r

Γ→ ∆, ∀xA(x , b, c)

or of the form

A(a, b, c), Γ→ ∆
∃l∃xA(x , b, c), Γ→ ∆
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LK+ and LK++

LK-suitable quantifier inferences

We say a quantifier inference is suitable for a proof ϕ if either it is
a weak quantifier inference, or the following three conditions are
satisfied:

I (substitutability) the eigenvariable does not appear in the
conclusion of ϕ.

I (side variable condition) the relation <ϕ,LK is acyclic.

I (weak regularity) the eigenvariable of an inference is not the
eigenvariable of another inference in ϕ.

LK+

We obtain LK+ from LK by replacing the usual eigenvariable
conditions by LK-suitable ones.
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LK+ and LK++

LK-weakly suitable quantifier inference

A quantifier inference is weakly suitable for a proof ϕ if either it is
a weak quantifier inference or it satisfies substitutability, the
side-variable condition, and:

I (very weak regularity) the eigenvariable of an inference with
main formula A is different to the eigenvariable of an inference
with main formula A′ whenever A 6= A′.

LK++

We obtain LK++ from LK by replacing the usual eigenvariable
conditions by LK-weakly suitable ones.
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Soundness

Theorem.
If a sequent is LK++-derivable, then it is already LK-derivable.

Proof. Let π be an LK++-proof. Replace every unsound universal
quantifier inference by an ⊃ L inference:

Γ→ ∆,A(a) ∀xA(x)→ ∀xA(x)

Γ,A(a) ⊃ ∀xA(x)→ ∆,∀xA(x)

Similarly replace every unsound existential quantifier by an ⊃ L
inference

∃xA(x)→ ∃xA(x) A(a), Γ→ ∆

Γ, ∃xA(x),∃xA(x) ⊃ A(a)→ ∆

By doing this, we obtain a proof of the desired sequent, together
with many formulae of the form A(a) ⊃ ∀xA(x) or ∃xA(x) ⊃ A(a)
on the left-hand side. Introduce existential quantifiers left. This is
sound in LK by properties of <π.
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Corollary.

If a sequent is derivable in LK+ or LK++, then it is already
derivable in LK.

A(a, b) ` A(a, b)

A(a, b) ` ∀yA(a, y)

A(a, b) ` ∃x∀yA(x , y)

∃xA(x , b) ` ∃x∀yA(x , y)

∀y∃xA(x , y) ` ∃x∀yA(x , y)

a <π b b <π a !
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LK

A(a) → A(a)

A(a) → A(a),B

→ A(a),A(a) ⊃ B

→ A(a), ∃x (A(x) ⊃ B)

→ ∃x (A(x) ⊃ B),A(a)

→ ∃x (A(x) ⊃ B), ∀x A(x) B → B

∀x A(x) ⊃ B → ∃x (A(x) ⊃ B),B

∀x A(x) ⊃ B,A(b) → ∃x (A(x) ⊃ B),B

∀x A(x) ⊃ B → ∃x (A(x) ⊃ B),A(b) ⊃ B

∀x A(x) ⊃ B → ∃x (A(x) ⊃ B),∃x (A(x) ⊃ B)

∀x A(x) ⊃ B → ∃x (A(x) ⊃ B)
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LK+

A(a) → A(a)

A(a) → ∀x A(x) B → B

A(a),∀x A(x) ⊃ B → B

∀x A(x) ⊃ B,A(a) → B

∀x A(x) ⊃ B → A(a) ⊃ B

∀x A(x) ⊃ B → ∃x (A(x) ⊃ B)
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Theorem.
There is no elementary function bounding the length of the
shortest cut-free LK-proof of a formula in terms of its shortest
cut-free LK+-proof.

An immediate consequence is the following:

Corollary.

There is no elementary function bounding the length of the
shortest cut-free LK-proof of a formula in terms of its shortest
cut-free LK++-proof.
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LK+ and LK++

Example

Consider the following locally unsound but globally sound
derivation ϕ in LK+ (and LK++):

A(a)→ A(a)
∀r

A(a)→ ∀yA(y) ⊃r→ A(a) ⊃ ∀yA(y)
∃r→ ∃x(A(x) ⊃ ∀yA(y))

The side variable relation <ϕ,LK is empty.
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The Analytic Sequent Calculus LQ++

side variable relation <ϕ,LQ

Let ϕ be an LQ-derivation. We say b is a side variable of a in ϕ
(written a <ϕ,LQ b) if ϕ contains a strong quantifier inference of
the form

A(t, a), Γ→ ∆
Ql

Qx ,yA(x , y), Γ→ ∆

and b occurs in t.
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The Analytic Sequent Calculus LQ++

LQ-weakly suitable quantifier inferences

A quantifier inference is LQ-suitable for a proof ϕ if the following
three conditions are satisfied:

I (substitutability) the eigenvariable does not appear in the
conclusion of ϕ.

I (side variable condition) the relation <ϕ,LQ is acyclic.

I (very weak regularity) the eigenvariable of an inference with
main formula A is different to the eigenvariable of an inference
with main formula A′ whenever A 6= A′.

analytic sequent calculus LQ++

The sequent calculus LQ++ is LQ, except that we replace
quantifier inferences with LQ-weakly suitable quantifier inferences.
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The Analytic Sequent Calculus LQ++

Example

The sequent Qx ,yA(x , y)→ Qx ,y (A(x , y) ∨ C ) is LQ++-derivable.
Consider the derivation ϕ =

A(a, b)→ A(a, b)
wr + ∨r

A(a, b)→ A(a, b) ∨ C
Qr

A(a, b)→ Qx ,y (A(x , y) ∨ C )
Ql

Qx ,yA(x , y)→ Qx ,y (A(x , y) ∨ C )

with b <ϕ,LQ a.
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The Analytic Sequent Calculus LQ++

In contrast to LQ the usual quantifier shifts are derivable in LQ++.

The quantifier shift Qx ,yA(x , y) ⊃ B → QD
x ,y (A(x , y) ⊃ B) is

derivable in LQ++. Its derivation is ϕ =

A(a, b)→ A(a, b)
Qr

A(a, b)→ Qx ,yA(x , y) B → B ⊃l
A(a, b),Qx ,yA(x , y) ⊃ B → B

⊃r
Qx ,yA(x , y) ⊃ B → A(a, b) ⊃ B

QD
r

Qx ,yA(x , y) ⊃ B → QD
x ,y (A(x , y) ⊃ B)

with b <ϕ,LQ a.
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Cut-Elimination for LQ++

To show cut-elimination for LQ++ we will translate
LQ++-derivations into cut-free LK-derivations and vice versa.

Let SQ be an LQ-sequent. Then S∀∃ = SQ{Qx ,y ← ∀x∃y}.
Let S∀∃ be an LK-sequent containing quantifier occurrences only
in blocks of the form ∀x∃y . Then SQ = S∀∃{∀x∃y ← Qx ,y}.

32/44



Cut-Elimination for LQ++

Lemma
An LQ++-derivation ϕ of SQ can be transformed into a cut-free
LK-derivation from atomic axioms of S∀∃.

Proof. By translating Q to ∀∃ we obtain an LK++-derivation
which can be transformed into an LK-derivation. As LK admits
cut-elimination we obtain a cut-free LK-derivation. Compound
axioms in LK can be replaced by atomic ones.
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Cut-Elimination for LQ++

Lemma
A cut-free LK-derivation of a sequent S∀∃ containing quantifiers
only in the form of blocks ∀x∃y can be transformed into a cut-free
LQ++-derivation of SQ .

Proof By permuting inferences:

I ∃l occurs: infer ∀l immediately afterwards (this has no impact
on the result nor on the proof being cut-free).

I ∀r with principal formula ∀x∃yA(x , y) and eigenvariable a:
determine all existential inferences with principal formula
∃yA(a, y) and introduce ∀x∃yA(x , y) immediately after these
inferences (the original LK-derivation is regular).

I We obtain an LQ++-derivation: very weak regularity holds,
the eigenvariables do not occur in the end-sequent and <ϕ,LQ

does not loop as the order on the inferences is respected.
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Why not LQ+?

LQ+ is not a complete calculus, because the sequent

∀x(A(x , c1) ∨ A(x , c2))→ Qx ,yA(x , y)

is not LQ+-derivable. However, it is LQ++-derivable:

A(a, c1)→ A(a, c1)
Qr

A(a, c1)→ Qx ,yA(x , y)

A(a, c2)→ A(a, c2)
Qr

A(a, c2)→ Qx ,yA(x , y)
∨l

A(a, c1) ∨ A(a, c2)→ Qx ,yA(x , y)
∀l∀x(A(x , c1) ∨ A(x , c2))→ Qx ,yA(x , y)
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Quantifier shifts not valid intuitionistically

1. ∀x (A ∨ B(x))→ A ∨ ∀x B(x);

2. (∀x A(x) ⊃ B)→ ∃x (A(x) ⊃ B);

3. (A ⊃ ∃x B(x))→ ∃x (A ⊃ B(x)).

Proposition.

A sequent is provable in LJ++ if and only if it is provable in LJ
with all quantifier shifts added as axioms.
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No elementary Skolemization for cut-free LK+ and LK++ proofs.
(But quadratic Skolemization using additional cuts.)

No elementary extraction of Skolemized Herbrand disjunctions
from cut-free LK+ and LK++ proofs.

No Gentzen-style cut-elimination (as Gentzen-style cut-elimination
would transform LJ+ (LJ++) proofs into cut-free LJ+ (LJ++)
proofs).
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Relation to the ε-calculus

∃xA(x) ∼ A(εxA(x))

∀xA(x) ∼ A(εx¬A(x)) ∼ A(τxA(x))

LKε

Γ,A(t)→ ∆
τ

Γ,A(τxA(x))→ ∆

Γ→ ∆,A(t)
ε

Γ→ ∆,A(εxA(x))
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Relation to the ε-calculus

Another soundness proof for LK+ and LK++

But e.g.

(ϕ)

Γ→ ∆,A(s(t))

Γ→ ∆,A(s(εxA(s(x))))

Γ′ → ∆′,A(s(εxA(s(x))))

Γ′ → ∆′,A(εxA(x))

Not represented in LK+ and LK++.
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Henkin Quantifiers

A formula A using QH can be written as

AH =

(
∀x ∃u
∀y ∃v

)
A(x , y , u, v).

∃f ∃g∀x∀yA(x , y , f (x), g(y)) where f and g are function variables.
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Analytic Sequent Calculus LH: A First Approach

Definition

I Axioms: A→ A

I The rules of LH are as the rules of LK, except that we replace
the quantifier rules by:

Γ→ ∆,A(a, b, t1, t2)
QHr

Γ→ ∆,

(
∀x ∃u
∀y ∃v

)
A(x , y , u, v)

a and b are eigenvariables (a 6= b) not allowed to occur in the
lower sequent and t1 and t2 are terms such that t1 must not
contain b and t2 must not contain a.
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Analytic Sequent Calculus LH: A First Approach

A(t ′1, t
′
2, a, b),Π→ Γ

QHl1(
∀x ∃u
∀y ∃v

)
A(x , y , u, v),Π→ Γ

where a and b are eigenvariables (a 6= b) not allowed to occur in
the lower sequent and t ′1, t ′2 are terms such that b does not occur
in t ′2 and a and b do not occur in t ′1.

A(t ′1, t
′
2, a, b),Π→ Γ

QHl2(
∀x ∃u
∀y ∃v

)
A(x , y , u, v),Π→ Γ

where a and b are eigenvariables (a 6= b) not allowed to occur in
the lower sequent and t ′1, t ′2 are terms such that a does not occur
in t ′1 and a and b do not occur in t ′2.
∀ and ∃ partial dummy applications of QH .
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The rule QHr originates from an analysis of a corresponding
inference sequence in a suitable partial second-order calculus for
functions:

Γ→ ∆,A(a, b, s(a), t(b))

Γ→ ∆,∀yA(a, y , s(a), t(y))

Γ→ ∆,∀x∀yA(x , y , s(x), t(y))

Γ→ ∆,∃g∀x∀yA(x , y , s(x), g(y))

Γ→ ∆,∃f ∃g∀x∀yA(x , y , f (x), g(y))

The rules QHl1
and QHl2

originate from

A(t, t ′, f ′(t), g ′(t ′)), Γ→ ∆

∀yA(t, y , f ′(t), g ′(y)), Γ→ ∆

∀x∀yA(x , y , f ′(x), g ′(y)), Γ→ ∆

∃g∀x∀yA(x , y , f ′(x), g(y)), Γ→ ∆

∃f ∃g∀x∀yA(x , y , f (x), g(y)), Γ→ ∆

with eigenvariables f ′ and g ′. f ′(t) can obviously not occur in t
and g ′(t ′) can obviously not occur in t ′. f ′(t) either does not
occur in t ′ of g ′(t ′) does not occur in t.
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A(a, b, c , d)→ A(a, b, c , d)
∃r

A(a, b, c , d)→ ∃vA(a, b, c , v)
∃r

A(a, b, c , d)→ ∃u∃vA(a, b, u, v)
QHl(

∀x ∃u
∀y ∃v

)
A(x , y , u, v)→ ∃u∃vA(a, b, u, v)

∀r(
∀x ∃u
∀y ∃v

)
A(x , y , u, v)→ ∀y∃u∃vA(a, y , u, v)

∀r(
∀x ∃u
∀y ∃v

)
A(x , y , u, v)→ ∀x∀y∃u∃vA(x , y , u, v)
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