Probabilistic-Temporal Logic with Actions

Š. Dautović¹, Dragan Doder ², Zoran Ognjanović ¹

 1 Mathematical Institute of SASA, Serbia 2 Utrecht University, The Netherlands

LAP 2022

Goal:

Provide the probabilistic logic for reasoning about degrees of confirmation with actions in time

The main results:

Sound and strongly complete axiomatization

Methods:

• Henkin-style method

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• R.Carnap - Logical Foundations of Probability (1962)

Concept of confirmation

A hypotheses A is confirmed by evidence B means that the conditional probability of A in presence of B is greater than just the probability of A.

• R.Carnap - Logical Foundations of Probability (1962)

Concept of confirmation

A hypotheses A is confirmed by evidence B means that the conditional probability of A in presence of B is greater than just the probability of A.

• The quantitative concept of confirmation measures the degree of confirmation: c(A, B) = r "how much B confirms/disconfirms A"

• R.Carnap - Logical Foundations of Probability (1962)

Concept of confirmation

A hypotheses A is confirmed by evidence B means that the conditional probability of A in presence of B is greater than just the probability of A.

• The quantitative concept of confirmation measures the degree of confirmation: c(A, B) = r "how much B confirms/disconfirms A"

• Logic for reasoning about degrees of confirmation LPP_2^{conf} Difference measure: $c(A, B) = \mu(A|B) - \mu(A)$

Šejla Dautović, Dragan Doder and Zoran Ognjanović, *Reasoning About Degrees of Confirmation*, Logic and Argumentation - Third International Conference, CLAR 2020.

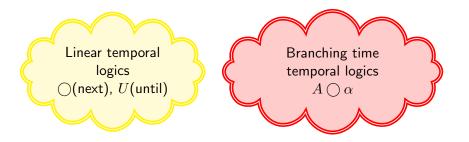
< ロ > < 同 > < 三 > < 三 >

- <u>Syntax</u>: Extension of classical logic by applying probabilistic operators:
 - 3w(α) + 2w(β) ≤ 1 (LWF) Not applicable for axiomatizing conditional probabilities

•
$$P_{\geq r}\alpha$$

- <u>Semantics</u>: Possible worlds + a probability measure
 - $\bullet \ M \models P_{\geq r} \alpha \text{ if } \mu(\{w \in W \mid v(w, \alpha) = true\}) \geq r$

• • = • • = •



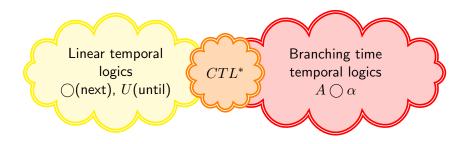


Image: A image: A

Starting points

- Logic for reasoning about degrees of confirmation LPP_2^{conf}
- Probabilistic logic for reasoning about actions in time $pCTL_A^*$

Starting points

- Logic for reasoning about degrees of confirmation LPP_2^{conf}
- \bullet Probabilistic logic for reasoning about actions in time $pCTL_A^*$

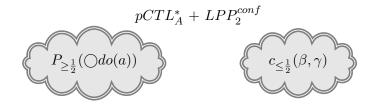
van Zee, M., Doder, D., van der Torre, L., Dastani, M., Icard, T., Pacuit, E.: Intention as commitment toward time. Artif. Intell. 283, 103270 (2020)

Starting points

- Logic for reasoning about degrees of confirmation LPP_2^{conf}
- \bullet Probabilistic logic for reasoning about actions in time $pCTL_A^*$

Šejla Dautović, Dragan Doder, *Probabilistic Logic for Reasoning about Actions in Time*, Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 15th European Conference, ECSQARU 2019.

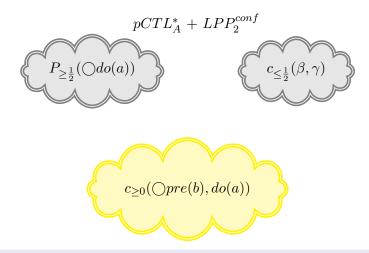
Our logic $\mathrm{CTL}^*_{\mathrm{A,conf}}$



• • = • • = •

э

Our logic $CTL^*_{A,conf}$



"The execution of the action a confirms that the preconditions of the action b hold in the next moment with a degree of at least zero."

$\mathrm{CTL}^*_{A,\mathrm{conf}}$ - Syntax

• $\operatorname{CTL}_{A}^{*}$ -formulas: $\alpha, \beta \dots$

 $\alpha ::= \chi \mid do(a) \mid \bigcirc \alpha \mid A\alpha \mid \alpha U\alpha \mid \alpha \land \alpha \mid \neg \alpha$

where $\chi \in Prop = P \cup \{pre(a), post(a) \mid a \in Act\}$ and $a \in Act$.

$\mathrm{CTL}^*_{A,\mathrm{conf}}$ - Syntax

• $\operatorname{CTL}_{\operatorname{A}}^*$ -formulas: $\alpha, \beta \dots$

 $\alpha ::= \chi \mid do(a) \mid \bigcirc \alpha \mid A\alpha \mid \alpha U\alpha \mid \alpha \land \alpha \mid \neg \alpha$

where $\chi \in Prop = P \cup \{pre(a), post(a) \mid a \in Act\}$ and $a \in Act$.

• Probabilistic formulas: ϕ, ψ, \ldots

 $\phi ::= P_{\geq r} \alpha \mid c_{\geq s}(\alpha, \beta) \mid c_{\leq s}(\alpha, \beta) \mid \phi \land \phi \mid \neg \phi$

where α and β are CTL_A^* formulas, $r \in [0,1]_Q$ and $s \in [-1,1]_Q$

$$For_{\mathrm{CTL}_{\mathrm{A,conf}}^*} = For_{\mathrm{CTL}_{\mathrm{A}}^*} \cup For_P$$

Definition $(CTL_A^*-structure)$

A CTL_A^* -structure **S** is tuple (S, R, v) where:

- S is a non- empty set of states;
- $v:S \rightarrow 2^{Prop}$ is a valuation function from states to sets of propositions;
- $R = \bigcup R_a$, $a \in Act$, R_a relation on $S \times S$, such that the following conditions hold:
 - (a) R is serial;
 - (b) For all action $a \in Act$: If sR_as' and sR_as'' then s' = s'';
 - (c) If $pre(a) \in v(s), a \in Act, s \in S$ then there exists $s' \in S, sR_as'$;

(b) a (B) b (a (B) b)

(d) If sR_as' then $post(a) \in v(s')$ and $pre(a) \in v(s)$.

Definition (Path)

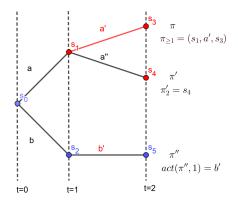
 $\pi = (s_0, a_0, s_1, a_1, \ldots)$, such that for each $i, \ s_i R_{a_i} s_{i+1}.$

 $\pi_k = s_k$

$$\pi_{\geq i} = (s_i, a_i, s_{i+1}, a_{i+1}, ...)$$
$$act(\pi, k) = a_k$$

э

$\mathrm{CTL}^*_{A,\mathrm{conf}}$ - Semantics



Š. Dautović¹, Dragan Doder², Zoran Ognjanović¹

æ

▲ 문 ▶ ▲ 문 ▶ ...

Definition ($CTL^*_{A,conf}$ -structure)

A $CTL^*_{A,conf}$ -structure is a tuple $M = \langle W, H, \mu, \sigma \rangle$ where:

- \bullet W is a nonempty set of worlds,
- $\langle W,H,\mu\rangle$ is a probability space, i.e.,
 - H is an algebra of subsets of W,
 - $\mu: H \longrightarrow [0,1]$ is a finitely additive measure,
- σ provides for each world $w \in W$ a CTL_A^* -structure and a path , i.e., $\sigma(w) = (\mathbf{S}_w, \pi_w)$.

•
$$M \models c_{\geq r}(\alpha, \beta)$$
 if $\mu(\{w \in W \mid v(\beta, \mathbf{S}_w, \pi_w) = 1\}) > 0$ and
 $\mu(\{w \in W \mid v(\alpha, \mathbf{S}_w, \pi_w) = 1\} \mid \{w \in W \mid v(\beta, \mathbf{S}_w, \pi_w) = 1\}) - \mu(\{w \in W \mid v(\alpha, \mathbf{S}_w, \pi_w) = 1\}) \geq r$

伺 ト イヨト イヨト

- Propositional reasoning
- Temporal logic
- Actions, pre and postconditions
- Reasoning about conditional probabilities

- Propositional reasoning
- Temporal logic
- Actions, pre and postconditions
- Reasoning about conditional probabilities
- Infinitary inference rule:
 - From the set of premises

$$\{c_{\geq r-\frac{1}{k}}(\alpha,\beta) \mid k \in \mathcal{N}\}$$

infer $c_{\geq r}(\alpha,\beta)$

If the conditional probability is arbitrary close to r, it is at least r.

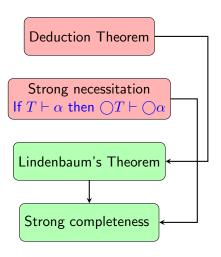
Theorem (Soundness and completeness)

A set of formulas T is consistent iff T is satisfiable.

• Adaptation of Henkin's construction

• • = • • = •

• Henkin's construction



• Henkin's construction

Implicative form of the Infinitary Rules

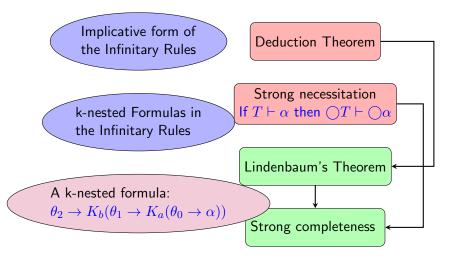
Deduction Theorem

Strong necessitation If $T \vdash \alpha$ then $\bigcirc T \vdash \bigcirc \alpha$

Lindenbaum's Theorem

Strong completeness

• Henkin's construction



・ 同 ト ・ ヨ ト ・ ヨ ト

Thank you!

Š. Dautović¹, Dragan Doder², Zoran Ognjanović¹ Probabilistic-Temporal Logic with Actions

æ

.⊒ . ►