A good method of transforming Veltman into Verbrugge models

Sebastijan Horvat, Tin Perkov, Mladen Vuković

Faculty of science, University of Zagreb
9/2022
Logic and Applications 2022

Foundation

Lr
This talk is partly supported by Croatian Science Foundation (HRZZ) under the projects UIP-2017-05-9219 and IP-2018-01-7459.
(1) Introduction
(2) Introducing new concepts: w-bisimulations, their finite approximations and weak bisimulation games
(3) Some results for our new concepts
(4) Modal equivalence and w-bisimulation

Introduction: Interpretability logic IL

We will assume that you're familiar with the following concepts:

- interpretability logic IL, Veltman frames and Veltman models
- generalised Veltman semantics - nowadays it is called Verbrugge semantics in honor of Rineke Verbrugge
- A generalised Veltman Verbrugge model is a quadruple $\mathfrak{M}=\left(W, R,\left\{S_{w} \mid w \in W\right\}, \Vdash\right)$, where
- the first three components form a generalised Veltman Verbrugge frame,
- V is a valuation mapping propositional variables to subsets of W.

The forcing relation $\mathfrak{M}, \boldsymbol{w} \Vdash A$ is defined as in definition of Veltman models with the difference that now

$$
\mathfrak{M}, w \Vdash A \triangleright B \quad \Leftrightarrow \quad \forall u\left(w R u \& u \Vdash A \Rightarrow \exists V\left(u S_{w} V \& V \Vdash B\right)\right) .
$$

Introduction：Bisimulations and bisimulation games

－basic equivalence between Veltman models：bisimulations
－M．Vuković defined bisimulations（and their finite approximations called n－bisimulations）for Verbrugge semantics
－M．Vuković and D．Vrgoč proved：n－bisimilar worlds are n－modally equivalent
－converse is generally not true，not even with finite set of propositional variables
－that lead us to new notions of bisimulations for Verbrugge semantics called w－bisimulations and their corresponding games called weak bisimulation games
－why games are important：
－A．Dawar and M．Otto developed a models－for－games method，which provides conditions from which a Van Benthem characterisation theorem over a particular class of models immediately follows
－using bisimulation games on Veltman models for interpretability logic，M． Vuković and T．Perkov proved that this result can be extended to Veltman models for the interpretability logic IL

A w-bisimulation between two Verbrugge models $\mathfrak{M}=\left(W, R,\left\{S_{w}: w \in W\right\}, \Vdash\right)$ and $\mathfrak{M}^{\prime}=\left(W^{\prime}, R^{\prime},\left\{S_{w^{\prime}}^{\prime}: w^{\prime} \in W^{\prime}\right\}, \Vdash\right)$ is a nonempty binary relation $Z \subseteq W \times W^{\prime}$ such that the following conditions hold:
(at) If $w Z w^{\prime}$ then $w \Vdash p$ if and only if $w^{\prime} \Vdash p$, for all propositional letters p;
(w-forth) If $w Z w^{\prime}$ and $w R u$, then there exists a nonempty set $U^{\prime} \subseteq W^{\prime}$ such that for all $u^{\prime} \in U^{\prime}, u Z u^{\prime}$ and $w^{\prime} R^{\prime} u^{\prime}$, and for each function $V^{\prime}: U^{\prime} \rightarrow \mathcal{P}\left(W^{\prime}\right)$ such that for all $u^{\prime} \in U^{\prime}, u^{\prime} S_{w^{\prime}}^{\prime} V^{\prime}\left(u^{\prime}\right)$, there exists set V with $u S_{w} V$ and for all $v \in V$ there exists $v^{\prime} \in \bigcup_{u^{\prime} \in U^{\prime}} V^{\prime}\left(u^{\prime}\right)$ with $v Z v^{\prime}$;
(w-back) If $w Z w^{\prime}$ and $w^{\prime} R^{\prime} u^{\prime}$, then there exists a nonempty set $U \subseteq W$ such that for all $u \in U, u Z u^{\prime}$ and $w R u$, and for each function $V: U \rightarrow \mathcal{P}(W)$ such that for all $u \in U, u S_{w} V(u)$, there exists set V^{\prime} with $u^{\prime} S_{w^{\prime}}^{\prime} V^{\prime}$ and for all $v^{\prime} \in V^{\prime}$ there exists $v \in \bigcup_{u \in U} V(u)$ with $v Z v^{\prime}$.
When Z is a w-bisimulation linking the nodes $w \in W$ and $w^{\prime} \in W^{\prime}$ we say that w and w^{\prime} are w-bisimilar. Notation: w ent w^{\prime} (for bisimulations, the sign \leftrightarrows is used).

Illustration of (w-forth) condition (compared to the (forth) condition)

The w-forth condition...

... and (forth) condition from the definition of bisimulation

An n-w-bisimulation between two Verbrugge models $\mathfrak{M}=(W, R, S, \Vdash)$ and $\mathfrak{M}^{\prime}=\left(W^{\prime}, R^{\prime}, S^{\prime}, H^{\prime}\right)$ is a decreasing sequence of relations

$$
Z_{n} \subseteq Z_{n-1} \subseteq \cdots \subseteq Z_{1} \subseteq Z_{0} \subseteq W \times W^{\prime}
$$

that possesses the following properties:
(at) If $w \sqrt[Z_{0}]{ } w^{\prime}$ then $w \Vdash p$ if and only if $w^{\prime} \Vdash p^{\prime}$, for all prop. letters p;
(n-w-forth) For every i from 1 to n, if $w Z_{i} \mid w^{\prime}$ and $w R u$ then there exists a nonempty set $U^{\prime} \subseteq W^{\prime}$ such that for all $u^{\prime} \in U^{\prime}, u \sqrt{Z_{i-1}} u^{\prime}$ and $w^{\prime} R^{\prime} u^{\prime}$, and for each function $V^{\prime}: U^{\prime} \rightarrow \mathcal{P}\left(W^{\prime}\right)$ such that for all $u^{\prime} \in U^{\prime}$, $u^{\prime} S_{w^{\prime}}^{\prime} V^{\prime}\left(u^{\prime}\right)$, there exists set V with $u S_{w} V$ and for all $v \in V$ there exists $v^{\prime} \in \bigcup_{u^{\prime} \in U^{\prime}} V^{\prime}\left(u^{\prime}\right)$ with $v Z_{i-1} v^{\prime}$;
(n-w-back) similar to (n-w-forth) (with roles of \mathfrak{M} and \mathfrak{M}^{\prime} interchanged).
When $Z_{0} \supseteq Z_{1} \supseteq \cdots \supseteq Z_{n}$ is an n - w-bisimulation linking two nodes $w \in W$ and $w^{\prime} \in W^{\prime}$ we say that w and w^{\prime} are n-w-bisimilar.

- Let $\mathfrak{M}_{0}=\left(W_{0}, R_{0},\left\{S_{w}^{(0)}: w \in W_{0}\right\}, \Vdash\right)$ and $\mathfrak{M}_{1}=\left(W_{1}, R_{1},\left\{S_{w}^{(1)}: w \in W_{1}\right\}, \mid \vdash\right)$ be two Verbrugge models.
- The w-bisimulation game is played by two players, Challenger and Defender, who move from one configuration to the other in a series of consecutive rounds.
- A configuration is a tuple ($\left.\mathfrak{M}_{0}, w_{0}, \mathfrak{M}_{1}, w_{1}\right)$, where $w_{0} \in W_{0}$ and $w_{1} \in W_{1}$.
- Every round is played from some configuration $\left(\mathfrak{M}_{0}, w_{0}, \mathfrak{M}_{1}, w_{1}\right)$. At the beginning of each round, it is checked that w_{0} and w_{1} satisfy the same propositional variables. If that check fails, the Challenger wins and game is over.

How is a single round of a w-game played

A single round, starting with configuration $\left(\mathfrak{M}_{0}, w_{0}, \mathfrak{M}_{1}, w_{1}\right)$, is played as follows:
(1) Challenger chooses $i \in\{0,1\}$, index of one Verbrugge model. We denote $j:=1-i$, the index of another model.
(2) Challenger picks $u_{i} \in W_{i}$ such that $w_{i} R_{i} u_{i}$. If there are no such worlds, Defender wins and game is over.
(3) Defender picks $U_{j} \subseteq W_{j}$ such that $\left(\forall u_{j} \in U_{j}\right)\left(w_{j} R_{j} u_{j}\right)$. If there are no such sets U_{j}, Challenger wins and game is over.
(4) Challenger picks some function $V_{j}: U_{j} \rightarrow \mathcal{P}\left(W_{j}\right)$ such that $\left(\forall u_{j} \in U_{j}\right)\left(u_{j} S_{w_{j}}^{(j)} V_{j}\left(u_{j}\right)\right)$.
(5) Defender picks some $V_{i} \subseteq W_{i}$ such that $u_{i} S_{w_{i}}^{(i)} V_{i}$.

\mathfrak{M}_{i}

\mathfrak{M}_{j}

The configuration $\left(\mathfrak{M}_{0}, w, \mathfrak{M}_{1}, w^{\prime}\right)$ from which the next round starts is selected as follows:
(i) Challenger picks some world $u_{j} \in U_{j}$ or some world $v_{i} \in V_{i}$.
(ii) If $u_{j} \in U_{j}$ was picked, the next round is played from the configuration $\left(\mathfrak{M}_{0}, u_{0}, \mathfrak{M}_{1}, u_{1}\right)$. If $v_{i} \in V_{i}$ was picked, then Defender picks some world $v_{j} \in \bigcup_{u_{j} \in U_{j}} V_{j}\left(u_{j}\right)$ and the next round is played from the configuration $\left(\mathfrak{M}_{0}, v_{0}, \mathfrak{M}_{1}, v_{1}\right)$.

An n-w-bisimulation game is a w-bisimulation game that ends after n rounds. If Challenger did not win in the n-w-bisimulation game, then by definition we consider Defender to have won.

Winning strategies in a n-w-game and n-w-bisimulations

Proposition

Let $\mathfrak{M}=\left(W, R,\left\{S_{w}: w \in W\right\}, \Vdash\right)$ and $\mathfrak{M}^{\prime}=\left(W^{\prime}, R^{\prime},\left\{S_{w}^{\prime}: w \in W^{\prime}\right\}, \Vdash\right)$ be two Verbrugge models and $w \in W, w^{\prime} \in W^{\prime}$ be worlds in them. For each $n \in \mathbb{N}$, Defender has a winning strategy in an n-w-game with a starting configuration ($\mathfrak{M}, w, \mathfrak{M}^{\prime}, w^{\prime}$) if and only if w and w^{\prime} are n-w-bisimilar.

- for \Rightarrow direction, we define (for k from 0 to n)

$$
\begin{aligned}
Z_{k}:=\left\{\left(v, v^{\prime}\right) \in W \times W^{\prime}:\right. & \text { Defender has a winning strategy in an } \\
& \left.k \text {-w-game starting with }\left(\mathfrak{M}, v, \mathfrak{M}^{\prime}, v^{\prime}\right)\right\} .
\end{aligned}
$$

- for \Leftarrow direction, Defender can use the n-w-bisimulation to pick out elements in his winning strategy

n-modal equivalence implies n-w-bisimilarity...

It can be proved that if $Z \subseteq W \times W^{\prime}$ is a (n-)bisimulation, then Z is also a (n-)w-bisimulation (and that the converse doesn't hold). Also, now we get:

Theorem

Assume that the set of propositional variables is finite and let

 $\mathfrak{M}=\left(W, R,\left\{S_{w}: w \in W\right\}, \Vdash\right)$ and $\mathfrak{M}^{\prime}=\left(W^{\prime}, R^{\prime},\left\{S_{w}^{\prime}: w \in W^{\prime}\right\}, \Vdash\right)$ be two Verbrugge models. Let $n \in \mathbb{N}, w \in W$ and $w^{\prime} \in W^{\prime}$. If w and w^{\prime} are n-modally equivalent then they are n-w-bisimilar.- proof by induction on n
- the interesting part is the induction step $(n+1)$ where we define a winning strategy for the Defender in the $(n+1)$-w-bisimulation game starting with the configuration ($\mathfrak{M}, w, \mathfrak{M}^{\prime}, w^{\prime}$)

Modal equivalence and w-bisimulation

It can be shown by an easy induction that w-bisimiliraty implies modal equivalence.

Proposition

Let $\mathfrak{M}=\left(W, R,\left\{S_{w}: w \in W\right\}, \Vdash\right)$ and $\mathfrak{M}^{\prime}=\left(W^{\prime}, R^{\prime},\left\{S_{w}^{\prime}: w \in W^{\prime}\right\}, \Vdash\right)$ be two Verbrugge models and $w \in W, w^{\prime} \in W^{\prime}$ two worlds in them.
(a) If $\mathfrak{M}_{0}, w_{0} \underline{m}_{n} \mathfrak{M}_{1}, w_{1}$ then $\mathfrak{M}_{0}, w_{0} \equiv_{n} \mathfrak{M}_{1}, w_{1}$.
(b) If $\mathfrak{M}_{0}, w_{0} \xrightarrow{\lfloor\longrightarrow} \mathfrak{M}_{1}, w_{1}$ then $\mathfrak{M}_{0}, w_{0} \equiv \mathfrak{M}_{1}, w_{1}$.

The main question now is does the converse hold.
Let \mathfrak{M} and \mathfrak{M}^{\prime} be two Verbrugge models and $w \in W, w^{\prime} \in W^{\prime}$ two worlds in them. If $w \equiv w^{\prime}$, does then $w \xrightarrow{\text { un }} w^{\prime}$ hold?

We will prove that the answer to that is no by using a modified procedure that was used by V. Čačić and D. Vrgoč in the case of Veltman models.

- a standard result for Kripke models from:
P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge Univ. Press, 2001.

Figure: w and w^{\prime} are modally equivalent but not bisimilar

Modal equivalence does not imply bisimilarity

- result for Veltman models from:
V. Čačić, D. Vrgoč, A Note on Bisimulation and Modal Equivalence in Provability Logic and Interpretability Logic, Studia Logica 101(2013), 31-44

Figure: w and w^{\prime} are modally equivalent but not bisimilar

Modal equivalence does not imply bisimilarity

A method for obtaining Veltman models from GL-models

- Let $\mathfrak{N}=(W, R, V)$ be a GL-model. For every $w \in W$ we define

$$
u S_{w} v \text { if and only if wRuRv, }
$$

where we denote the reflexive closure of R with \underline{R}. We denote $\left(W, R,\left\{S_{w}: w \in W\right\}, V\right)$ by Vel \mathfrak{N}.

Theorem

The worlds w_{1} and w_{2}, in Veltman models $\mathfrak{M}_{1} \equiv \operatorname{Vel} \mathfrak{N}_{1}$ and $\mathfrak{M}_{2} \equiv \operatorname{Vel}\left(\mathfrak{N}_{1} \dot{+} \mathfrak{N}_{2}\right)$, are modally equivalent but not bisimilar.

Definition

Let $\mathfrak{M}=\left(W, R,\left\{S_{w}: w \in W\right\}, \Vdash\right)$ be a Veltman model. For every $w \in W$ and
$V \subseteq R[w]$ we define

$$
v \bar{S}_{w} V \quad: \Longleftrightarrow \quad(\exists u \in V)\left(v S_{w} u\right)
$$

We denote $\left(W, R,\left\{\bar{S}_{w}: w \in W\right\}, \Vdash\right)$ by Ver \mathfrak{M}.

- It is easy to check that Ver \mathfrak{M} is a Verbrugge model.
- It remains to show that the above transformation preserves modal equivalence and (in a way) bisimulations.
- That would give us that the worlds w_{1} and w_{2}, in Verbrugge models Ver \mathfrak{M}_{1} and Ver \mathfrak{M}_{2} are modally equivalent but not w-bisimilar.

Theorem

Let F be a IL-formula, $\mathfrak{M}=\left(W, R,\left\{S_{w}^{\prime}: w \in W\right\}, \Vdash\right)$ Veltman model and Ver $\mathfrak{F}=\left(W, R,\left\{S_{w}: w \in W\right\}, \Vdash\right)$. Then for every world $w \in W$:
$\mathfrak{M}, \boldsymbol{w} \Vdash F$ if and only if \quad Ver $\mathfrak{M}, \boldsymbol{w} \Vdash^{\prime} F$.

- proof: by induction on the complexity of the formula F

Proposition

Let $\mathfrak{M}=\left(W, R,\left\{S_{w}: w \in W\right\}, \Vdash\right)$ and $\mathfrak{M}^{\prime}=\left(W^{\prime}, R^{\prime},\left\{S_{w}^{\prime}: w \in W^{\prime}\right\}, \Vdash\right)$ be two Veltman models, $w_{0} \in W, w_{0}^{\prime} \in W^{\prime}$ two worlds, and Ver $\mathfrak{M}=\left(W, R,\left\{\bar{S}_{w}: w \in W\right\}, \Vdash\right)$, Ver $\mathfrak{M}^{\prime}=\left(W^{\prime}, R^{\prime},\left\{\bar{S}_{w}^{\prime}: w \in W^{\prime}\right\}, \Vdash\right)$ Verbrugge models. Then:

$$
\text { Ver } \mathfrak{M}, w_{0} \xrightarrow{\text { M }} \text { Ver } \mathfrak{M}^{\prime}, w_{0}^{\prime} \quad \text { if and only if } \quad \mathfrak{M}, w_{0} \leftrightarrows \mathfrak{M}^{\prime}, w_{0}^{\prime} .
$$

Proof.

\Leftarrow This direction follow directly from the following two facts: similar result exists for bisimulations, and bisimulation implies w-bisimulations. Now we have:

- $\mathfrak{M}, w_{0} \leftrightarrows \mathfrak{M}^{\prime}, w_{0}^{\prime} \quad \Rightarrow \quad$ Ver $\mathfrak{M}, w_{0} \leftrightarrows \operatorname{Ver} \mathfrak{M}^{\prime}, w_{0}^{\prime}$
- Ver $\mathfrak{M}, w_{0} \leftrightarrows \operatorname{Ver} \mathfrak{M}^{\prime}, w_{0}^{\prime} \quad \Rightarrow \quad$ Ver $\mathfrak{M}, w_{0} \stackrel{m}{ } \quad$ Ver $\mathfrak{M}^{\prime}, w_{0}^{\prime}$

Transformation preserves (in a way) bisimulations

\Rightarrow We need to prove:
if Ver $\mathfrak{M}, w_{0} \xrightarrow{m} \operatorname{Ver} \mathfrak{M}^{\prime}, w_{0}^{\prime}$ then $\mathfrak{M}, w_{0} \leftrightarrows \mathfrak{M}^{\prime}, w_{0}^{\prime}$

- note that this is the important direction (the contraposition of this statement will be used to get our result regarding w-bisimulation and modal equivalence)
- assume Ver $\mathfrak{M}, w_{0} \xrightarrow{\rightleftarrows} \operatorname{Ver} \mathfrak{M}^{\prime}, w_{0}^{\prime}$
- denote by Z a w-bisimulation such that $\left(w_{0}, w_{0}^{\prime}\right) \in Z$
- by definition of w-bisimulation, Z satisfies (at), (w-forth) and (w-back) conditions
- in order to show that $\mathfrak{M}, w_{0} \leftrightarrows \mathfrak{M}^{\prime}, w_{0}^{\prime}$, it suffices to prove that Z satisfies the (forth) condition from definition of bisimulation of Veltman models (the (back) condition can be proven analogously)
- assume $w Z w^{\prime}$ and $w R u$ - we need to show that there exists $u^{\prime} \in W^{\prime}$ such that:

$$
u Z u^{\prime} \text { i } w^{\prime} R^{\prime} u^{\prime} \text { i }\left(\forall v^{\prime} \in W^{\prime}\right)\left(u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime} \Rightarrow(\exists v \in W)\left(u S_{w} v \text { i } v Z v^{\prime}\right)\right)
$$

What we have by (w-forth) condition:

there exists non-empty set $U^{\prime} \subseteq W^{\prime}$ such that $\left(\forall u^{\prime} \in U^{\prime}\right)\left(u Z u^{\prime}\right.$ and $\left.w^{\prime} R^{\prime} u^{\prime}\right)$ and for each function $V^{\prime}: U^{\prime} \rightarrow \mathcal{P}\left(W^{\prime}\right)$ such that for all $u^{\prime} \in U^{\prime}, u^{\prime} \bar{S}_{w^{\prime}}^{\prime} V^{\prime}\left(u^{\prime}\right)$,

$$
\left(\exists V_{u^{\prime}} \subseteq W\right)\left(u \bar{S}_{w} V_{u^{\prime}} \text { and }\left(\forall v \in V_{u^{\prime}}\right)\left(\exists v^{\prime} \in \bigcup_{u^{\prime} \in U^{\prime}} V^{\prime}\left(u^{\prime}\right)\right)\left(v Z v^{\prime}\right)\right)
$$

Transformation preserves (in a way) bisimulations

Now we can see that is suffices to choose some $u^{\prime} \in U^{\prime}$ such that:

$$
\left(\forall v^{\prime} \in W^{\prime}\right)\left(u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime} \Rightarrow(\exists v \in W)\left(u S_{w} v \text { i } v Z v^{\prime}\right)\right)
$$

Problem: we don't know which $u^{\prime} \in U^{\prime}$ to choose!

Let's assume the opposite:

there is no $u^{\prime} \in U^{\prime}$ with the required property, i.e.

$$
\left(\forall u^{\prime} \in U^{\prime}\right)\left(\exists v^{\prime} \in W^{\prime}\right)\left(u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime} i(\forall v \in W)\left(u S_{w} v \Rightarrow \neg\left(v Z v^{\prime}\right)\right)\right) .
$$

\Rightarrow for every $u^{\prime} \in U^{\prime}$ we can choose one $v_{u^{\prime}}^{\prime} \in W^{\prime}$ such that

- $u^{\prime} S_{w^{\prime}}^{\prime} v_{u^{\prime}}^{\prime}$
- $(\forall v \in W)\left(u S_{w} v \Rightarrow v Z v_{u^{\prime}}^{\prime}\right)$
\Rightarrow we can define a function $V^{\prime}: U^{\prime} \rightarrow \mathcal{P}\left(W^{\prime}\right)$,

$$
V^{\prime}\left(u^{\prime}\right)=\left\{v_{u^{\prime}}^{\prime}\right\}, \quad \forall u^{\prime} \in U^{\prime}
$$

- Note: by definition of $\bar{S}_{w^{\prime}}^{\prime}$, $u \bar{S}_{w^{\prime}}^{\prime} V^{\prime}\left(u^{\prime}\right)$.

We have the situation shown on the left, so we get a contradiction with properties of U^{\prime} by the (w-forth) property of Z (shown on the right).

Now we have all the tools that we need in order to prove:

Theorem

Worlds w_{1} and w_{2} in Verbrugge models Ver \mathfrak{M}_{1} and Ver \mathfrak{M}_{2} are modally equivalent, but not w-bisimilar.

Proof.

- we already now that w_{1} and w_{2} are modally equivalent and not bisimilar as worlds of Veltman models \mathfrak{M}_{1} and \mathfrak{M}_{2}
- because our transformation preserves modal equivalence, they are modally equivalent as worlds of Verbrugge models Ver \mathfrak{M}_{1} and Ver \mathfrak{M}_{2}
- using the previous proposition, we get that they are not w-bisimilar

The End.

Questions?

