A good method of transforming Veltman into Verbrugge models

Sebastijan Horvat, Tin Perkov, Mladen Vuković

Faculty of science, University of Zagreb 9/2022

Logic and Applications 2022

This talk is partly supported by Croatian Science Foundation (HRZZ) under the projects UIP-2017-05-9219 and IP-2018-01-7459.

1/28

Introduction

- Introducing new concepts: w-bisimulations, their finite approximations and weak bisimulation games
- Some results for our new concepts
- Modal equivalence and w-bisimulation

Introduction: Interpretability logic IL

We will assume that you're familiar with the following concepts:

- interpretability logic IL, Veltman frames and Veltman models
- generalised Veltman semantics nowadays it is called
 Verbrugge semantics in honor of Rineke Verbrugge

- the first three components form a generalised Veltman Verbrugge frame,
- V is a valuation mapping propositional variables to subsets of W.

The forcing relation $\mathfrak{M}, w \Vdash A$ is defined as in definition of Veltman models with the difference that now

Introduction: Bisimulations and bisimulation games

- basic equivalence between Veltman models: bisimulations
- M. Vuković defined bisimulations (and their finite approximations called *n*-bisimulations) for Verbrugge semantics
- M. Vuković and D. Vrgoč proved: *n*-bisimilar worlds are *n*-modally equivalent
- converse is generally not true, not even with finite set of propositional variables
- that lead us to new notions of bisimulations for Verbrugge semantics called w-bisimulations and their corresponding games called weak bisimulation games
- why games are important:
 - A. Dawar and M. Otto developed a *models-for-games method*, which provides conditions from which a Van Benthem characterisation theorem over a particular class of models immediately follows
 - using bisimulation games on Veltman models for interpretability logic, M.
 Vuković and T. Perkov proved that this result can be extended to Veltman models for the interpretability logic IL

w-bisimulations

A **w-bisimulation** between two Verbrugge models $\mathfrak{M} = (W, R, \{S_w : w \in W\}, \Vdash)$ and $\mathfrak{M}' = (W', R', \{S'_{w'} : w' \in W'\}, \Vdash)$ is a nonempty binary relation $Z \subseteq W \times W'$ such that the following conditions hold:

(at) If wZw' then w ⊩ p if and only if w' ⊩ p, for all propositional letters p;
(w-forth) If wZw' and wRu, then there exists a nonempty set U' ⊆ W' such that for all u' ∈ U', uZu' and w' R'u', and for each function V' : U' → P(W') such that for all u' ∈ U', u' S'_{w'} V'(u'), there exists set V with uS_wV and for all v ∈ V there exists v' ∈ ⋃ V'(u') with vZv';

(w-back) If wZw' and w' R'u', then there exists a nonempty set $U \subseteq W$ such that for all $u \in U$, uZu' and wRu, and for each function $V : U \rightarrow \mathcal{P}(W)$ such that for all $u \in U$, $uS_w V(u)$, there exists set V' with $u'S'_{w'}V'$ and for all $v' \in V'$ there exists $v \in \bigcup_{u \in U} V(u)$ with vZv'.

When Z is a w-bisimulation linking the nodes $w \in W$ and $w' \in W'$ we say that w and w' are w-bisimilar. Notation: $w \leftrightarrow w'$ (for bisimulations, the sign \Rightarrow is used).

Illustration of (w-forth) condition (compared to the (forth) condition)

Finite w-bisimulations

An *n*-w-bisimulation between two Verbrugge models $\mathfrak{M} = (W, R, S, \Vdash)$ and $\mathfrak{M}' = (W', R', S', \Vdash')$ is a decreasing sequence of relations

 $Z_n \subseteq Z_{n-1} \subseteq \cdots \subseteq Z_1 \subseteq Z_0 \subseteq W \times W'$

that possesses the following properties:

(at) If $w Z_0 w'$ then $w \Vdash p$ if and only if $w' \Vdash p'$, for all prop. letters p; (*n*-w-forth) For every *i* from 1 to *n*, if $w Z_i w'$ and wRu then there exists a nonempty set $U' \subseteq W'$ such that for all $u' \in U'$, $u Z_{i-1} u'$ and w' R' u', and for each function $V' : U' \to \mathcal{P}(W')$ such that for all $u' \in U'$, $u' S'_{w'} V'(u')$, there exists set *V* with $u S_w V$ and for all $v \in V$ there exists $v' \in \bigcup_{u' \in U'} V'(u')$ with $v Z_{i-1} v'$;

(*n*-w-back) similar to (*n*-w-forth) (with roles of \mathfrak{M} and \mathfrak{M}' interchanged).

When $Z_0 \supseteq Z_1 \supseteq \cdots \supseteq Z_n$ is an *n*-w-bisimulation linking two nodes $w \in W$ and $w' \in W'$ we say that *w* and *w'* are *n*-w-bisimilar.

Illustration of *n*-w-forth condition

w-games - Verbrugge model comparison games

• Let
$$\mathfrak{M}_0 = (W_0, R_0, \{S_w^{(0)} : w \in W_0\}, \Vdash)$$
 and $\mathfrak{M}_1 = (W_1, R_1, \{S_w^{(1)} : w \in W_1\}, \Vdash)$ be two Verbrugge models.

- The **w-bisimulation game** is played by two players, *Challenger* and *Defender*, who move from one configuration to the other in a series of consecutive rounds.
- A configuration is a tuple $(\mathfrak{M}_0, w_0, \mathfrak{M}_1, w_1)$, where $w_0 \in W_0$ and $w_1 \in W_1$.
- Every round is played from some configuration ($\mathfrak{M}_0, w_0, \mathfrak{M}_1, w_1$). At the beginning of each round, it is checked that w_0 and w_1 satisfy the same propositional variables. If that check fails, the Challenger wins and game is over.

How is a single round of a w-game played

A single round, starting with configuration $(\mathfrak{M}_0, w_0, \mathfrak{M}_1, w_1)$, is played as follows:

- Challenger chooses $i \in \{0, 1\}$, index of one Verbrugge model. We denote j := 1 - i, the index of another model.
- Challenger picks u_i ∈ W_i such that w_iR_iu_i.
 If there are no such worlds,
 Defender wins and game is over.
- Defender picks U_j ⊆ W_j such that (∀u_j ∈ U_j)(w_jR_ju_j). If there are no such sets U_j, Challenger wins and game is over.
- Such that $(\forall u_j \in U_j)(u_j S_{w_j}^{(j)} V_j(u_j))$.
- **(**) Defender picks some $V_i \subseteq W_i$ such that $u_i S_{w_i}^{(i)} V_i$.

W

 $V_i(u_i)$

How to select the starting configuration for the next round

The configuration $(\mathfrak{M}_0, w, \mathfrak{M}_1, w')$ from which the next round starts is selected as follows:

- (i) Challenger picks some world $u_i \in U_i$ or some world $v_i \in V_i$.
- (ii) If $u_j \in U_j$ was picked, the next round is played from the configuration $(\mathfrak{M}_0, u_0, \mathfrak{M}_1, u_1)$. If $v_i \in V_i$ was picked, then Defender picks some world $v_j \in \bigcup_{u_j \in U_j} V_j(u_j)$ and the next round is played from the configuration $(\mathfrak{M}_0, v_0, \mathfrak{M}_1, v_1)$.

An *n*-w-bisimulation game is a w-bisimulation game that ends after *n* rounds. If Challenger did not win in the *n*-w-bisimulation game, then by definition we consider Defender to have won.

Winning strategies in a *n*-w-game and *n*-w-bisimulations

Proposition

Let $\mathfrak{M} = (W, R, \{S_w : w \in W\}, \Vdash)$ and $\mathfrak{M}' = (W', R', \{S'_w : w \in W'\}, \Vdash)$ be two Verbrugge models and $w \in W, w' \in W'$ be worlds in them. For each $n \in \mathbb{N}$, Defender has a winning strategy in an *n*-w-game with a starting configuration $(\mathfrak{M}, w, \mathfrak{M}', w')$ if and only if *w* and *w'* are *n*-w-bisimilar.

• for \Rightarrow direction, we define (for *k* from 0 to *n*)

 $Z_k := \{(v, v') \in W \times W' : \text{Defender has a winning strategy in an} \ k$ -w-game starting with $(\mathfrak{M}, v, \mathfrak{M}', v')\}$.

n-modal equivalence implies n-w-bisimilarity...

...with finite set of propositional variables!

It can be proved that if $Z \subseteq W \times W'$ is a (*n*-)bisimulation, then Z is also a (*n*-)w-bisimulation (and that the converse doesn't hold). Also, now we get:

Theorem

Assume that the set of propositional variables is finite and let $\mathfrak{M} = (W, R, \{S_w : w \in W\}, \Vdash)$ and $\mathfrak{M}' = (W', R', \{S'_w : w \in W'\}, \Vdash)$ be two Verbrugge models. Let $n \in \mathbb{N}$, $w \in W$ and $w' \in W'$. If w and w' are n-modally equivalent then they are n-w-bisimilar.

• proof by induction on *n*

 the interesting part is the induction step (n + 1) where we define a winning strategy for the Defender in the (n + 1)-w-bisimulation game starting with the configuration (M, w, M', w')

Modal equivalence and w-bisimulation

It can be shown by an easy induction that w-bisimiliraty implies modal equivalence.

Proposition

Let $\mathfrak{M} = (W, R, \{S_w : w \in W\}, \Vdash)$ and $\mathfrak{M}' = (W', R', \{S'_w : w \in W'\}, \Vdash)$ be two Verbrugge models and $w \in W, w' \in W'$ two worlds in them.

(a) If
$$\mathfrak{M}_0, w_0 \underbrace{\longleftrightarrow}_n \mathfrak{M}_1, w_1$$
 then $\mathfrak{M}_0, w_0 \equiv_n \mathfrak{M}_1, w_1$.

(b) If $\mathfrak{M}_0, w_0 \iff \mathfrak{M}_1, w_1$ then $\mathfrak{M}_0, w_0 \equiv \mathfrak{M}_1, w_1$.

The main question now is does the converse hold.

Let \mathfrak{M} and \mathfrak{M}' be two Verbrugge models and $w \in W$, $w' \in W'$ two worlds in them. If $w \equiv w'$, does then $w \iff w'$ hold?

We will prove that the answer to that is **no** by using a modified procedure that was used by V. Čačić and D. Vrgoč in the case of Veltman models.

Modal equivalence does not imply bisimilarity

• a standard result for Kripke models from:

P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge Univ. Press, 2001.

Figure: w and w' are modally equivalent but not bisimilar

Modal equivalence does not imply bisimilarity

• result for Veltman models from:

V. Čačić, D. Vrgoč, *A Note on Bisimulation and Modal Equivalence in Provability Logic and Interpretability Logic*, Studia Logica 101(2013), 31–44

Figure: w and w' are modally equivalent but not bisimilar

Modal equivalence does not imply bisimilarity

A method for obtaining Veltman models from GL-models

• Let $\mathfrak{N} = (W, R, V)$ be a **GL**-model. For every $w \in W$ we define

 $uS_w v$ if and only if $wRu\underline{R}v$,

where we denote the reflexive closure of *R* with <u>*R*</u>. We denote $(W, R, \{S_w : w \in W\}, V)$ by *Vel* \mathfrak{N} .

Theorem

The worlds w_1 and w_2 , in Veltman models $\mathfrak{M}_1 \equiv \text{Vel } \mathfrak{N}_1$ and $\mathfrak{M}_2 \equiv \text{Vel } (\mathfrak{N}_1 + \mathfrak{N}_2)$, are modally equivalent but not bisimilar.

Transforming Veltman models into Verbrugge models

Definition

Let $\mathfrak{M} = (W, R, \{S_w : w \in W\}, \Vdash)$ be a Veltman model. For every $w \in W$ and $V \subseteq R[w]$ we define $v\overline{S}_w V :\iff (\exists u \in V)(vS_w u).$ We denote $(W, R, \{\overline{S}_w : w \in W\}, \Vdash)$ by *Ver* \mathfrak{M} .

- It is easy to check that $Ver \mathfrak{M}$ is a Verbrugge model.
- It remains to show that the above transformation preserves modal equivalence and (in a way) bisimulations.
- That would give us that the worlds w_1 and w_2 , in Verbrugge models $Ver \mathfrak{M}_1$ and $Ver \mathfrak{M}_2$ are modally equivalent but not w-bisimilar.

Theorem

Let *F* be a IL-formula, $\mathfrak{M} = (W, R, \{S'_w : w \in W\}, \Vdash)$ Veltman model and *Ver* $\mathfrak{F} = (W, R, \{S_w : w \in W\}, \Vdash)$. Then for every world $w \in W$:

 $\mathfrak{M}, w \Vdash F$ if and only if $Ver \mathfrak{M}, w \Vdash' F$.

• proof: by induction on the complexity of the formula F

Proposition

Let $\mathfrak{M} = (W, R, \{S_w : w \in W\}, \Vdash)$ and $\mathfrak{M}' = (W', R', \{S'_w : w \in W'\}, \Vdash)$ be two Veltman models, $w_0 \in W, w'_0 \in W'$ two worlds, and *Ver* $\mathfrak{M} = (W, R, \{\overline{S}_w : w \in W\}, \Vdash)$, *Ver* $\mathfrak{M}' = (W', R', \{\overline{S}'_w : w \in W'\}, \Vdash)$ Verbrugge models. Then:

Ver $\mathfrak{M}, w_0 \iff$ Ver \mathfrak{M}', w'_0 if and only if $\mathfrak{M}, w_0 \Leftrightarrow \mathfrak{M}', w'_0$.

Proof.

This direction follow directly from the following two facts: similar result exists for bisimulations, and bisimulation implies w-bisimulations. Now we have:

•
$$\mathfrak{M}, w_0 \simeq \mathfrak{M}', w_0' \Rightarrow \quad Ver \mathfrak{M}, w_0 \simeq Ver \mathfrak{M}', w_0'$$

• Ver $\mathfrak{M}, w_0 \cong$ Ver $\mathfrak{M}', w_0' \implies$ Ver $\mathfrak{M}, w_0 \iff$ Ver \mathfrak{M}', w_0'

A D N A B N A B N A B N

We need to prove:

if Ver $\mathfrak{M}, w_0 \iff$ Ver \mathfrak{M}', w'_0 then $\mathfrak{M}, w_0 \Leftrightarrow \mathfrak{M}', w'_0$

- note that this is the important direction (the contraposition of this statement will be used to get our result regarding w-bisimulation and modal equivalence)
- assume Ver $\mathfrak{M}, w_0 \iff$ Ver \mathfrak{M}', w'_0
- denote by Z a w-bisimulation such that $(w_0, w_0') \in Z$
- by definition of w-bisimulation, Z satisfies (at), (w-forth) and (w-back) conditions
- in order to show that 𝔐, w₀ ⇔ 𝔐', w₀', it suffices to prove that Z satisfies the (forth) condition from definition of bisimulation of Veltman models (the (back) condition can be proven analogously)

• assume wZw' and wRu - we need to show that there exists $u' \in W'$ such that:

 $uZu' \text{ i } w'R'u' \text{ i } (\forall v' \in W')(u'S'_{w'}v' \Rightarrow (\exists v \in W)(uS_wv \text{ i } vZv'))$

What we have by (w-forth) condition:

W

7

there exists non-empty set $U' \subseteq W'$ such that $(\forall u' \in U')(uZu' \text{ and } w'R'u')$ and for each function $V' : U' \to \mathcal{P}(W')$ such that for all $u' \in U'$, $u'\overline{S}'_{w'}V'(u')$,

Now we can see that is suffices to choose some $u' \in U'$ such that:

$$(\forall v' \in W') \Big(u' S'_{w'} v' \Rightarrow (\exists v \in W) (u S_w v \ i \ v Z v') \Big).$$

Let's assume the opposite:

there is no $u' \in U'$ with the required property, i.e.

 $(\forall u' \in U')(\exists v' \in W') \Big(u'S'_{w'}v' \text{ i } (\forall v \in W)(uS_wv \Rightarrow \neg(vZv')) \Big).$

- ⇒ for every $u' \in U'$ we can choose one $v'_{u'} \in W'$ such that
 - $u' S'_{w'} v'_{u'}$

•
$$(\forall v \in W)(uS_w v \Rightarrow vZv'_{u'})$$

 \Rightarrow we can define a function $V': U' \rightarrow \mathcal{P}(W'),$

$$V'(u') = \{v'_{u'}\}, \quad \forall u' \in U'$$

• Note: by definition of $\overline{S}'_{w'}$, $u\overline{S}'_{w'}V'(u')$.

The rest of the proof is shown in the following pictures:

We have the situation shown on the left, so we get a contradiction with properties of U' by the (w-forth) property of Z (shown on the right).

w-bisimilarity does not imply modal equivalence

Now we have all the tools that we need in order to prove:

Theorem

Worlds w_1 and w_2 in Verbrugge models $Ver \mathfrak{M}_1$ and $Ver \mathfrak{M}_2$ are modally equivalent, but not w-bisimilar.

Proof.

- we already now that w₁ and w₂ are modally equivalent and not bisimilar as worlds of Veltman models M₁ and M₂
- because our transformation preserves modal equivalence, they are modally equivalent as worlds of Verbrugge models Ver \mathfrak{M}_1 and Ver \mathfrak{M}_2
- using the previous proposition, we get that they are not w-bisimilar

Questions?

A D E A (P) E A D E A D E

Sebastijan Horvat, Tin Perkov, Mladen Vuković A good method of transforming Veltman into Verbrugge models 28/28