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Introduction The logic ILP

Previous research

Study of intuitionistic logic was initiated by Kolmogorov,
Glivenko and Heyting

An idea of extending intuitionistic logic with probabilistic
operators is proposed in Boričić, B. and Rašković, M., ”A
probabilistic validity measure in intuitionistic propositional
logic”

The paper presents a complete axiom system for semantics
which consists of intuitionistic Kripke models in which each
possible world is equipped with two partial functions
representing inner and outer probability measures, such that
outer probabilities cannot increase, and inner probabilities
cannot decrease.
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Previous research

The papers

Marković, Z.,Ognjanović, Z. and Rašković, M., ”A probabilistic
extension of intuitionistic logic”,
Marković, Z.,Ognjanović, Z. and Rašković, M., ”An
intuitionistic logic with probabilistic operators”
Marković, Z, Ognjanović, Z. and Rašković, M., ”What is the
Proper Propositional Base for Probabilistic Logic?”,

give strongly complete axiomatizations for probabilistic logics
based on intuitionistic propositional calculus and provide some
real-life examples illustrating that such approach might be
preferable to probabilistic logic based on classical logic.

Those papers start with intuitionistic calculus, but use
classical reasoning about probabilistic formulas.
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Contribution of this research

We continue along the lines of these papers and describe a
propositional logic in which:

Finitely additive (and not inner and outer) probabilities are
considered, while the corresponding range is the unit interval
of rational numbers.

Probabilistic operators behave in accordance with
intuitionistic laws.
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Contribution of this research

We consider formulas of the form P>rα and P6rα as atomic
formulas. Their truthfulness is understood as “it is effectively
provable that the probability of α is at least (at most) r”,
while ¬P>rα is read “it is effectively refutable that the
probability of α is at least r”
P>0α (¬P>0α) means that α is measurable (not measurable).
The corresponding semantics consist of Kripke models with
partially ordered possible worlds. Any possible world w can be
seen as a description of uncertain knowledge.
This allows us to imagine a possible world w such that there
is a statement α such that neither α nor ¬α are forced in w .
It might be that one of those statements can be forced
afterwards, but once established truthfulness of statements
cannot be changed in later worlds.
This is in accordance with the intuition that intuitionistic logic
may be viewed as the logic of the growth of knowledge.
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Contribution of this research

Let the formula β means “an accident was caused by a drunk
driver”

Then P> 2
3
β means “The probability of β is at least 2

3”, while

¬P> 2
3
β says “The probability of β is not greater or equal to

2
3”.

According to available evidences, it may happen that: it is not
proved that the probability that an accident was caused by a
drunk driver is at least 2

3 , and it is not proved that the
probability that an accident was caused by a drunk driver is
not at least 2

3 .

Thus, neither P> 2
3
β nor ¬P> 2

3
β is forced, which reminds us of

the well known fact that the principle of excluded middle is
not intutionistically valid.
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Contribution of this research

Compactness (“every finitely satisfiable set of formulas is
satisfiable”) does not hold for our logic.

we present an infinitary logic and prove that it is strongly
complete (“a formula is a syntactical consequence of a set of
formulas iff it is a semantical consequence of the set”) and
decidable.
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Syntax and semantics

The formal language of ILP consists of a nonempty at most
countable set of propositional letters denoted Var and the
following operators:

classical: ¬, ∧,

P∗rα ∗ ∈ {>,6, >,<,=} and r ∈ [0, 1]Q.
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Syntax and semantics

The set of classical formulas ForC is inductively defined in the
following way:

p | ¬α | α ∧ β | α ∨ β.

The set of probabilistic formulas ForP is inductively defined as
follows:

P∗rα | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ.
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Syntax and semantics

Definition

A model is a structure
M = 〈W , {Hw : w ∈W }, {µw : w ∈W },6〉 with the following
properties:

W is a non-empty set of possible worlds,

〈W ,6〉 is a partially ordered set (poset) called a frame;
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Syntax and semantics

Definition

every Hw is a subset of ForC which satisfies:

⊥ ∈ Hw , > ∈ Hw ;
If α ∈ Hw and α is equivalent to β (i.e. α↔ β is a classical
tautology), then β ∈ Hw ;
α ∈ Hw iff ¬α ∈ Hw ;

For all w1,w2 ∈W , if w1 6 w2, then Hw1 ⊆ Hw2 ;

every µw is a mapping from Hw to [0, 1]Q which satisfies:

µw (⊥) = 0, µw (>) = 1;
If w1 6 w2, then µw1 is a restriction of µw2 on Hw1 ;
If α and β are disjoint (i.e. contradict each other) and if
α, β, α ∨ β ∈ Hw , then µw (α ∨ β) = µw (α) + µw (β);
If α and β are equivalent and α, β ∈ Hw , then
µw (α) = µw (β). �
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Syntax and semantics

Definition

(Forcing relation) Let
M = 〈W , {Hw : w ∈W }, {µw : w ∈W },6〉 be a model and
w ∈W . The forcing relation 
M between possible worlds and
ForP -formulas satisfies:

w 
M P>rα iff α ∈ Hw and µw (α) > r ;

w 
M P6rα iff α ∈ Hw and µw (α) 6 r ;

w 
M P>rα iff α ∈ Hw and µw (α) > r ;

w 
M P<rα iff α ∈ Hw and µw (α) < r ;

w 
M P=rα iff α ∈ Hw and µw (α) = r ;

w 
M ¬φ iff, for all v > w , v 6
M φ;

w 
M φ ∧ ψ iff w 
M φ and w 
M ψ;
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Syntax and semantics

Definition

(Forcing relation)

w 
M φ ∨ ψ iff w 
M φ or w 
M ψ;

w 
M φ→ ψ iff, for all v > w , either v 6
M φ, or
v 
M φ ∧ ψ. �
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Syntax and semantics

Theorem

Suppose that an ILP–formula φ is an instance of some
intuitionistic tautology. Then, φ is ILP–valid. �
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Comments on syntax and semantics and terminology

The above definition of the forcing relation suggests that some
probabilistic operators are definable:

P6rα = P>1−r¬α,

P>rα = P>rα ∧ ¬P6rα,

P<rα = P6rα ∧ ¬P>rα, and

P=rα = P6rα ∧ P>rα,
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Non–compactness

Theorem (Non–compactness)

Finite satisfiability does not imply satisfiability.
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Non–compactness

Proof.

Let p ∈ Var . We define the theory T by

T = {P>0p} ∪ {¬P=sp : s ∈ [0, 1]Q}.

Clearly, T is not satisfiable since it forces that p has an irrational
measure. On the other hand, T is finitely satisfiable. Indeed, for
each s ∈ [0, 1]Q we define the model

Ms = 〈{s}, [⊥] ∪ [>] ∪ [p] ∪ [¬p], {µs}〉

as follows:
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Non–compactness

Proof.

[α] = {β ∈ ForC : α |= β};
(∀α ∈ [⊥])µs(α) = 0;

(∀α ∈ [p])µs(α) = s;

(∀α ∈ [¬p])µs(α) = 1− s;

(∀α ∈ [>])µs(α) = 1.

Let Γ be any finite nonempty subset of T . Then, for all s such
that ¬P=sp /∈ Γ, we have that s 
MS

Γ, i.e., that s 
MS
φ for all

φ ∈ Γ.
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Strongly complete axiomatization

Our axiom system consists of seven groups of axioms:

Heyting axioms,

Norm axioms,

Disjunctive closure axiom,

Bookkeeping axioms,

Equivalence/Negation axioms

Monotonicity axioms and

Additivity axiom,

and two inference rules: modus ponens and an infinitary rule.
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Strongly complete axiomatization

Heyting axioms This group of ten axioms establishes the essential
proof theoretical properties of the logical connectives ¬, ∧, ∨ and
→.

DedThm1: φ→ (ψ → φ);

DedThm2: φ→ (ψ → θ)→ ((φ→ ψ)→ (φ→ θ));

Con1: (φ ∧ ψ)→ φ;

Con2: (φ ∧ ψ)→ ψ;

Con3: φ→ (ψ → (φ ∧ ψ));

Dis1: φ→ (φ ∨ ψ);

Dis2: ψ → (φ ∨ ψ);

Dis3: (φ→ θ)→ ((ψ → θ)→ ((φ ∨ ψ)→ θ));

Neg1: (φ→ ¬ψ)→ (ψ → ¬φ);

Neg2: ¬φ→ (φ→ ψ).
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Strongly complete axiomatization

Norm axioms This group of two axioms ensures that the range of
measures values are within [0, 1]Q, and that all classical
propositional tautologies and contradictions are measurable.
Tautologies have the maximal measure (= 1) while contradictions
have the minimal measure (= 0).

Bnd1: P>0α→ ¬P<0α ∧ ¬P>1α;

Bnd2: P=1> ∧ P=0⊥.
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Strongly complete axiomatization

Disjunctive closure axiom This axiom is essential for the
construction of the canonical model. It allows us to pinpoint the
probability of the measurable formula α corresponding to the
particular disjunctive closed extension of P>0α.

DisCl: P>0α→ (P>sα ∨ P<sα ∨ P=sα).
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Strongly complete axiomatization

Bookkeeping axioms This group of eight axioms ensure that
operators P∗r , ∗ ∈ {6,>, >,<,=}, preserve the ordering of
rational numbers from the real unit interval [0,1].

Ord1: P>rα→ ¬P<rα;

Ord2: P>rα→ (¬P<rα ∧ ¬P6rα ∧ P>rα), r < 1;

Ord3: P6rα→ ¬P>rα;

Ord4: P<rα→ (¬P>rα ∧ ¬P>rα ∧ P6rα), r > 0;

Ord5: P>sα→ P>tα, t < s;

Ord6: P6rα→ P<sα, s > r ;

Ord7: P=rα→ P>rα ∧ P6rα;

Ord8: P>rα ∧ P6rα→ P=rα.
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Strongly complete axiomatization

Equivalence/Negation axioms This group of three axioms
ensure that the set of measurable formulas is closed under
equivalence and negation.

EquivNeg1: P>0α→ P>0β, where α and β are equivalent in
the classical sense;

EquivNeg2: P>0α→ P>0(¬α);

EquivNeg3: P>0(¬α)→ P>0α.
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Strongly complete axiomatization

Monotonicity axioms This group of two axioms ensures that all
equivalent measurable formulas have the same measure.

Mon1: P>rα ∧ P>0β → P>rβ, where α implies β in the
classical sense;

Mon2: P>0α ∧ P6rβ → P6rα, where α implies β in the
classical sense;
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Strongly complete axiomatization

Additivity axiom The final axioms provides finite additivity.

Add:
P=rα ∧ P=sβ ∧ P=0(α ∧ β) ∧ P>0(α ∨ β)→ P=r+s(α ∨ β),
r + s 6 1.
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Strongly complete axiomatization

Inference rules
There are two inference rules: modus ponens (MP) and the
rational range rule (QRng).

MP: From φ and φ→ ψ infer ψ;

QRng: From the set of premises

{φ→ P>0α} ∪ {φ→ (P=sα→ ψ) : s ∈ [0, 1]Q}

infer φ→ ψ.
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Strongly complete axiomatization

Inference rules
If φ = > (intuitionistic tautology) and ψ = ⊥, then by QRng,
theory

T = {P>0α} ∪ {¬P=sα : s ∈ [0, 1]Q}

is inconsistent. Hence, QRng syntactically forces the rational unit
interval as the range of studied measures.
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A deductive (or syntactical) closure of a theory T , denoted by T`,
is defined by

T` = {φ : T ` φ}.

Definition

A theory T is disjunctively closed iff it has the following
property: if φ ∨ ψ ∈ T , then φ ∈ T or ψ ∈ T . �

Definition

A theory T is deductively closed iff T = T`. �
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Soundness

Here we shall prove that the introduced infinitary inference rule
QRng is sound with respect to the class of introduced models. The
cases of axioms and Rule MP are straightforward.

Theorem

Let M = 〈W , {Hw : w ∈W }, {µw : w ∈W },6〉 be any model,
w ∈W , and let w 
M φ→ P>0α and w 
M φ→ (P=sα→ ψ)
for all s ∈ [0, 1]Q. Then w 
M φ→ ψ.
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Strong completeness

Theorem (Deduction theorem)

Let T be an ILP–theory and φ, ψ arbitrary ILP–formulas.
Then,

T ` φ→ ψ iff T , φ ` ψ.

Lemma

Suppose that T , φ ∨ ψ 6` χ and T , φ ` χ. Then T , ψ 6` χ.
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Strong completeness

Lemma

Suppose that T 6` χ. Then, there is a theory T ∗ with the
following properties:

1 T ⊆ T ∗;

2 T ∗ = T ∗` ;

3 T ∗ 6` χ;

4 for all φ, ψ ∈ ForP , φ ∨ ψ ∈ T ∗ iff φ ∈ T ∗ or ψ ∈ T ∗.
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Strong completeness

Theorem (Model existence theorem)

Let T 6` χ. Then, there is a model M = 〈W , . . . 〉 and w ∈W
such that w 
M T and w 6
M χ.

Theorem (Completeness Theorem)

T` = T
.
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Decidability

Theorem

A formula φ ∈ ForP is satisfiable iff it is satisfiable in a finite
model containing at most 2|φ|

2+1 worlds.

Theorem

Satisfiability of ForP–formulas is decidable.
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