Probabilistic Reasoning about Typed Combinatory Terms

Simona Kašterović

Faculty of Technical Sciences, University of Novi Sad

LAP 2022 September 26-29, 2022

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Kašterović, Ghilezan LAP 2022 1/14

Logic of Combinatory Logic (LCL) joint work with Silvia Ghilezan

Probabilistic Reasoning about Typed Combinatory Terms (PCL) joint work with Silvia Ghilezan, Jelena Ivetić, Zoran Ognjanović, Nenad Savić

2/14

Outline

 Logic of Combinatory Logic (LCL) joint work with Silvia Ghilezan

Probabilistic Reasoning about Typed Combinatory Terms (PCL) joint work with Silvia Ghilezan, Jelena Ivetić, Zoran Ognjanović, Nenad Savić

4□ > 4□ > 4 = > 4 = > = 90

Kašterović, Ghilezan LAP 2022 3/14

 Logic of combinatory logic (LCL) - classical propositional logic over simply typed combinatory logic

4 / 14

- Logic of combinatory logic (LCL) classical propositional logic over simply typed combinatory logic
- Simply Typed Combinatory logic

4 / 14

- Logic of combinatory logic (LCL) classical propositional logic over simply typed combinatory logic
- Simply Typed Combinatory logic

Terms: M, N ::= x | S | K | I | MN

Kašterović, Ghilezan LAP 2022 4 / 14

- Logic of combinatory logic (LCL) classical propositional logic over simply typed combinatory logic
- Simply Typed Combinatory logic

Terms:
$$M, N := x | S | K | I | MN$$

Types:
$$\sigma, \tau := a \mid \sigma \to \tau$$

Kašterović, Ghilezan LAP 2022 4 / 14

- Logic of combinatory logic (LCL) classical propositional logic over simply typed combinatory logic
- Simply Typed Combinatory logic

Terms:
$$M, N ::= x | S | K | I | MN$$

Types:
$$\sigma, \tau := a \mid \sigma \to \tau$$

Type assignment statement

M: o

- Logic of combinatory logic (LCL) classical propositional logic over simply typed combinatory logic
- Simply Typed Combinatory logic

Terms:
$$M, N := x | S | K | I | MN$$

Types:
$$\sigma, \tau := a \mid \sigma \rightarrow \tau$$

Type assignment statement

 $M:\sigma$

Syntax of *LCL*

$$\alpha, \beta := M : \sigma \mid \neg \alpha \mid \alpha \Rightarrow \beta$$

《ロシペラ》《恵シ《恵》 意 少久の Kašterović, Ghilezan LAP 2022 4/14

LCL Axiomatization

• Combination of the axiomatic system for classical propositional logic and type assignment system for simply typed combinatory logic

5 / 14

LCL Axiomatization

- Combination of the axiomatic system for classical propositional logic and type assignment system for simply typed combinatory logic
- Eight axiom schemes:

(Ax 1) S:
$$(\sigma \to (\tau \to \rho)) \to ((\sigma \to \tau) \to (\sigma \to \rho))$$

(Ax 2) K: $\sigma \to (\tau \to \sigma)$
(Ax 3) I: $\sigma \to \sigma$
(Ax 4) $(M: \sigma \to \tau) \Rightarrow ((N: \sigma) \Rightarrow (MN: \tau))$
(Ax 5) $M: \sigma \Rightarrow N: \sigma$, if $M = N$
(Ax 6) $\alpha \Rightarrow (\beta \Rightarrow \alpha)$
(Ax 7) $(\alpha \Rightarrow (\beta \Rightarrow \gamma)) \Rightarrow ((\alpha \Rightarrow \beta) \Rightarrow (\alpha \Rightarrow \gamma))$
(Ax 8) $(\neg \alpha \Rightarrow \neg \beta) \Rightarrow ((\neg \alpha \Rightarrow \beta) \Rightarrow \neg \alpha)$

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

Kašterović, Ghilezan LAP 2022 5 / 14

LCL Axiomatization

- Combination of the axiomatic system for classical propositional logic and type assignment system for simply typed combinatory logic
- Eight axiom schemes:

(Ax 1) S:
$$(\sigma \to (\tau \to \rho)) \to ((\sigma \to \tau) \to (\sigma \to \rho))$$

(Ax 2) K: $\sigma \to (\tau \to \sigma)$
(Ax 3) I: $\sigma \to \sigma$
(Ax 4) $(M: \sigma \to \tau) \Rightarrow ((N: \sigma) \Rightarrow (MN: \tau))$
(Ax 5) $M: \sigma \Rightarrow N: \sigma$, if $M = N$
(Ax 6) $\alpha \Rightarrow (\beta \Rightarrow \alpha)$
(Ax 7) $(\alpha \Rightarrow (\beta \Rightarrow \gamma)) \Rightarrow ((\alpha \Rightarrow \beta) \Rightarrow (\alpha \Rightarrow \gamma))$
(Ax 8) $(\neg \alpha \Rightarrow \neg \beta) \Rightarrow ((\neg \alpha \Rightarrow \beta) \Rightarrow \neg \alpha)$

• Inference rule:

$$\frac{\alpha \Rightarrow \beta \qquad \alpha}{\beta}$$
 (MP)

Kašterović, Ghilezan LAP 2022 5 / 14

LCL Semantics

Applicative structure for LCL

$$\mathcal{M} = \langle D, \{A^{\sigma}\}_{\sigma}, \cdot, \mathbf{s}, \mathbf{k}, \mathbf{i} \rangle$$

Kašterović, Ghilezan LAP 2022 6/14

LCL Semantics

Applicative structure for *LCL*

$$\mathcal{M} = \langle D, \{A^{\sigma}\}_{\sigma}, \cdot, \mathbf{s}, \mathbf{k}, \mathbf{i} \rangle$$

An environment ρ for \mathcal{M} is a map from the set of term variables to the domain of the applicative structure \mathcal{M} , $\rho: V \to D$.

◆□▶ ◆□▶ ◆豆▶ ◆豆 ▶ ・豆 ・ かへで

Kašterović, Ghilezan LAP 2022 6 / 14

LCL Semantics

Applicative structure for *LCL*

$$\mathcal{M} = \langle D, \{A^{\sigma}\}_{\sigma}, \cdot, \mathbf{s}, \mathbf{k}, \mathbf{i} \rangle$$

An environment ρ for $\mathcal M$ is a map from the set of term variables to the domain of the applicative structure $\mathcal M$, $\rho:V\to D$.

A *LCL*-model is a tuple $\mathcal{M}_{\rho} = \langle \mathcal{M}, \rho \rangle$, where \mathcal{M} is an applicative structure and ρ is an environment for \mathcal{M} .

< □ ト 4 圖 ト 4 ≣ ト 4 ≣ ト ■ 9 へ ()

Kašterović, Ghilezan LAP 2022 6 / 14

Soundness and completeness of the axiomatiation for *LCL*

7 / 14

Soundness and completeness of the axiomatiation for LCL

Soundness of Ax

If $T \vdash \alpha$, then $T \models \alpha$.

Kašterović, Ghilezan LAP 2022 7/14

Soundness and completeness of the axiomatiation for LCL

Soundness of Ax

If $T \vdash \alpha$, then $T \models \alpha$.

Completeness of Ax

If $T \models \alpha$, then $T \vdash \alpha$.

Simona Kašterović and Silvia Ghilezan. Logic of combinatory logic, February 2022. Submitted for publication

Kašterović, Ghilezan LAP 2022 7 / 14

In addition...

The proposed semantics is a new semantics proven to be sound and complete for combinatory logic.

If
$$\Gamma \vdash_{\mathsf{CL}} M : \sigma$$
, then $\Gamma \models M : \sigma$.

Let
$$\Gamma$$
 be a basis. If $\Gamma \models M : \sigma$, then $\Gamma \vdash_{\mathsf{CL}^=} M : \sigma$.

LCL is a conservative extension of the simply typed combinatory logic.

Let
$$\Gamma$$
 be a basis. If $\Gamma \vdash M : \sigma$, then $\Gamma \vdash_{\Gamma} M : \sigma$.

8 / 14

Outline

 Logic of Combinatory Logic (LCL) joint work with Silvia Ghilezan

Probabilistic Reasoning about Typed Combinatory Terms (PCL) joint work with Silvia Ghilezan, Jelena Ivetić, Zoran Ognjanović, Nenad Savić

< ロ ト ∢ 個 ト ∢ 直 ト ∢ 直 ト) 重 ・ 夕 Q (^

Kašterović, Ghilezan LAP 2022 9 / 14

PCL

- PCL a probabilistic system for simply typed combinatory terms;
- Probabilistic logic over LCL;
- Probabilistic logic LPP₂

$$\phi := P_{\geq s}\alpha \mid \neg \phi \mid \phi \wedge \phi,$$

where α is a formula of classical propositional logic and $s \in [0,1] \cap \mathbb{Q}$.

PCL syntax

$$\phi := P_{>s}\alpha \mid \neg \phi \mid \phi \wedge \phi,$$

where α is an *LCL*-formula and $s \in [0,1] \cap \mathbb{Q}$.

• $P_{\geq s}\alpha$ has a meaning "probability that α is true is greater than or equal to s"

Zoran Ognjanović, Miodrag Rašković, and Zoran Marković. Probability Logics - Probability-Based Formalization of Uncertain Reasoning. Springer, 2016.

Kašterović, Ghilezan LAP 2022 10 / 14

◆□▶ ◆圖▶ ◆圖▶ ◆團▶ □

PCL Axiomatization

LCL axiomatization + axiomatic system for probability logic

Axiomatic system for probability logic:

- (1) all instances of the classical propositional tautologies, (atoms are any *PCL*-formulas),
- (2) $P_{\geq 0}\alpha$,
- (3) $P_{\leq r}\alpha \Rightarrow P_{\leq s}\alpha$, s > r,
- (4) $P_{\leq s}\alpha \Rightarrow P_{\leq s}\alpha$,
- $(5) (P_{\geq r}\alpha \wedge P_{\geq s}\beta \wedge P_{\geq 1}(\neg \alpha \vee \neg \beta)) \Rightarrow P_{\geq \min\{1, r+s\}}(\alpha \vee \beta),$
- (6) $(P_{\leq r}\alpha \wedge P_{\leq s}\beta) \Rightarrow P_{\leq r+s}(\alpha \vee \beta), r+s \leq 1,$
- (7) $P_{>1}(\alpha \Rightarrow \beta) \Rightarrow (P_{>s}\alpha \Rightarrow P_{>s}\beta)$.

11 / 14

PCL Semantics - an idea

$$\mathcal{M} = \langle W, \{\rho_{w}\}_{w}, H, \mu \rangle$$

- W is a nonempty set of worlds, where each world is one LCL-applicative structure;
- $\rho_w: V \times \{w\} \rightarrow D_w$;
- H is an algebra of subsets of W;
- ullet μ is a finitely additive probability measure defined on H.
- S. Ghilezan, J. Ivetić, S. Kašterovć, Z. Ognjanović, and N. Savić. Towards probabilistic reasoning in type theory the intersection type case. 11th International Symposium, FoIKS 2020, Dortmund, Germany, February 17-21, 2020, Proceedings, volume 12012 of Lecture Notes in Computer Science, pages 122–139. Springer, 2020.
- S. Ghilezan, J. Ivetić, S. Kašterović, Z. Ognjanović, and N. Savić. Probabilistic reasoning about typed lambda terms. International Symposium, LFCS 2018, Deerfield Beach, FL, USA, January 8-11, 2018, Proceedings, volume 10703 of Lecture Notes in Computer Science, pages 170–189. Springer, 2018

Ongoing

- Soundness;
- Completeness.

Thank you for your attention!

Kašterović, Ghilezan LAP 2022 14 / 14