2nd International Conference

Logic and Applications 2013
(LAP 2013)

September 16-20, 2013, Dubrovnik, Croatia

- Book of abstracts -

Course directors

Zvonimir Sikié, University of Zagreb

Andre Scedrov, University of Pennsylvania

Silvia Ghilezan, University of Novi Sad

Zoran Ognjanovi¢, Mathematical Institute SANU, Belgrade



Combinatorial Aspects of Interpretability Logic
Vedran Caéi¢, University of Zagreb, Croatia

Godel’s theorems were a big breakthrough for matematical logic. With time, math-
ematicians started to wonder how they can be generalized, and what else, based on
some simple facts we knew, could be deduced about provability predicates. Formaliz-
ing provability over some base theory 7" as a unary modal operator OJ, led to the theory
G L (named after Godel and Lob) which we know today is the provability logic of many
base theories.

Provability is great for judging absolute strength of some formula against a theory.
But what about relative strength? For some base theory 7" and two formulas F' and G,
is T'+ F interpretable in 7'+ G'? That is, can we find a way of reinterpreting symbols of
T, preserving provability of whole T, but such that (reinterpreted) formula F' becomes
a theorem, if we add G as an axiom? Here we don’t just divide formulas into black and
white, but try to order them in various shades of gray. In fact, various colors would be
a better analogy, since the ordering is usually not total.

We can do something quite analogous here. Formalizing interpretability in the
above sense as a binary modal operator >, we are led to various interpretability log-
ics, most basic of which is probably I L. Unfortunately, I L itself is, unlike GL, just a
“lowest common intersection” of those interpretability logics, and different base theo-
ries add to I L different principles of interpretability, extending it in diverse ways.

However, we still can consider properties of G L, and ask ourselves if /L has some-
thing analogous. One well-known property of G'L is that its closed formulas have very
regular normal forms: every G L formula without variables is equivalent to a Boolean
combination of formulas 1, O1, OO, and so on. That Boolean combination can be
further normalized, taking into account that 0" 1 — O™ L whenever n < m.

Do IL formulas have something similar? The first hard question is: what are the
basic blocks here? In GL, it was easy—repeating O before | gives a natural single-
parameter countable family of “propositional variables”, to be connected into Boolean
combinations. There is not anything analogous in I L, except that family itself. Namely,
it can be easily seen that O can be emulated in /L, 0 A being equivalent to = A > L (L
is invariant under interpretation, and 7" + —A is inconsistent iff 7' - A). So the same
family {0" L : n € N} is available in I L, too.

In [1], we have shown that many /L formulas have GL equivalents, and by that,
the same normal forms as GL formulas. Here we count those formulas, and find the
exact share they have in the whole closed fragment of L.

By studying the general forms of such families of IL formulas, we become aware of
many interesting combinatorial problems. First, how to define “share” in the first place?
Set of all closed IL formulas is infinite, but we use asymptotics based on complexity
of formulas. Second, how to count formulas given recursively? Those recurrences
often don’t have closed form solutions, but asymptotic behaviour can be obtained via
generating functions. And third, many of classes we have to count collectively aren’t
disjoint: exclusion-inclusion formula helps here.

References

[1] V. Cati¢, M. Vukovié, A note on normal forms for the closed fragment of system
I L. Mathematical Communications, 17 (2012), 195-204



Reducibility method: an overview!
Silvia Ghilezan, Faculty of Technical Sciences, University of Novi Sad, Serbia

This is an overview of the development and application of the reducibility method
in different aspects of logic and computation. The results are obtained over the last
twenty years in collaboration with Henk Barendregt, Mariangiola Dezani-Ciancaglini,
Daniel Dougherty, Jelena Ivetié, Pierre Lescanne, Silvia Likavec and Viktor Kuncak.

The reducibility method is a well known framework for proving reduction proper-
ties of terms typeable in different type systems. It was introduced by Tait in [10] for
proving the strong normalization property for the simply typed lambda calculus. The
main idea of this method is to relate terms typeable in a certain type system and terms
satisfying certain reduction properties such as strong normalisation, head normalisation
etc. Emerging from these proofs, the reducibility method became a widely accepted
technique for proving various reduction properties of terms typeable in different type
systems. This method was used to prove strong normalization of polymorphic (second-
order) lambda calculus, intersection type systems, calculus with explicit substitutions
and various other type systems. The reader is referred to [1], a comprehensive reference
book on type systems.

The basic concept of the method can be represented by a unary predicate P, (¢),
which means that a term ¢ typeable by « satisfies the property P. To this aim types are
interpreted as suitable sets of terms called saturated or stable sets. Then, the soundness
of type assignment is obtained with respect to these interpretations. A consequence of
soundness is that every term typeable in the type system belongs to the interpretation
of its type. This is an intermediate step between the terms typeable in the given type
system and terms satisfying the considered property P. In general, the principal notions
of the reducibility method are:

e type interpretations (based on the considered property P);
e term valuations;

e saturation and closure conditions;

e soundness of the type assignment.

In [4] the reducibility method is applied to completely characterise the strongly nor-
malizing lambda terms in the lambda calculus with intersection types. Suitable modifi-
cations of the reducibility method lead to uniform proofs of other reduction properties.
An overview can be found in [6]. In [2] the reducibility method is applied to char-
acterise normalising, head normalising and weak head normalising terms as well as
their persistent versions. In [5] the reducibility is developed for a resource aware term
calculus.

In the setting of classical logic, the reducibility method is not well suited to prove
strong normalization for Ap-calculus, the simply typed classical term calculus. The
symmetric candidates technique used to prove strong normalisation employs a fixed-
point technique to define the reducibility candidates in [3].

Extending on the reducibility method, logical relations were introduced by Statman
in [9] to proof the confluence (the Church-Rosser property) of 3n-reduction of the
simply typed A-terms. It became a well-known method for proving confluence and

IPartially supported by the Serbian Ministry of Education, Science, and Technological Development
(projects ON174026 and 111044006).



standardisation in various type systems. Similarly to the reducibility method, the key
notions are type interpretations. Logical relations in turn is a method based on binary
relations R, (t,t"), which relate terms ¢ and ¢’ typeable by the type « that satisfy the
relation R. Types are then interpreted as admissible relations.

In programming languages it is often necessary to relate terms either from the same
language or from different languages in order to show their equivalence. To this aim
logical relations became a powerful tool in programming languages, see Pierce [8].
Some of the most important applications.

e Observational equivalence: logical relations prove that terms obtained by opti-
misation are equivalent.

e Compiler correctness: logical relations are employed to relate the source and
target language.

e Security information flow: logical relations prove that the system prevents high
security data to leak in low security output.

References

[1] H.P. Barendregt, W. Dekkers, R. Statman, Lambda Calculus with Types, Cam-
bridge University Press, 2013.

[2] M. Dezani-Ciancaglini, S. Ghilezan and S. Likavec, Behavioural inverse limit
models, Theoretical Computer Science 316:49-74 (2004).

[3] D. Doughert, S. Ghilezan and P. Lescanne, Characterizing strong normalization
in the Curien-Herbelin symmetric lambda calculus: extending the Coppo-Dezani
heritage, Theoretical Computer Science 398:114-128 (2008).

[4] S. Ghilezan, Strong normalization and typability with intersection types. Notre
Dame Journal of Formal Logic 37:44-52 (1996).

[5] S. Ghilezan, J. Iveti¢, P. Lescanne, S. Likavec, Intersection Types for the Re-
source Control Lambda Calculi. ICTAC 2011, Lecture Notes in Computer Science
6916:116-134 (2011).

[6] S. Ghilezan and S. Likavec, Reducibility: A Ubiquitous Method in Lambda Cal-
culus with Intersection Types, Electronic Notes in Theoretical Computer Science
70 (2003).

[7] S. Ghilezan, V. Kuncak, Confluence of Untyped Lambda Calculus via Simple
Typesi. ICTCS 2001, Lecture Notes in Computer Science 2206:38-49 (2001).

[8] B. Pierce, Types and Programming Languages, MIT Press, 2002.

[9] R. Statman, Logical relations and the typed A-calculus. Information and Control
65:85-97 (1985).

[10] W. W. Tait, Intensional interpretations of functionals of finite type I. Journal of
Symbolic Logic 32:198-212 (1967).



LF5 - A Logical Framework with External Predicates®

Furio Honsell, Universita di Udine, Italy
Marina Lenisa, Universita di Udine, Italy
Petar Maksimovi¢, INRIA Sophia Antipolis Méditerranée, France and
Mathematical Institute of the Serbian Academy of Sciences and Arts, Serbia
Ivan Scagnetto, Universita di Udine, Italy
Luigi Liquori, INRIA Sophia Antipolis Méditerranée, France

The Edinburgh Logical Framework LF, presented in [2], is a first-order construc-
tive type theory featuring dependent types. It was first introduced as a general meta-
language for logics, as well as a specification language for generic proof-checking/proof-
development environments. In this abstract, we present an extension of LF with pred-
icates and oracle calls, which is accomplished by defining a mechamism serving for
the locking and unlocking of types and terms.

Following the standard specification paradigm in Constructive Type Theory, we
define locked types using introduction, elimination, and equality rules. We introduce
a lock constructor for building objects ﬁﬁya[M ] of type ﬁ%ya[p], via the introduction
rule (O-Lock), presented below, and a corresponding unlock destructor, Z/IE.J [M], and
an elimination rule (O-Unlock) which allows elimination of the locked type construc-
tor, under the condition that a specific predicate P is verified, possibly externally, on
an appropriate correct, i.e. derivable, judgement.

I'tsM:p T N:o
Trs £5,[M]: £, [0

(Lock)

FFEM:Eﬁ’U[p] ke N:o PTFs N:o)
L s UL ,[M] < p

(Unlock)

The equality rule for locked types amounts to a new form of reduction we refer
to as lock-reduction (L-reduction), UL ,[LY ,[M]] =, M, which allows elimination
of a lock, in the presence of an unlock. The L-reduction combines with standard (-
reduction into SL-reduction.

LFp is parametric over a potentially unlimited set of predicates P, which are de-
fined on derivable typing judgements of the form I' -y IV : o. The syntax of LFp
predicates is not specified, with the main idea being that their truth is to be verified
via a call to an external validation tool; one can view this externalization as an oracle
call. Thus, LFp allows for the invocation of external “modules” which, in principle,
can be executed elsewhere, and whose successful verification can be acknowledged in
the system via L-reduction. Pragmatically, locked types allow for the factoring out of
the complexity of derivations by delegating the {checking, verification, computation}
of such predicates to an external proof engine or tool. The proof terms themselves do
not contain explicit evidence for external predicates, but just record that a verification
{has to be (lock), has been successfully (unlock)} carried out. In this manner, we com-
bine the reliability of formal proof systems based on constructive type theory with the
efficiency of other computer tools, in the style of the Poincaré Principle [5].

2This work was supported by the Serbian Ministry of Education, Science, and Technological Develop-
ment (projects ON174026 and 111044006).



In this abstract, we only outline the main results on LFp, which have been treated
in detail in [3, 4]. As far as meta-theoretic properties are concerned, strong normaliza-
tion and confluence of the system have been proven without imposing any additional
assumptions on the predicates. However, for subject reduction, we require the predi-
cates to be well-behaved, i.e.closed under weakening and permutation of the signature
and context, substitution, and SL-reduction in the arguments. LFp is decidable, if the
external predicates are decidable. Furthermore, a canonical presentation of LFp is con-
structed, in the style of [1, 6], based on a suitable extension of the notion of 87-long
normal form, allowing for simple proofs of the adequacy of the encodings.

When it comes to illustrating the main benefits of LFp in practice, we have provided
a number of relevant encodings. We have encoded in LFp the call-by-value A-calculus,
as well as its extension supporting the design-by-contract paradigm. We also provide
smooth encodings of side conditions in the rules of Modal Logics, both in Hilbert and
Natural Deduction styles, and also show how to encode sub-structural logics, i.e.non-
commutative Linear Logic. We also illustrate how LFp can naturally support program
correctness systems and Hoare-like logics. We show that other related systems can be
embedded into LFp via locked types, and provide pseudo-code for some of the used
predicates.

As far as expressiveness is concerned, LFp is a stepping stone towards a general
theory of shallow vs. deep encodings, with our encodings being shallow by definition.
Clearly, by Church’s thesis, all external decidable predicates in LFp» can be encoded,
possibly with very deep encodings, in standard LF. It would be interesting to state in
a precise categorical setting the relationship between such deep internal encodings and
the encodings in LFp.

LFp can also be viewed as a neat methodology for separating the logical-deductive
contents from, on one hand, the verification of structural and syntactical properties,
which are often needlessly cumbersome but ultimately computable, or, on the other
hand, from more general means of validation.

From a philosophical point of view, the mechanism of locking and unlocking types
in the presence of external oracles, which we are introducing in LF p, effectively opens
up the Logical Framework to alternate means of providing evidence for judgements. In
standard LF, there are only two ways of providing this evidence, namely discovering
types to be inhabited or postulating that types are inhabited by introducing appropri-
ate constants. The locked/unlocked types of LFp open the door to an intermediate
level, one provided by external means, such as computation engines or automated the-
orem proving tools. However, among these, one could also think of graphical tools
based on neural networks, or even intuitive visual arguments, as were used in ancient
times for giving the first demonstrations of the Pythagoras’ theorem, for instance. In
a sense, LFp, by allowing formal accommodation of any alternative proof method to
pure axiomatic deduction, vindicates all of the “proof cultures” which have been used
pragmatically in the history of mathematics, not only in the Western tradition.

The traditional LF answer to the question “What is a Logic?” was: “A signature in
LF”. In LFp, we can give the homologue answer, namely “A signature in LFp”, since
external predicates can be read off the types occurring in the signatures themselves.
But, we can also use this very definition to answer a far more intriguing question:

“What is a Proof Culture?”.



References

[1] R. Harper and D. Licata. Mechanizing metatheory in a logical framework. Journal
of Functional Programming, 17:613-673, 2007.

[2] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, 40:143—184, January 1993.

[3] F. Honsell, M. Lenisa, L. Liquori, P. Maksimovic, and 1. Scagnetto. LF p —a logical
framework with external predicates. In Proceedings of LFMTP 2012, pages 13-22.
ACM Digital Library, 2013.

[4] Furio Honsell, Marina Lenisa, Luigi Liquori, Petar Maksimovié, and Ivan
Scagnetto. An open logical framework. Journal of Logic and Computation, 2013.
DOI:10.1093/logcom/ext028.

[5] H. Poincaré. La Science et I’Hypothese. Flammarion, Paris, 1902.

[6] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A Concurrent Logical Frame-
work I: Judgments and Properties. Tech. Rep. CMU-CS-02-101, 2002.



Problems in formulating the consecution calculus of
contraction-less relevant logics

Mirjana Ili¢ and Branislav Boricié
Faculty of Economics, University of Belgrade, Serbia

The contraction—less logic RW °? is the best known relevant system R ([1], p. 341)
with co—tenability o and ¢, but without the contraction axiom:

W) (a—=.a—=p8)—=.a—=p

The first problem in formulating a consecution calculus of RW°! is common to all
relevant systems: how to enable the inference of A (BV 7). — .(aAB) V (@ A7), in
the absence of thinning. This problem is solved by Dunn [4] and Minc [5], by allow-
ing two types of sequences of formula: intensional (usually denoted by (I'y;...;T',))
and extensional ones (usually denoted by (T'y, ..., T',)), which must be allowed to be
nested within another. Due to the presence of these two types of sequences, every
Gentzen structural rule can be formulated either as the intensional or as the extensional
one. The contraction axiom (W) corresponds to Intensional Contraction. The missing
thinning rule corresponds to Intensional Thinning structural rule, therefore in a sequent
system of RIW°%, in addition to the structural rule Intensional Thinning, we also lack
Intensional Contraction. The extensional variants of those rules should be present. The
proof of the above distribution rule, in the single conclusion sequent system, is then:

al«a

(KE b)

a,BFa a,
a,BFang
(=V)
a, B (aAB)V(aAy) a,yF(@AB)V(any)
a,BVyE(anB)V (any)

(KE +)

E=A)

vH)

(A F)
an(BV),aN(BVy)F(aAB)V(aAy)
(WE )
anN(BVY)E(anB)V(aAy)
(F—=)

Fre~maA(BVY). = (aAB)V (aAy)

Following that idea, Giambrone [3] established the (single—conclusion) cut—free
Gentzenisation of RW ' (positive RW°%).

The second problem is how to enable the inference of ~~ a — «a. Originally,
Gentzen allowed multiple-conclusion sequents:

(F~)
F~oasa
(~F)
~~aba
(F—=)

But, for RW it won’t work. Brady [2] found that the Gentzenisation of RW re-
quires careful addition of negation to Gentzenisation of RWW*. Really, in the multiple—
conclusion sequent system, in the style of Gentzen, but with intensional and extensional
sequences of formula, we would have:

™3
st T2 Ta;(c, BV Y) Az A
AN
Ty oAy I FBVy Ay To;a AN (BVY),(T2;aA (BVY)) F Ag
= N) (WE F)
Tk aA(BVy);A; Pa;an(BVY)E A

(cut)
;T2 = Ag; Ag



Our attempt to transform this proof to a cut—free proof, would lead to:

™1 ™3
T Tk a; Ay a5 (a0, BV ) F Az
(cut)
I FBVy; Ay Lo;(T'1, BV ) F Ar; A

(cut)
To; (T1,T1) F A1 A1 Ag

;T F A A Ag

permutations

(WE F)

;T F A AL Ag

However, in the absence of extensional thinning, from here it is not possible to
derive a sequent I'1; T’y + Ay; Ao, for non—empty Aj.

Brady solved this problem by formulating the single—conclusion sequent system of
RW°? based on signed formulae T'oc and F'ov, instead of just formulae «, with logical
rules for both types of signed formulae. In his system, instead of the above derivation,
we would have the following (S~ stands in either for Ty or F'y, or is empty):

™ 3
T '+ Ta I (Ta, TBV ) - Sy
(cut)
I"FTBVy ", (r', T8v~y) F Sy
(cut)
(I, 1) Sy
- . (WEHh
"1’ + Sy
permutations
;T F Sy

However, Brady’s system is very complicated (e. g., there are 8 different forms of
the rule for —, i. e., it has four shemata for the rule (T" —F), two for (F' —F), one for
(- F —) and one rule for (- T" —), which is, unusually, two—premise rule).

We propose another solution. Namely, we change the vocabulary. Instead of ~,
we take a propositional constant f as primitive (and we define negation, as usual, via
~ a =qr o — f). We define a cut—free right—handed sequent system of RWW°tf, based
on (just) formulae. RW°!/ is obtained by adding co—tenability o and propositional
constants ¢ and f to positive RW via the axioms given in [1] pp. 343.-344.

References

[11 A. ANDERSON, N. BELNAP JR., Entailment: the logic of relevance and ne-
cessity, vol. 1, Princeton University Press, Princeton, New Jersey, 1975.

[2] R. T. BRADY, The Gentzenization and decidability of RW, Journal of Philosophical
Logic, 19, 35-73, 1990.

[3] S. GIAMBRONE, TW. and RW are decidable, Journal of Philosophical Logic,
14, 235-254, 1985.

[4] J. M. DUNN, A 'Gentzen system’ for positive relevant implication, The Journal of
Symbolic Logic 38, pp. 356-357, 1973.

[5] G. MINC, Cut elimination theorem for relevant logics, Journal of Soviet Mathe-
matics 6, 422-428, 1976.



Timed Collaborative Systems with Real Time

Max Kanovich, Queen Mary, University of London, UK
Tajana Ban Kirigin, University of Rijeka, HR
Vivek Nigam, Federal University of Paraiba, Joao Pessoa, Brazil
Andre Scedrov, University of Pennsylvania, Philadelphia, USA

Often one needs to reason about time when setting the rules and goals of a collab-
oration. For example, agents need to comply with deadlines and react quickly under
unexpected events. Although in many situations it is enough to represent time dis-
cretely [3], such as in days or hours, sometimes one needs real time.

For instance, in many situations, an agent A needs to know whether another agent
B is near, within a radius. A way to determine this is by calculating the round time
of a message: A sends a challenge message m to B and remembers the time ¢y when
the message was sent. Then once B receives the message m, it computes a response
message f(m) and sends it as quickly as possible back to A. When this response
message reaches agent A, at some time ¢1, A checks whether the round time t; — ¢
is less than the given threshold. If this is the case, then A can assume that B is within
some radius. Otherwise A cannot conclude anything about how distant B is. In fact,
this is the basic principle of Distance Bounding Protocols [1].

In order to formally specify and verify collaborative systems involving real time,
such as the scenario above, and also to verify whether it is possible for an intruder to
appear to be someone else or to appear closer than he actually is, one needs formal
models that can mention real time and can generate fresh values. Fresh values, also
called nonces in protocol security literature [2], are used so that messages sent in pre-
vious interaction between agents are not mixed up with current ones. They are used for
instance in the authentication of agents.

This paper proposes a rewriting framework that can be used to specify collaborative
systems equipped with real time and where agents may create fresh values. It extends
our previous work on Timed Local State Transition Systems (TLSTSes) with explicit
time [3] where only discrete time was allowed. Modelling real time in TLSTS was left
as future work in [3]. Here, we outline the extension of the model and describe the
fragment for which the reachability problem is PSPACE-complete.

Rewriting Model TLSTSes are multiset rewriting systems. The state of the system
or a system configuration is represented by a multiset of facts. Facts are atomic for-
mulas with a positive real number called timestamp associated to each fact. Agents
change the state of the system by applying actions. Sequences of actions or plans are
compliant if, starting from a given initial configuration, they lead to a goal configura-
tion without reaching any configuration that is considered critical. The main problem
when studying TLSTSes is the planning problem: Given a timed local state transition
system 7, an initial configuration W and a finite set of goal and critical configurations,
is there a compliant plan? In this paper we address the complexity of the planning
problem for TLSTSes with real time.

In TLSTSes time is modelled through timestamps attached to facts, through a spe-
cial fact Time representing global time, and through time constrains that can be asso-
ciated with actions and with configurations. More precisely, a timestamp is a positive
real number attached to a fact. It can represent time in various ways, for example it can
denote the time when the fact was created, or the time time until the fact is valid etc.



Time constraints are arithmetic comparisons involving exactly two timestamps:
Th=T5+a, T >T5+ta, orTy >T5+a, (D)

where a is a natural number and T} and T5 are time variables, which may be instanti-
ated by the timestamps of any fact including the global time.

Action application can also have time conditions. Time constraints can be attached
to actions, to act as a guard of the rule, that is, an action can only be applied if the
attached time constraints are all satisfied. Only two types of actions are allowed. The
first is the following type of action that increments the global time of a configuration
by a positive real number t:

TimeQT | {} = cioer TimeQ(T + t).

This is the only action that can modify the global time of a configuration. Actions of
the second type are instantaneous and have necessarily the following form:

TimeQT, W | Y — 4 3%.TimeQT, W'
where 7" is the guard of the action containing a finite set of constraints. We restrict
actions so that all variables appearing in 7" are contained in the set of time variables
{T1,...,T,, T} from the pre-condition. We further impose the following condition on
these actions: if Time@T is in the pre-condition W, then all facts created in the post-
condition W' are of the form PQ(T + d), where d is a natural number, possibly zero.
That is, all the created facts have timestamps greater or equal to the global time. The
existentially quantified variables in a rewrite rule specify the creation of fresh values.

Goals and critical configurations are specified similarly, by allowing one to attach
time constraints to them, exactly as in [3].

Complexity When considering the complexity of the planning problem with real
time, one has to deal with the unboundedness of time and with the density of time.
In our previous work with discrete time [3], we show how to tackle the unboundedness
of time, i.e., an internally infinite space of configurations, by using a finite number of
d-representations of configurations. Instead of the actual values of timestamps, J-rep-
resentations contain only relative time differences truncated by an upper bound D, 4
deduced from the system specification. It is necessary to assume that the size of facts
is bounded and that the timed local state transition system is balanced, that is pre and
post-conditions of all actions have the same number of facts.

This approach alone does not work when timestamps are real numbers, as there
is an infinite number of possible values for relative time differences. To address the
density of time, we introduce the novel equivalence relation among configurations,
inspired by [4]. This provides a bounded number of classes called circle-abstractions.
Similar to [3], we define the §-configuration of a configuration S and a natural number
Doz as follows: it is the list [Fy, 61, Fb, ..., Fp,,0n—1, Fyy] of its facts, Fy, ..., F,,
ordered according to the values of their timestamps, interleaved by the value §; obtained
by the truncated time differences w.r.t. D, of the corresponding two neighbouring
facts F; and F; ;.

Definition 1. Two configurations S1 and Sy are equivalent for a given natural
number D, ... if the following two conditions are satisfied: (1 - 0-configurations) Their
§-configurations w.r.t. D ... are the same when considering only the integer part of the
time differences; and (2 - Circle) when their facts are ordered using only the decimal
part of timestamps, one obtains the same list of facts. (If they have the same value, then
we indicate this in the list by using the symbol =.)

10



For instance, the following two configurations are equivalent when D,,,q, = 2 :
{P0@04, P1@15, T1me@54, P2@66} and {PQ@?)Q, P1@457 T1me@82, P2@96}
as they have the same integer parts of truncated relative times, represented by the fol-
lowing d-configuration [Py, 1, P, 0o, Time, 1, P;] and the same circle configuration,
namely [Time = Py, P, P,).

We show that circle-abstractions are well-defined with respect to the planning prob-
lem. This allows us to represent plans using circle-abstractions only. In particular,
we show that all configurations that have the same circle-abstraction satisfy the same
time constraints. We extend action application to circle-abstractions. Since abstrac-
tions do not contain the information of exact time differences between timestamps and
the current time, we cannot apply time incrementing action for a concrete value ¢ to
circle-abstractions. In order to model time advancement we add a special action next
. Application of next results in the circle-abstraction in which the time has shifted
just enough to change the abstraction, and hasn’t shifted too much to jump over some
abstractions as time advances.

We show that our formalization of circle-abstractions is sound and complete and,
therefore, we conclude that any given planning problem can be conceived as a planning
problem over circle-abstractions. For the complexity proofs it is essential to show that
for a given planning problem we obtain only a finite number of circle-abstractions with
which we are able to represent an infinite space of configurations.

We finally show that in balanced TLSTSes with real time, when the size of facts is
bounded and actions are balanced, the planning problem is PSPACE-complete.

Acknowledgments: We thank Catherine Meadows, John Mitchell, and Carolyn Talcott for helpful discussions. This
material is based upon work supported by the MURI program under AFOSR Grant No: FA9550-08-1-0352 and upon
work supported by the MURI program under AFOSR Grant No. FA9550-11-1-0137. Additional support for Scedrov from
NSF Grant CNS-0830949 and from ONR grant NO0O014-11-1-0555. Nigam was partially supported by the Alexander von
Humboldt Foundation and CNPq. Kanovich was partially supported by the EPSRC.

References
[1] S. Brands and D. Chaum. Distance-bounding protocols. In EUROCRYPT, 1993.

[2] N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. Multiset rewriting and
the complexity of bounded security protocols. Journal of Computer Security,
12(2):247-311, 2004.

[3] M. I. Kanovich, T. B. Kirigin, V. Nigam, A. Scedrov, C. L. Talcott, and R. Perovic.
A rewriting framework for activities subject to regulations. In RTA, 2012.

[4] M. I. Kanovich, M. Okada, and A. Scedrov. Specifying real-time finite-state sys-
tems in linear logic. Electr. Notes Theor. Comput. Sci., 16(1):42-59, 1998.

11



Multiple conclusion deductions in classical logic
Marcel Maretié¢, University of Zagreb, Croatia

Natural deduction systems are, unlike Gentzen’s sequent calculus, not related to
semantic trees. Natural deductions arise from syntactic approach to logic — from proof
search and inference rules. In that sense they are adequate for minimal and intuitionis-
tic logic. Addition of tertium non datur (TND) or reduction ad absurdum (RAA) yields
deduction calculus for classical logic.

Kneale in [2] proposes multiple conclusion deductions as an elegant and symmet-
rical version of deduction calculus that provides a good fit for classical logic. Kneale’s
inference rules are local — hypotheses are never discharged. Proofs, which Kneale calls
developments, are formula trees branching downward and upward.

Kneale’s calculus of developments is not complete. Shoesmith and Smiley in [1]
propose adjustments for completion of the calculus. Our approach to multiple conclu-
sion calculus is simple and better motivated. Unlike Shoesmith and Smiley, who in [1]
motivate multiple conlcusion deductions syntactically, we relate multiple conclusion
deductions to semantic trees. We present an elegant and analytic proof search for mul-
tiple conclusion deductions.

Essential steps of the algorithm are:
(1) analysis: construction of analytic deductions;
(2) synthesis: matching of analytic deductions that completes the proof search.

Thus, multiple conclusion deductions are analytic in the sense that they yield a sim-
ple analytic proof search (as in [3]).

Steps of the proof search algorithm can be motivated semantically. Analysis (step
1) corresponds to semantic analysis and branching of a clausal semantic tree, whereas
synthesys (step 2) corresponds to branch closing on the clausal semantic tree. There-
fore, proof search for multiple conclusion deductions is algorithmically equivalent to
Beth’s semantic trees.

References

[1] Shoesmith D.J., Smiley T.J., Multiple Conclusion Logic, Cambridge University
Press, 1978.

[2] Kneale W., Kneale M., Development of Logic, Clarendon Press, 1956, pp. 538-
548.

[3] Smullyan R. M., First Order Logic, Courier Dover Publications, 1995.

12



On Certain Problems of Cryptology and Computational
Complexity of Processing over Uncertain Data

Miodrag J. Mihaljevi¢, Mathematical Institute of the Serbian Academy of
Sciences and Arts, Belgrade, Serbia and Chuo University, Tokyo, Japan
Hideki Imai, Chuo University, Tokyo, Japan

Abstract. A link between certain problems of cryptology and mathematical logic is pointed
out. Computational complexity of the Learning Parity in Noise (LPN) problem is discussed as
an example of the reasoning over uncertain data.

Introduction

This paper links a real-life problem of growing importance and a topic of mathematical logic.
We consider certain issues of security within cyber-space and a topic of mathematical logic ded-
icated to reasoning over uncertain data and corresponding computational complexity. Accord-
ingly, an application of the topics of mathematical logic to cryptology is pointed out. Section 2
summarizes some emergency issues of cyber-security which imply request for employment of
low-complexity cryptographic techniques. A mathematical problem called Learning Parity in
Noise (LPN) relevant for design of low-complexity and highly secure cryptographic primitives
is summarized in Section 3. Finally, section 4 addresses some issues of the LPN problem com-
plexity which are also challenges regarding reasoning over uncertain data.

Preliminaries

Overheads Implied by Cryptographic Techniques. Our society strongly depends on information-
communications technologies (ICT) and the security of ICT has been recognized as one of the top
priorities in order to minimize impacts of potential attempts regarding misuse of ICT with disas-
trous consequences. Accordingly, we face an extensive employment of the security mechanisms
and as a consequence we face significant overheads to the main functionality of the systems im-
plied by the employed security mechanisms. Reduction of these security related overheads is of
a top interest because cumulative effect of all these overheads has a (very) significant cost. A part
of these overheads corresponds to the cryptographic techniques employed in the security mech-
anisms. Accordingly, reduction of the security overheads implied by cryptographic algorithms
appear as an issue of very high importance. On the other hand, minimization of the "crypto-
graphic overheads" should not jeopardize the cryptographic security, and design of highly secure
cryptographic algorithms and protocols which minimize the overheads is still a challenge and an
emergency issue.

Lightweight and Provably Secure Cryptographic Primitives. The main overheads implied
by cryptographic techniques correspond to: (i) implementation overheads (required additional
software/hardware); (ii) computational overheads for performing cryptographic operations; (iii)
power-consumption overheads regarding cryptographic processing. Cryptographic techniques
which provide minimization of the overheads are called light-weight cryptographic techniques.
On the other hand side, a claim that a cryptographic primitive is provably secure means that
assumption of its insecurity implies that certain hard mathematical problem can be solved (em-
ploying certain algorithm for cryptanalysis) implying a contradiction and a justification of the
security. Note that When instead of a provably secure construction a heuristically secure ap-
proach is employed we could face iterative improvements of exploring the vulnerabilities with
serious security consequences (as an illustration see [7]-[9])

13



Learning Parity in Noise (LPN) Problem

LPN problem has been recognized as an underlying approach for constructions of light-
weight and provably secure cryptographic primitives (see [10], for example). Informally, the
LPN problem a problem of solving a probabilistic overdefined consistent system of linear equa-
tions over GF(2) where the right side of each equation is true with the known probability p > 1/2
(typically p < 0.25). One of its incarnations is the problem of decoding of a random linear bi-
nary block code.

Definition: LPN Search Problem. Let s be a random binary string of length . We consider the
Bernoulli distribution By with parameter 8 € (0,1/2). Let Qs ¢ be the following distribution:

{(a,< s,a > @®e)| + {0,1} e+ By} .
For an adversary A trying to discover the random string s, we define its advantage as
Advipn, 4 (1) = PY[AQS’Q = s|s + {0, l}l] :

The LPNy problem with parameter 6 is hard if the advantage of adversaries A that make a
polynomial number of oracle queries is negligible.
In [5] a distinguishing variant of the problem has been introduced, which is more useful in
the context of encryption schemes. Roughly speaking, the decisional LPN problem asks to
distinguish a number of noisy samples of a linear function (specified by a secret vector x) from
uniform random. The problem is, given A and y, to decide whether y is distributed according
to A - x @ e or chosen uniformly at random.
Definition: LPNDP - LPN Decisional (Distingushing) Problem. Let s, a be binary strings of
length I. Let further Q, ¢ be as in Definition of the LPN search problem. Let .A be a adversary.
The distinguishing-advantage of .4 between Q; ¢ and the uniform distribution U1 is defined
as

Advipnpp, 4 (1) = PrlA®? = s|s « {0,1}'] — Pr[A"+ = 1].

The LPNDPy with parameter @ is hard if the advantage of adversaries A is negligible.
It has been shown in [5] that the distinguishing-problem is as hard as the search-problem with
similar parameters.

Complexity of Reasoning over Uncertain Data

According to the definitions of the LPN search and distinguishing problems, they belong to
a wider class of problems related to the reasoning over uncertain data.

It has been proved that in the worst-case, the problem of decoding a random liner binary
block code is NP-complete [1] as well as the LPN problem in the worst case.

On the other hand side, it should be noted that the average case hardness of the LPN prob-
lems, cannot be reduced to the worst-case hardness of a NP-hard problem. The confidence on the
hardness of solving LPN problems in average case appears from the lack of efficient solutions
despite the efforts over the years. Currently, the best known algorithms for solving the LPN
search problems are the one reported in [2] and its improvements/alternatives (see [6]. [3] and
[4]). The BKW algorithm [2] has the complexity 200 /10821 and its improvements/alternatives
can provide further reduction of the exponent for a factor A(l, 0) (see the Definitions of the LPN
problems). The talk discuses complexity of the above mentioned algorithms and points out to
the open challenges.

References

[1] E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg, “On the Inherent Intractability of
Certain Coding Problems”, IEEE Trans. Info. Theory, vol. 24, pp. 384-386, 1978.

[2] A. Blum, A. Kalai and H. Wasserman, “Noise-Tolerant Learning, the Parity Problem, and
the Statistical Query Model”, Journal of the ACM, vol. 50, no. 4, pp. 506-519, July 2003.

14



(3]

(4]

(5]

(6]

(71

(8]

(91

M. Fossorier, M.J. Mihaljevi¢, H. Imai, Y. Cui and K. Matsuura, "An Algorithm for Solving
the LPN Problem and its Application to Security Evaluation of the HB Protocols for RFID
Authentication", INDOCRYPT 2006, Lecture Notes in Computer Science, vol. 4329, pp.
48-62, Dec. 2006.

M. Fossorier, M.J. Mihaljevi¢ and H. Imai, “Modeling Block Encoding Approaches for Fast
Correlation Attack”, IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4728-
4737, Dec. 2007.

J. Katz and J. Shin, “Parallel and Concurrent Security of the HB and HB+ Protocols” EU-
ROCRYPT 2006, Lecture Notes in Computer Science, vol. 4004, pp. 73-87, 2006.

E. Levieil and P.-A. Fouque, "An Improved LPN Algorithm", SCN 2006, Lecture Notes in
Computer Science, vol. 4116, pp. 348-359, 2006.

M.J. Mihaljevié, S. Gangopadhyay, G. Paul and H. Imai, “State Recovery of Grain-vl Em-
ploying Normality Order of the Filter Function", IET Information Security, vol. 6, no. 2, pp.
55-64, June 2012

M.J. Mihaljevi¢, S. Gangopadhyay, G. Paul and H. Imai, “Internal State Recovery of
Keystream Generator LILI-128 Based on a Novel Weakness of the Employed Boolean Func-
tion", Information Processing Letters, vol. 112, no. 21, pp. 805-810, November 2012.

M.J. Mihaljevi¢, S. Gangopadhyay, G. Paul and H. Imai, “Generic Cryptographic Weakness
of k-normal Boolean Functions in Certain Stream Ciphers and Cryptanalysis of Grain-128",
Periodica Mathematica Hungarica (Selected Papers of 2011 Central European Conference
on Cryptology), vol. 65, no. 2, pp. 205-227, Dec. 2012.

[10] K. Pietrzak, "Cryptography from Learning Parity with Noise", SOFSEM 2012, Lecture

Notes in Computer Science, vol. 7147, pp. 99-114, 2012.

15



Hierarchies of probability logics

Zoran Ognjanovi¢, Mathematical Institute of the Serbian Academy of Sciences and Arts,
Belgrade, Serbia
Aleksandar Perovi¢, Faculty of Transport and Traffic Engineering, University of
Belgrade, Serbia
Miodrag Raskovi¢, Mathematical Institute of the Serbian Academy of Sciences and Arts,
Belgrade, Serbia
Nebojsa Ikodinovi¢, Faculty of Mathematics, University of Belgrade, Serbia

Abstract. Our aim is to present what we call the lower and the upper hierarchies of the
real valued probability logics with probability operators of the form P>, and Qr, where s €
[0,1]o = [0,1]NQ and F is a recursive subset of [0, 1]g. The intended meaning of P« is that
the probability of « is at least s, while the intended meaning of Q p« is that the probability of «
isin F.

Introduction

The modern probability logics arose from the work of Jerome Keisler on generalized quan-
tifiers and hyperfinite model theory in the mid seventies of the twentieth century [8]. Another
branch of research that was involved with automatization of reasoning under uncertainty have led
to development of numerous Hilbert style formal systems with modal like probability operators,
see for instance [5, 2, 11, 13, 14, 17, 18, 20, 23, 24]. The simplest form of such representa-
tion of uncertainty does not allow iteration of probability operators, so formulas are Boolean
combinations of the basic probability formulas, i.e. formulas of the form

ProbOp(aa, ..., an),

where a1, ..., ay are classical (propositional or predicate) formulas and ProbOp is an n-ary
probability operator. Weighted probability formulas used by Fagin, Halpern and Megiddo in [2]
can be treated as n-ary probability operators. For instance,

w(a) + 3w(B) —Sw(y) > 1

is example of a ternary probability operator.

The vast majority of those formal systems have unary or binary probability operators. The
unary operators are used for statements about probability of classical formulas: for example we
use

Ps3/4(pVq)
to express “the probability of p V ¢ is at least 3/4", while

Qz2; | nemy(PVq)

in our notation reads “the probability of p V g is an element of the set {25 | n € N}". The

binary operators are usually used for the expression of conditional probability: for instance, we
use

CP>1/3(p,q)

to express that the conditional probability of p given q is at least 1/3.

Over the course of two decades we have developed various probability logics with the men-
tioned types of probability operators - an extensive survey including a uniform notation for logics
is presented in [17]. The aim of this paper is to put the certain class of probability logics into the
wider context of mathematical phenomenology - to compare mathematical concepts according
to some natural criterion (expressive power, class of models, consistency strength and so on).

16



Here we will focus on the classification of two sorts of probability logics: LP P> p,q.0 logics
introduced in [12] and LPP;r(n) logics introduced in [3, 13, 17, 20, 24] (L for logic, the first
P for propositional, and the second P for probability). Independently, several authors in [4, 6]
have developed the fuzzy logics F'P(L,) that extend Lukasiewicz logic. The LPP2Fr (n) logics
can be embedded into those logics. For the LPP» p g 0 logics we introduce the comparison
criterion with respect to the classes of models, while the LPP2F r(n) logics we compare in terms
of the interpretation method. We show that both criteria can be joined in a single one. Thus we
have obtained the hierarchy of probability logics where the lattice of LPP» p .0 logics is the

end extension of the lattice of LPPL™™ logics.

Acknowledgements

The authors are partially supported by Serbian ministry of education and science through
grants 111044006, 111041103, ON174062 and TR36001.

References

[1] R. Djordjevié, M. Raskovié, Z. Ognjanovi¢. Completeness theorem for propositional prob-
abilistic models whose measures have only finite ranges. Archive for Mathematical Logic
43,557 -563, 2004.

[2] R. Fagin, J. Halpern, N. Megiddo. A logic for reasoning about probabilities. Information
and Computation 87(1-2), pp 78-128, 1990.

[3] M. Fattorosi-Barnaba and G. Amati. Modal operators with probabilistic interpretations I.
Studia Logica 46(4), 383-393, 1989.

[4] T. Flaminio, L. Godo. A logic for reasoning about the probability of fuzzy events. Fuzzy
Sets and Systems 158(6), 625-638, 2007.

[5] L. Godo, E. Marchioni. Coherent conditional probability in a fuzzy logic setting. Logic
Journal of the IGPL, Vol. 14 No. 3, pp 457-481, 2006.

[6] P. Hajek, L. Godo, F. Esteva, Fuzzy Logic and Probability. In Proc. of UAI'95, Morgan—
Kaufmann, 237-244, 1995.

[7] N.Ikodinovi¢,, M. Raskovi¢, Z. Markovié, Z. Ognjanovi¢. Measure logic. ECSQARU 2007:
128-138.

[8] H. J. Keisler. Probability quantifiers. In J. Barwise and S. Feferman, editors, Model—
Theoretic Logics, Perspectives in Mathematical Logic, Springer—Verlag 1985.

[9] H.J. Keisler. Elementary calculus. An infinitesimal approach. 2nd edition, Prindle, Weber
and Schmidt, Boston, Massachusets, 1986.

[10] D. Lehmann, M. Magidor. What does a conditional knowledge base entail? Artificial
Intelligence, 55, 1-60, 1992.

[11] N. Nilsson. Probabilistic logic. Artif. Intell. 28, 71-78, 1986.
[12] Z. Ognjanovié, M. Raskovi¢. Some probability logics with new types of probability oper-
ators, J. Logic Computat., Vol 9 No. 2, pp 181-195, 1999.

[13] Z. Ognjanovi¢, M. Raskovi¢. Some first-order probability logics. Theoretical Computer
Science 247(1-2), pp 191-212, 2000.

[14] Z. Ognjanovi¢, Z. Markovié¢, M. Raskovi¢. Completeness Theorem for a Logic with impre-
cise and conditional probabilities. Publications de L’Institute Matematique (Beograd), ns.
78 (92) 35 - 49, 2005.

[15] Z. Ognjanovi¢. Discrete linear-time probabilistic logics: completeness, decidability and
complexity. J. Log. Comput. 16(2), pp 257-285, 2006.

17



[16] Z. Ognjanovié, A. Perovié¢, M. Raskovi¢. Logics with the qualitative probabilty operator.
Logic journal of the IGPL 16(2), 105-120, 2008.

[17] Z. Ognjanovi¢, M. RaSkovi¢, Z. Markovic. Probability Logics. Zbornik
radova. Logic in Computer Science (edited by Z. Ognjanovi¢), 12(20), 35-
111, Mathematical Institute of Serbian Academy of Sciences and Arts, 2009.
http://elib.mi.sanu.ac.rs/files/journals/zr/20/n020p035.pdf

[18] Z. Ognjanovié, M. Raskovié, Z. Markovié, and A. Perovi¢, On probability logic, The
IPSI BgD Transactions on Advanced Research, 2— 7, Volume 8 Number 1, 2012. (ISSN
1820-4511)

[19] A. Perovi¢, Z. Ognjanovié, M. Raskovi¢, Z. Markovi¢. A probabilistic logic with polyno-
mial weight formulas. FoIKS 2008, pp 239-252.

[20] M. Raskovi¢. Classical logic with some probability operators. Publications de 1’institut
mathematique, Nouvelle série, tome 53(67), 1-3, 1993.

[21] M. Raskovi¢, Z. Ognjanovi¢. A first order probability logic L Pg. Publications de I’institut
mathematique, Nouvelle série, tome 65(79), pp 1-7, 1999.

[22] M. Raskovié, Z. Ognjanovi¢, Z. Markovié. A logic with Conditional Probabilities. In J.
Leite and J. Alferes, editors, 9th European Conference Jelia’04 Logics in Artificial Intelli-
gence, volume 3229 of Lecture notes in computer science, pages 226-238, Springer-Verlag
2004.

[23] M. Raskovi¢, Z. Ognjanovi¢, Z. Markovi¢. A logic with approximate conditional probabil-
ities that can model default reasoning. Int. J. Approx. Reasoning 49(1): 52-66, 2008.

[24] W. van der Hoek. Some considerations on the logic Pr D: a logic combining modality and
probability. Journal of Applied Non-Classical Logics, 7(3), 287-307, 1997.

18



Collaborative Systems
Andre Scedrov, University of Pennsylvania, USA

We discuss a model of collaboration, introduced in a joint work with Kanovich and Rowe,
in which the participants are unwilling to share all their informationwith each other, but some
information sharing is unavoidable when achieving a common goal. The need to share informa-
tion and the desire to keep it confidential are two competing notions which affect the outcome of
a collaboration. Our model is based on the notion of a plan which originates in the Al literature.
We also consider an extension of the model which allows for updates of values with fresh ones,
such as updating a password.

All the players inside our system, including potential adversaries, have similar capabilities.
They have bounded storage capacity, that is, they can only remember a bounded number of facts.
This is technically imposed by allowing only the so-called balanced actions, that is, actions that
have the same number of facts in their pre and post conditions. We investigate the complexity
of the planning problem, whether the players can reach a goal while avoiding certain critical
configurations along the way. We show that this problem is PSPACE-complete. The complexity
is lowered to NP-completeness for the class of so-called progressing collaborative systems, in-
tended to describe administrative processes, which normally have a progressing nature: once an
item in an activity to-do list is checked, that activity is not repeated.

As an application we turn to network security protocol analysis and demonstrate that when
an adversary has enough storage capacity, then many known protocol anomalies can also occur
in the presence of a bounded memory intruder. We believe that precisely this is a theoretical
reason for the successful use in the past years of model checkers in security protocol verification.
In particular, the known anomalies arise for bounded memory protocols, where there is only
a bounded number of concurrent sessions and the honest participants of the protocol cannot
generate an unbounded number of facts nor an unbounded number of fresh values. This led us
to the question of whether it is possible to infer an upper-bound on the memory required by the
adversary to carry out an anomaly from the memory restrictions of the bounded protocol. We
answer this question negatively. This is joint work with Max Kanovich, Tajana Ban Kirigin, and
Vivek Nigam.

19



Cut-elimination for modal fixed point logics

Thomas Studer, Institut fiir Informatik und angewandte Mathematik, Universitit Bern,
Switzerland

Modal fixed point logics with additional constructors for fixed points occur in many different
places in computer science. For instance, there are temporal logics with an always operator,
epistemic logics with a common knowledge operator, program logics with an iteration operator,
and the propositional modal p-calculus with fixed points for arbitrary positive formulas.

While the model-theoretic side of modal fixed point logics is very well investigated, we do
not know much about the proof theory of these logics. In this talk we will survey syntactic
cut-elimination results for modal logics with fixed points.

Most of these results make use of deep inference where rules may not only be applied to
outermost connectives but also deeply inside formulas. The first result of this kind has been
obtained by Pliuskevicius [10] who presents a syntactic cut-elimination procedure for linear time
temporal logic. Briinnler and Studer [1] employ nested sequents to develop a cut-elimination
procedure for the logic of common knowledge. Hill and Poggiolesi [6] use a similar approach
to establish effective cut-elimination for propositional dynamic logic. A generalization of this
method is studied in [2] where, however, it is also shown that it cannot be extended to fixed
points that have a O-operator in the scope of a p-operator. Fixed points of this kind occur, for
instance, in CTL in the form of universal path quantifiers.

Thus we need a more general approach to obtain syntactic cut-elimination for the modal
p-calculus. A standard proof-theoretic technique to deal with inductive definitions and fixed
points is Buchholz’ Q-rule [3, 5]. Jdager and Studer [7] present a formulation of the {2-rule for
non-iterated modal fixed point logic and they obtain cut-elimination for positive formulas of this
logic. In order to overcome this restriction to positive formulas, Mints [8] introduces an 2-rule
that has a wider set of premises, which enables him to obtain full cut-elimination for non-iterated
modal fixed point logic.

Mints’ cut-elimination algorithm makes use of, in addition to ideas from [4], a new tool
presented in [8]. It is based on the distinction, see [11], between implicit and explicit occurrences
of formulas in a derivation with cut. If an occurrence of a formula is traceable to the endsequent
of the derivation, then it is called explicit. If it is traceable to a cut-formula, then it is an implicit
occurrence.

Implicit and explicit occurrences of greatest fixed points are treated differently in the trans-
lation of the induction rule to the infinitary system. An instance of the induction rule that derives
a sequent vX. A, B goes to an instance of the w-rule if v X. A is explicit. Otherwise, if vX.A
is traceable to a cut-formula, the induction rule is translated to an instance of the 2-rule that is
preserved until the last stage of cut-elimination. At that stage, called collapsing, the (2-rule is
eliminated completely. Recently, Mints and Studer [9] showed that this method can be extended
to a u-calculus with iterated fixed points. Hence they obtain complete syntactic cut-elimination
for the one-variable fragment of the modal u-calculus.

References

[1] Kai Briinnler and Thomas Studer. Syntactic cut-elimination for common knowledge. Annals
of Pure and Applied Logic, 160(1):82-95, 2009.

[2] Kai Briinnler and Thomas Studer. Syntactic cut-elimination for a fragment of the modal
mu-calculus. Annals of Pure and Applied Logic, 163(12):1838-1853, 2012.

[3] Wilfried Buchholz. The €2, 41-rule. In Wilfried Buchholz, Solomon Feferman, Wolfram
Pohlers, and Wilfried Sieg, editors, Iterated Inductive Definitions and Subsystems of Anal-
ysis: Recent Proof Theoretic Studies, volume 897 of Lecture Notes in Mathematics, pages
189-233. Springer, 1981.

[4] Wilfried Buchholz. Explaining the Gentzen-Takeuti reduction steps: a second-order system.
Archive for Mathematical Logic, 40(4):255-272, 2001.

20



[5] Wilfried Buchholz and Kurt Schiitte. Proof Theory of Impredicative Subsystems of Analysis.
Bibliopolis, 1988.

[6] Brian Hill and Francesca Poggiolesi. A contraction-free and cut-free sequent calculus for
propositional dynamic logic. Studia Logica, 94(1):47-72, 2010.

[7] Gerhard Jdger and Thomas Studer. A Buchholz rule for modal fixed point logics. Logica
Universalis, 5:1-19, 2011.

[8] Grigori Mints. Effective cut-elimination for a fragment of modal mu-calculus. Studia Log-
ica, 100(1-2):279-287, 2012.

[9] Grigori Mints and Thomas Studer. Cut-elimination for the mu-calculus with one variable.
In Fixed Points in Computer Science 2012, volume 77 of EPTCS, pages 47-54. Open Pub-
lishing Association, 2012.

[10] Regimantas Pliuskevicius. Investigation of finitary calculus for a discrete linear time logic
by means of infinitary calculus. In Baltic Computer Science, Selected Papers, pages 504—
528. Springer, 1991.

[11] Gaisi Takeuti. Proof Theory. North-Holland, 1987.

21



Godel’s Incompletness Theorem and Man-Machine
Non-equivalence

Zvonimir Sikié, University of Zagreb, Croatia

For many, it is still hard to conceive how the world of subjective experiences spring out of
merely physical events. This problem of qualia is the hardest and the main part of the mind-body
problem. The problem is often summed up in the following question: "How matter (i.e. body and
brain) becomes mind." All sorts of dualists think it never does and some of them, like Lucas [2]
and Penrose [3], think that Godel’s incompleteness theorem proves that. Their main argument is
that Godel’s theorem implies man-machine non-equivalence in the following sense:

There is no machine which could capture all our mathematical intuitions.

Hence, we are not just machines, there is something beyond that.

I’ll start with the bare bones of Godel’s incompleteness. Let M be a machine which is
programmed to print finite sequences of three symbols: -, P, D. (In what follows these sequences
will be simply called sequences.) At each stage one sequence is printed into a square and each
square is part of the tape unending in one direction.

We say that M prints a sequence if M prints it at some stage. We say that M does not print a
sequence if M does not print it at any stage. Some of the sequences are meaningfull and we call
them sentences. Here is the definition.

A sentence is a sequence of the form PX, -PX, PDY or -PDY, where X is any sequence not
starting with D and Y is any sequence.

(i) The meaning of a sentence of the form PX is "M prints X".

(ii) The meaning of a sentence of the form -PX is "M does not print X".
(iii) The meaning of a sentence of the form PDY is "M prints YY".
(iv) The meaning of a sentence of the form -PDY is "M does not print YY"

non

Remark: It helps to think of -, P and D as words meaning "not", "prints" and "double". Sen-
tences have meanings, so they are true or false. All other sequences are neither true nor false, they
are meaningless. We deal with the machines that print only sentences. Our main interest con-
cerning machines are their correctness and completeness. These notions are now easily defined.

Machine M is correct if it prints only true sentences. (It is not necessary that M prints all of
them).

Machine M is complete if it prints all true sentences. (It is possible that M prints some false
sentences.)

The most interesting machines would be those which are correct and complete. Unfortu-
nately, there is no such machine (i.e. it is impossible to construct such a machine).

Theorem on correctness and completeness impossibility:

Every machine is either incorrect or incomplete.

Proof:

Take a look at sentence -PD-PD. It means "M does not print -PD-PD".

Of course, M either prints -PD-PD or not.

If M prints -PD-PD then it prints a false sentence i.e. M is not correct.

If M does not print -PD-PD then it does not print a true sentence i.e.M is incomplete.

22



Now, what is the link between this very simple theorem, Godel’s incompleteness theorem
and mechanisation of our mathematical intuitions? To mechanize our mathematical intuitions
means to construct a machine which would prove (and then print!) all mathematical theorems
which are normally derived using these intuitions. A formalized mathematical theory with ex-
plicitly defined language, axioms and deductive rules is such a machine. Hence, here is the
machine to which we may apply our simple theorem.

But there is one serious problem. Mathematical machines are not self reflective in the sense
that the machines from our theorem are. These machines produce sentences which assert some-
thing about the machines themselves. Our mathematical theories (machines) assert many things
about various mathematical objects, but nothing about the theories (machines) themselves. If we
are interested in a theory (machine) itself we usually construct another theory (machine), called
meta-theory (meta-machine), to deal with it. But here comes Godel. In his famous [1] he proved
that a mathematical theory (machine), which includes an appropriate amount of arithmetic, may
represent its own meta-theory (meta-machine) so that our simple theorem applies. (This is the
hardest part of Godel’s proof.) Hence, we have:

If mechanized mathematical theory includes an appropriate amount of arithmetic it
is either incorrect or incomplete, i.e. if it is correct then it is incomplete. Even more, we
can explicitly define Godel’s sentence (corresponding to our -PD-PD) which is true but not
provable in the theory.

Now, the dualists argument is as follows. Any attempt to mechanize our mathematical intu-
itions is doomed to fail because the very fact of mechanization yields new intuitive knowledge,
e.g. Godel’s sentence, which is not captured by the mechanization.

What is wrong with this argument? The problem is that you have to now quite a lot about
the specific mechanization to conclude that its corresponding Godel’s sentence is true. In the
specific case that Godel analysed and that we partially presented above we know just enough
to conclude that. On the other hand, it remains possible that there may exist (and even be em-
pirically discoverable) a mathematical machine which in fact is equivalent to our mathematical
intuitions. For example, we could be such machines.

So, dualists like Lucas and Penrose confused the incorrect argument:

There is no machine which could capture all our mathematical intuitions,
with the correct argument:

There is no machine which could capture all our mathematical intuitions and which we
could understand well enough to see that its Godel’s sentence is true.

We may conclude. As far as Godel’s incompleteness theorem is concerned we could well
be machines. But if we are then we are definitely not capable of the complete knowledge of the
machines, i.e. of the complete knowledge of ourselves.

References

[1]1 Godel, K. 1931, Uber formal unentscheidbire Sitze 1. Monatshefte fiir Mathematik und
Physik, 38, 173-198.

[2] Lucas, J.R. 1961, Minds, machines and Godel. Philosophy, 36, 112-137.
[3] Penrose, R. 1989, The Emperor’s New Mind. Oxford University

23



Interpretability Logic
Mladen Vukovié¢, Department of Mathematics University of Zagreb, Croatia

This is an overview a study of interpretability logic in Zagreb for the last twenty years:
a brief history and some planes for further research. The idea of treating a provability predi-
cate as a modal operator goes back to Godel. The same idea was taken up later by Kripke and
Montague, but only in the mid—seventies was the correct choice of axioms, based on Lob’s
theorem, seriously considered by several logicians independently: G. Boolos, D. de Jongh,
R. Magari, G. Sambin and R. Solovay. The system GL (Godel, Lob) is a modal propositional
logic. R. Solovay 1976. proved arithmetical completeness of modal system GL. Many theories
have the same provability logic - GL. It means that the provability logic GL cannot distinguish
some properties, as e.g. finite axiomatizability, reflexivity, etc. Some logicians considered modal
representations of other arithmetical properties, for example interpretability, I1,,-conservativity,
interpolability ... Roughly, a theory .S interprets a theory 7' if there is a natural way of translating
the language of S into the language of 7" in such a way that the translations of all the axioms of
T become provable in S. We write S > T if this is the case. A derived notion is that of relative
interpretability over a base theory 7. Let A and B be arithmetical sentences. We say that A
interprets Bover T if T+ A>T + B.

Modal logics for relative interpretability were first studied by P. Hajek (1981) and V. Svej-
dar (1983). A. Visser (1990) introduced the binary modal logic IL (interpretability logic). The
interpretability logic IL results from the provability logic GL, by adding the binary modal op-
erator > . The language of the interpretability logic contains propositional letters po, p1, ...,
the logical connectives A, V, — and —, and the unary modal operator O and the binary modal
operator > . The axioms of the interpretability logic IL are: all tautologies of the propositional
calculus, (A — B) — (DA — OB), OA — 0O0A, O(0OA - A) —» 0OA, O(A — B) —
(A B), A BABrC)=(A>0), (AxCO)A(B>0C)) = (AVvB) 1> 0),
(Ap> B) - (0A — OB),and $A > A, where ¢ stands for -0— and > has the same
priority as — . The deduction rules of IL are modus ponens and necessitation. Arithmetical
semantics of interpretability logic is based on the fact that each sufficiently strong theory S has
arithmetical formulas Pr(z) and Int¢(z,y). Formula Pr(x) expressing that "z is provable in
S" (i.e. formula with G6del number x is provable in .S). Formula Int(x,y) expressing that
"S + x interprets S + y." An arithmetical interpretation is a function * from modal formulas
into arithmetical sentences preserving Boolean connectives and satisfying (0A)* = Pr([A*])
and (A > B)* = Int([A™], [B*]) (JA™] denote Gidel number of formula A*). The system
IL is natural from the modal point of view, but arithmetically incomplete. Various extensions of
ILare obtained by adding some new axioms. These new axioms are called the principles of in-
terpretability. We denote by ILX the system obtained by adding a principle X to the system IL.
System ILM is the interpretability logic of Peano arithmetic. The arithmetical completeness of
system ILM is proved in [1]. Visser (in [8]) proved the arithmetical completeness of the system
ILP.

There are several kinds of semantics for the interpretability logic. The basic semantics is
Veltman models. D. de Jongh and F. Veltman proved the completeness of IL w.r.t. Veltman
models (see [5]). We think that there are two main reasons for other semantics. First, the proofs
of arithmetical completeness of interpretability logic are very complex. Second, the charac-
teristic classes Veltman frames of some principles of interpretability are equal. Generalized
Veltman models were defined by de Jongh. We use generalized Veltman models in [12] to prove
independence between principles of interpretability. A question is which kind of connection
exists between generalized Veltman models and general Kripke models.

If we want to study a correspondence between Kripke models K and K’ we consider an
isomorphism or an elementarily equivalence. If we want to study "weaker" correspondence
we can consider a bisimulation. Van Benthem defined bisimulations of Kripke models. Visser
in [8] defined a notion of bismulation between two Veltman models. We defined a notion of
bisimulation between two generalized Veltman models in [13], and proved Hennessy—Milner
theorem for generalized Veltman semantics. We study various kinds of bisimulations of Veltman

24



models in [11]. In [10] bisimulation quotients of generalized Veltman models are considered.
We proved in [14] that there is a bisimulation between Veltman model and generalized Veltman
model. The existence of a bisimulation in general setting is an open problem.

P. Héjek and V. Svejdar in 1990. determined normal forms for the system ILF. The existence
of the normal forms for system IL is an open problem. In [3] are determined normal forms in IL
for some special classes of formulas.

The correspondence theory is the systematic study of the relationship between modal and
classical logic. Bisimulations and the standard translation are two of the tools we need to un-
derstand modal expressivity. Van Benthem’s characterization theorem (cf. [7]) shows that modal
languages are the bisimulation invariant fragment of first-order languages, and it is established
by classical methods of first-order model theory. The preservation theorems (cf. [6]) charac-
terise a correspondence between semantic conditions of a class of models and logical formulas,
too. However, the preservation property is usually much less significant than the corresponding
expressive completeness property that any formula satistying the semantic invariance condition
is equivalent to one of the restricted syntactic form. D. Janin and I. Walukiewicz prove that a
formula of monadic second—order logic is invariant under bisimulations if, and only if; it is logi-
cally equivalent to a formula of the p—calculus. E. Rosen prove that the characterization theorem
holds even in restriction to finite structures. A. Dawar and M. Otto in [4] investigate ramifica-
tions of van Benthem’s characterization theorem for specific classes of Kripke structures. They
study in particular Kripke modal classes defined through conditions on the underlying frames.
Classical model theoretic arguments as saturated models and ultrafilter extensions do not apply
to many of the most interesting classes. In the proofs the game—based analysis is used. V. Cagié
and D. Vrgoc defined in [2] a bisimulation game between Veltman models and they proved the
basic properties. We are interested in corresponding characterizations of modal fragments of
first—order formula over Veltman models. The main problem when we prove van Benthem’s
theorem for interpretability logic is the existence of saturated Veltman model. We considered
ultraproduct of Veltman models in [15].

References

[1] A. BERARDUCCI, The Interpretability Logic of Peano Arithmetic, Journal of Symbolic
Logic, 55(1990), 1059-1089

[2] V. CACI¢, D. VRGOC, A Note on Bisimulation and Modal Equivalence in Provability Logic
and Interpretability Logic, Studia Logica 101(2013), 31-44

[3] V. CACIC, M. VUKOVIC, A note on normal forms for closed fragment of system I L, Math-
ematical Communications, 17(2012), 195-204

[4] A. DAWAR, M. OTTO, Modal characterization theorems over special classes of frames,
Annals of Pure and Applied Logic 161(2009), 1-42

[5] D. DE JONGH, F. VELTMAN, Provability Logics for Relative Interpretability, In: Mathe-
matical Logic, (P. P. Petkov, Ed.), Proceedings of the 1988 Heyting Conference, Plenum
Press, New York, 1990, 31-42

[6] T. PERKOV, M. VUKOVIC, Some characterization and preservation theorems in modal
logic, Annals of Pure and Applied Logic 163(2012), 1928-1939

[7] J. VAN BENTHEM, Modal Logic and Classical Logic, Bibliopolis, Napoli, 1983.

[8] A. VISSER, Interpretability logic, In: P. P. Petkov (ed.), Mathematical Logic, Proceedings of
the 1988 Heyting Conference, Plenum Press, New York, 1990, 175-210

[9] A. VISSER, An overview of interpretability logic, In: K. Marcus (ed.) et al., Advances in
modal logic. Vol. 1. Selected papers from the 1st international workshop (AiML’96), Berlin,
Germany, October 1996, Stanford, CA: CSLI Publications, CSLI Lect. Notes. 87(1998),
307-359

[10] D. VRGOC, M. VUKOVIC, Bisimulations and bisimulation quotients of generalized Velt-
man models, Logic Journal of the IGPL, 18(2010), 870-880

25



[11] D. VRGOC, M. VUKOVIC, Bismulation quotients of Veltman models, Reports on Mathe-
matical Logic, 46(2011), 59-73

[12] M. VUKOVIC, The principles of interpretability, Notre Dame Journal of Formal Logic,
40(1999), 227-235

[13] M. VUKOVIC, Hennessy-Milner theorem for interpretability logic, Bulletin of the Section
of Logic, 34(2005), 195-201

[14] M. VUKOVIC, Bisimulations between generalized Veltman modles and Veltman models,
Mathematical Logic Quarterly, 54(2008), 368-373

[15] M. VUKOVIC, A note on ultraproducts of Veltman models, Glasnik matematicki, 46(2011),
7-10

26



The unessential in classical logic and computation

Dragisa Zunié, Faculty of Economics and Engineering Management, Fimek, Novi Sad,
Serbia
Pierre Lescanne, Ecole Normale Supérieure de Lyon, France

Abstract. We present a congruence relation on classical proofs, which identifies proofs up
to trivial rule permutation. The study is performed in the framework of *X calculus, designed to
provide a Curry-Howard correspondence for classical logic, therefore the terms can be seen as
proofs. Each congruence class has a single diagrammatic representation.

Introduction

We first present a higher order rewrite system, the *X calculus, which represents a compu-
tational interpretation of standard Gentzen’s formulation for classical logic (the sequent system
G1 [1]). This system is characterized by the presence of structural rules, namely weakening and
contraction. In this calculus, which encompasses all the details of classical computation, we
define which syntactically different terms are in essence the same.

The history of computational interpretations of classical logic is recent. The first one relying
on sequents was presented by Herbelin [2], while a more direct correspondence with a standard
sequent formulation of classical logic was presented in [3]. This research first lead to the X cal-
culus [4] which served as a base to implement explicit erasure and duplication, yielding the *X’
calculus [5].

*X calculus, the syntax

Intuitively when we speak about *X -terms we speak about classical proofs in sequent system
with explicit structural rules. Terms are built from names. This concept differs from that applied
in A-calculus, where variable is the basic notion. The difference lies in the fact that a variable
can be substituted by an arbitrary term, while a name can be only renamed (that is, substituted
by another name). The presences of hats over certain names denotes the binding of a name.

Definition 1 (*X-syntax) The syntax of *X-calculus is presented in Figure 1, where x,vy, z...
range over an infinite set of in-names and ., 5, ... range over an infinite set of out-names.

PQ == (z.a) capsule (axiom rule)
| ZP B o exporter (right arrow-introduction)
| Palx]yQ importer (left arrow-introduction)
| Patz@ cut (cut)
| zoP left-eraser (left weakening)
| PO« right-eraser (right weakening)
| z2< %(P} left-duplicator (left contraction)
| [P)% >y right-duplicator (right contraction)

Figure 1: The syntax of *X’

27



Assigning types to terms

The type system presents the way constructors are linked with logic, i.e., with proofs. Ex-
pressions of the form P:- T' + A represent the rype assignment *.

Definition 2 (Typable terms) We say that a term P is typable if there exist contexts I" and A
suchthat P.- T' = A holds in the system of inference rules given by Figure 2.

(ax)

(z.a):- z:AFa:A

P - TrFa:AA Q.- T',y:BF A
Paz]gQ: T,T',z:A— BF A A

P Tx:AFa:B/A

(—=L) —— (
rPa-g.- THB:A— BA

—R)

P Tra:AA Q- I z:AFA
PatzQ:- I'T'F AA

(cut)

P.-THA
cOP.;- I'z:AF A

(weak-L)

P.- T x:Ay:AFA

P:-TFHA
(weak-R)

Poa; TFa:AA

P..Tra:ApB:AA

(cont-L) (cont-R)

z<§<P]Z- Iz:AFA [P)z>y.r TH~:AA

™) L)

Figure 2: The type assignent for implicative fragment

Reduction rules are numerous and capture the richness and complexity of classical cut elim-
ination, but we will not be dealing with the dynamic of the system here (see [4, 5] for details).

The congruence relation

‘We introduce the congruence relation on terms, denoted =, represented by a list of equations
(the list is very partial due to limited space). For the complete list see [5]. Congruence relation
induced is reflexive, symmetric and transitive relation closed under any context. The motivation
for introducing it into the system is to come closer to the essence of classical proofs, and abstract
away from unessential in classical proofs. Every rule is associated with one corresponding di-
agram. A name is assigned to every congruence rule, and thus they are presented in the form:
name : P = Q.

importer-importer

3Technically we assign contexts, which are sets of pairs (name, formula), to terms. If we forget about
labels and consider only types, we are going back to Gentzen’s classical system G'1 (see Figure 2), where
contexts are multisets of formulas.

28



il : (Pa[2]§Q)B ] iR = (PB 2] tR)a[2]7Q with o, 8 € N(P)
W2 : (Palz]gQ)B[]tR = Palz]y(QB [ tR) with y, 8 € N(Q)
ii3 : (QB[2]tR) = QB [2]T(Pa[z] R) withy,t € N(R)

2)
o vy 0O B_3 =
Haallaall

x

cil : (Palz] g@)@ ZR = (PB 1 2R) alz]yQ with o, 8 € N(P)
ci2 : (Pa[z]yQ)B t ZR = Pa (2] y(QB 1 ZR) withy, 8 € N(Q)

(Pa +2Q)B [y ZR with z, 8 € N(Q)
QB Y 2(Pa t ZR) with z, 2 € N(R)

The relation = induces congruence classes on terms. It has been argued in [6] that two
sequent proofs induce the same proof net if and only if one can be obtained from the other by a
sequence of transpositions of independent rules. At this static level we have proceeded further
as we have explicitly shown by congruence rules, how exactly this transposition is done.

Basic properties of =, and terms as diagrams. The congruence relation enjoys important
properties. Since it describes the way to perform restructuring of terms, it is important to have
preservation of the set of free names. Then, the property of type preservation ensures that term-
restructuring defined by = can be seen as proof-transformation.

The reader could already see the diagrams as intuitive illustration of congruence rules. It is
possible to define a translation (call it D) from terms to diagrams, inductively on the structure of
terms, but due to a lack of space we don’t present it here. Based on that definition, ideally we
hope to prove that each congruence class (with many terms) has a single diagrammatic represen-
tation. Moreover, in the framework of future work and the dynamics of the system, to show that
a single reduction step corresponds to a diagrammatic reduction step.

Conclusion

By explicitly stating which syntactically different terms should be considered the same, we
unveil the unessential part of sequent classical proofs, sometimes referred to as the syntactic
bureaucracy. This is done in the framework of *X'. It is illustrated that such computational model
comes close to diagrammatic computation, as the concept of reducing modulo corresponds to
diagrammatic reductions which focuses on the essence of classical proofs and drastically reduces
the number of reduction steps.

References

[1] A. S. Troelstra and H. Schwichtenberg, Basic Proof Theory. New York, NY, USA: Cam-
bridge University Press, 1996.

29



(2]

(3]

(4]

(3]

(6]

P-L. Curien and H. Herbelin, “The duality of computation,” in Proc. 5 th ACM SIGPLAN
Int. Conf. on Functional Programming (ICFP’00), pp. 233-243, ACM, 2000.

C. Urban and G. M. Bierman, “Strong normalisation of cut-elimination in classical logic,”
Fundam. Inf., vol. 45, no. 1,2, pp. 123-155, 2001.

S. van Bakel, S. Lengrand, and P. Lescanne, “The language X': circuits, computations and
classical logic,” in Proc.9th Italian Conf. on Theoretical Computer Science (ICTCS’05),
vol. 3701 of Lecture Notes in Computer Science, pp. 81-96, 2005.

D. Zunié¢, Computing With Sequent and Diagrams in Classical Logic - Calculi *X, ©X and
<¥. PhD thesis, Ecole Normale Supériéure de Lyon, France, 2007.

E. Robinson, “Proof nets for classical logic,” Journal of Logic and Computation, vol. 13,
no. 5, pp. 777-797, 2003.

30



