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Formal methods in protocol security verification led to discovery of a number
of attacks and countermeasures. Even though valid protocol verification should
rely on the careful formalization of all the relevant assumptions of the proto-
col execution, some aspects important to protocol security, such as time and
resources, are not covered by many formal models. While timing issues involve
e.g., network delays and timeouts, resources such as memory, processing power,
or network bandwidth are at the root of Denial of Service (DoS) attacks which
have been a serious security concern. It is particularly useful in practice and
more challenging for formal protocol verification to determine whether a ser-
vice is vulnerable not only to powerful intruders, but also to resource-bounded
intruders that cannot generate or intercept arbitrarily large volumes of traffic.

This paper introduces a multiset rewriting model for the specification and
verification of resource and timing aspects of protocols, such as network delays,
timeouts, distance bounding properties, and DoS attacks. We propose timed
protocol theories that specify service resource usage during protocol execution.
Also, a refined Dolev-Yao intruder model is proposed, that can only consume
at most some specified amount of resources in any given time window.
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We formally define the DoS problem that takes into account the duration
of the attack. It is shown that the proposed DoS problem is undecidable in
general and is PSPACE-complete for the class of balanced resource-bounded
systems. Additionally, protocol theories for protocols particularly susceptible
to time, such as e.g., distance-bounding protocols, are proposed and some de-
cidable fragments of related verification problems, such as the secrecy problem,
are described.
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Beyond Geometric Validity - Two levels

of relative validity

Matthaios Bournazos

In the last 60 years there have been numerous attempts by logicians and
computer scientist for a mathematical formalism of argumentation, usually fo-
cusing on logically valid argumentation. While really useful when the goal is
that of decision-making, these proposals have little to offer when we seek to for-
malise real-life argumentation, because the latter usually consist of incomplete,
or even fallacious arguments. Inspired by the philosophical work of the pragma-
dialecticians, we introduced in [3] a definition for the concept of argument which
allows for the inclusion of invalid and incomplete argumentation, based on the
work first presented in [2]. In this paper we present two proofs regarding, on
the one hand, the inclusion in our approach of the concept of logically valid
argument, as the latter was formalised by Besnard and Hunter1 and, on the
other, the substantially wider range of our definition for an argument.
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Provability logics are modal logics developed as an attempt to characterize
and generalize the Gödel’s incompleteness theorems, enumerating what axioms
a provability predicate must satisfy so Gödel’s proofs work. The most famous,
and most successful, of these systems is GL (the Gödel–Löb system). It is the
provability logic of various mathematical theories.

Further generalizations were made by A.Visser, trying to define a framework
to answer the finer questions of interpretability (relative strength) of extensions
of theories, not just black-and-white questions about provability, refutability or
consistency. Such developments gave rise to Interpretability logic (IL) and its
various extensions. As opposed to GL, there is no one single framework, but
different mathematical theories have different interpretability logics. However,
all of these are supersystems of IL.

As a modal logic with standard 2 and 3 operators, GL has the ordinary
Kripke frames (worlds and accessibility relation) as the back-bone for its mod-
els. IL, having a binary modal operator �, has accordingly more complicated
structures in their place, named Veltman frames.

The usual notion of Kripke/Veltman model is the frame with the forcing re-
lation, which relates worlds to propositional variables (and by extension, modal
formulas). Here we aren’t concerned with models, since we look only at closed
fragments (without propositional variables).

Usually, for each satisfiable modal formula we must find a separate model (or
a frame if the formula is closed), and a world within it, such that the formula is
forced there. But we can ask whether there is one “global” frame, such that it
has the representative worlds for every satisfiable formula. The similar concept
is captured in graph theory by the notion of random graph.

We define one natural notion of universality for frames of various modal
logics, and we prove that GL has a universal frame, while IL doesn’t.
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Šejla Dautović 1, Dragan Doder 2, Zoran Ognjanović 3
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Although contemporary Bayesian confirmation theorists investigated degrees
of confirmation developing a variety of different probability-based measures,
that field attracted little attention from the logical side, probably because of
complexity of a potential formal language that would be adequate to capture
those measures. In Carnap’s book [2], one of the main tasks is “the explication of
certain concepts which are connected with the scientific procedure of confirming
or disconfirming hypotheses with the help of observations and which we therefore
will briefly call concepts of confirmation”. Carnap distinguished three different
semantical concepts of confirmation: the classificatory concept (“a hypothesis
A is confirmed by an evidence B”), the comparative concept (“A is confirmed
by B at least as strongly as C is confirmed by D”) and the quantitative concept
of confirmation. The third one, one of the basic concepts of inductive logic, is
formalized by a numerical function c which maps pairs of sentences to the reals,
where c(A,B) is the degree of confirmation of the hypothesis A on the basis
of the evidence B. Bayesian epistemology proposes various candidate functions
for measuring the degree of confirmation c(A,B), defined in terms of subjective
probability. They all agree in the following qualitative way: c(A,B) > 0 iff the
posterior probability of A on the evidence B is greater than the prior probability
of A (i.e., µ(A|B) > µ(A)), which correspond to the classificatory concept (“A is
confirmed byB”) [10]. Up to now, only the classificatory concept of confirmation
is logically formalized, in our previous work [4].

In this paper, we formalize the quantitative concept of confirmation, first
within a propositional logical framework LPPconf

1 , and then using its first-order
extension LFOPconf

1 . We focus on the most standard (according to Eells and
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Fitelson [8]) measure of degree of confirmation, called difference measure:
c(A,B) = µ(A|B) − µ(A). Our formal languages extend classical (proposi-

tional/first order) logic with the unary probabilistic operators of the form P≥r

(P≥rα reads “the probability of α is at least r”), where r ranges over the set of
rational numbers from the unit interval [15], and the binary operators c≥r and
c≤r, which we semantically interpret using the difference measure. The corre-
sponding semantics consists of a special type of Kripke models, with probability
measures defined over the worlds.

Our main results are sound and strongly complete (every consistent set of
formulas is satisfiable) axiomatizations for the logics. We prove completeness
using a modification of Henkin’s construction. Since the logics are not com-
pact, in order to obtain the strong variant of completeness, we use infinitary
inference rules. An obvious alternative to an infinitary axiomatization is to
develop a finitary system which would be weakly complete (”a formula is a
theorem iff it is valid”). However, already for the logics which need to express
conditional probabilities, that task turned out to be very hard to accomplish.
Fagin, Halpern and Meggido [9] faced problems when they tried to represent
conditional probabilities via a logical language with polynomial weight formulas
that allow products of terms (e.g., w(p1 ∧ p2) · (w(p1) + w(p2)) ≥ w(p1) · w(p2)
represents the sentence “the conditional probability of p2 given p1 plus the con-
ditional probability of p1 given p2 is at least 1”). They observed that even for
obtaining the weak completeness additional expressiveness is needed, and they
introduced a first-order language such that variables can appear in formulas.
As an alternative, the researchers from the field of probability logic use the
infinitary approaches [3] and fuzzy approaches [13]. In the case of first-order
probability logics the situation is even worse, since the set of valid formulas of
the considered logics is not recursively enumerable [1, 11]. As a consequence,
no finitary axiomatization, which would be even weakly complete, is possible.

From the technical point of view, we modify some of our earlier methods
presented in [5, 6, 7, 14, 16, 17]. We point out that our formal languages are
countable and all formulas are finite, while only proofs are allowed to be infi-
nite. However, for some restrictions of the logics we provide finitary axiomatic
systems. We also prove that our propositional logic LPPconf

1 is decidable.
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In [1] we have introduced a Kripke-style semantics for full simply typed
lambda calculus, i.e. simply typed lambda calculus extended with product types
and sum types. We have proved that the type assignment system is sound with
respect to the proposed semantics and we conjectured the completeness of type
assignment system.

Since then, we proved the completeness. Meanwhile, we have decided to work
on the refinement of the proposed semantics. The motivation for the refinement
was the fact that with the semantics of [1] there are bases which are inconsistent
and satisfiable. Our goal was to define a semantics such that inconsistent bases
are not satisfiable. We have defined a new Kripke-style semantics for full simply
typed lambda calculus in [2] and proved soundness and completeness of the type
assignment system for full simply typed lambda calculus with respect to the
proposed semantics. In this talk, we discuss the approach and results presented
in [2] and highlight the improvements with regard to results in [1].

We recall some basic notions of full simply typed lambda calculus, Λ→,×,+([4],
[5]). The language of the full simply typed lambda calculus is generated by the
following grammar:

M,N ::=x|λx.M |MN |π1(M)|π2(M)|〈M,N〉|in1(M)|in2(M)|
|case M of (in1(x)⇒ N | in2(y)⇒ L)|〈〉|abort(M)

where x is a term-variable. Types are generated by the grammar:

σ, τ ::= a | σ → τ | σ × τ | σ + τ | 0 | 1
where a is a type-variable. We say that a statement M : σ is derivable from a
basis Γ, denoted by Γ `M : σ if the typing judgment Γ `M : σ can be derived
by the rules in Figure 1.
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x : σ ∈ Γ
(Ax)

Γ ` x : σ
Γ, x : σ `M : τ

(→ intro)
Γ ` λx.M : σ → τ

Γ `M : σ → τ Γ ` N : σ (→ elim)
Γ `MN : τ

Γ `M : σ Γ ` N : τ (× intro)
Γ ` 〈M,N〉 : σ × τ

Γ `M : σ × τ
(× elim1)

Γ ` π1(M) : σ

Γ `M : σ × τ
(× elim2)

Γ ` π2(M) : τ

Γ `M : σ (+ intro1)
Γ ` in1(M) : σ + τ

Γ `M : τ (+ intro2)
Γ ` in2(M) : σ + τ

Γ `M : σ + τ Γ, x : σ ` N : ρ Γ, y : τ ` L : ρ
(+ elim)

Γ ` case M of (in1(x)⇒ N | in2(y)⇒ L) : ρ

(1 intro)
Γ ` 〈〉 : 1

Γ `M : 0 (0 elim)
Γ ` abort(M) : σ

Figure 1: Type Assignment System for Λ→,×,+

The semantics we introduced in [2] are motivated by semantics introduced
in [3] and [5]. As in [3] and [5], we also start by defining a Kripke applicative
structure. We consider only Kripke applicative structures which are extensional
and have combinators (see [5]). Then, a Kripke lambda model Kρ = 〈K, ρ〉, is
defined as a Kripke applicative structure K which is extensional and has com-
binators provided with ρ, a partial mapping from term-variables and worlds to
domains, such that: if ρ(x,w) ∈ Dw and w ≤ w′, then ρ(x,w′) = iw,w′(ρ(x,w)).

The main difference between the semantics introduced in [2] and in [1] is
in the definition of Kripke applicative structure and in the definition of the
interpretation of lambda terms. In [1], a Kripke applicative structure is defined
as a tuple K = 〈W,≤, {Aσw}, {iσw,w′}〉, which consists of:

(i) a set W of “possible worlds” partially ordered by ≤,

(ii) a family {Aσw} of sets indexed by types σ and worlds w,

(iii) a family {iσw,w′} of “transition functions” iσw,w′ : Aσw → Aσw′ indexed by
types of σ and pairs of worlds w ≤ w′, which satisfy the following condi-
tions:

iσw,w : Aσw → Aσw is identity (id)

iσw′,w′′ ◦ iσw,w′ = iσw,w′′ for all w ≤ w′ ≤ w′′ (comp)

This structure is not rich enough to give a unique meaning to all lambda
terms. For that reason, in [2] we define a Kripke applicative structure as a tuple

〈W,≤, {Dw}, {Aσw}, {Appw}, {Proj1,w}, {Proj2,w}, {Inlw}, {Inrw}, {iw,w′}〉

where W,≤, {Dw}, {Aσw}, {Appw}, {iw,w′} are as in the previous definition and
{Proj1,w}, {Proj2,w}, {Inlw}, {Inrw} are families of functions such that:
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• Proj1,w, P roj2,w : Dw → Dw and for all σ, τ ∈ Type, Proj1,w � Aσ×τw :
Aσ×τw → Aσw and Proj2,w � Aσ×τw : Aσ×τw → Aτw

• Inlw, Inrw : Dw → Dw and for all σ, τ ∈ Type, Inlw : Aσw → Aσ+τw , and
Inrw : Aτw → Aσ+τw .

• The application functions, the projection functions and the injection func-
tions commute with the transition in a natural way, i.e. (∀f ∈ Dw) (∀a ∈
Dw) (∀w′ ∈ W,w ≤ w′), iw,w′(Appw(f, a)) = Appw′(iw,w′(f), iw,w′(a)).
Similarly for functions Proj1,w, P roj2,w, Inlw, and Inrw.

The meaning of the term M in world w in valuation ρ, denoted by [[M ]]wρ , is
defined inductively (induction on the structure of the term).

The proof that the map [[ ]]wρ is well-defined is based on the translation of
lambda calculus into combinatory logic. We have proved that type assignment
system for full simply typed lambda calculus is sound and complete with respect
to the proposed semantics.

Theorem 1 (Soundness) If Γ `M : σ, then Γ |= M : σ.

Theorem 2 (Completeness) Let Γ be a consistent basis. If Γ |= M : σ, then
Γ `M : σ.
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We have to emphasize that Errett Bishop - style constructive mathematics,
BISH, forms the framework for our work. Let us remember, we regard classi-
cal mathematics as Bishop-style mathematics plus the law of excluded middle,
LEM. Several consequences of LEM are not accepted in BISH. We will state
here two of them for future reference. The limited principle of omniscience,
LPO: for each binary sequence (an)n≥1, either an = 0 for all n, or else there
exists n with an = 1, and Markov’s principle, MP: for each binary sequence
(an)n≥1, if it is impossible that an = 0 for all n, then there exists n with an = 1.

Inspired by results obtained in interactive theorem proving the approach
of formal verifications, we created the new constructive algebraic theory - the
theory of semigoups with apartness. Contrary to the classical case, a set exists
only when it is defined. We define a set S by giving an algorithm for constructing
members of S, together with a prescribed equivalence relation =, called the
equality of S. Let (S,=) be an inhabited set, that is, one in which we can
construct an element. By an apartness on S we mean a binary relation # on S
which satisfies the axioms of irreflexivity, symmetry and cotransitivity: ¬(x#x),
x#y ⇒ y#x, x#z ⇒ ∀y∈S (x#y ∨ y#z). The apartness on a set S is tight
if ¬(x#y) ⇒ x = y. A set with apartness (S,=,#) with given equality and
apartness independently of each other as the basic relations is the starting point
of further considerations. A tuple (S,=,#, ·) is a semigroup with apartness
with (S,=,#) as a set with apartness, · an associative binary operation on S
which is strongly extensional, i.e. ∀a,b,x,y∈S (a ·x# b ·y ⇒ (a# b ∨ x# y)). As it
is shown in [1], apartness does not have to be tight. The order theory provides
one of the most basic tools of semigroup theory within classical mathematics. In
particular, the structure of semigroups is usually most clearly revealed through
the analysis of the behaviour of their appropriate orders. Going through [1], [3],
we can conclude that one of the main objectives of those papers is to develop an
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appropriate constructive order theory for semigroups with apartness. Based on
material given in [2], constructive HMR(Hounkonnou-Mitrović-Romano)-order
theory developed for sets and semigroups with apartness will be presented.

The presence of apartness implies the appearence of different types of sub-
structures connected to it. A subset Y of S has two natural complementary

subsets: the logical complement ¬Y def
= {x ∈ S : x /∈ Y }, and apartness comple-

ment, or, shortly, a-complement ∼ Y def
= {x ∈ S : ∀y∈Y (x#y)}. In general, we

have ∼ Y ⊆ ¬Y . However, even for a tight apartness, the converse inclusion en-
tails the Markov principle, MP. The complements are used for the classification
of subsets of a given set. A subset Y of S is: a detachable subset or, shortly,
d-subset in S if ∀x∈S (x ∈ Y ∨x ∈ ¬Y ); a strongly detachable subset or, shortly,
an sd-subset of S if ∀x∈S (x ∈ Y ∨x ∈ ∼Y ), a quasi-detachable subset or, shortly,
a qd-subset of S if ∀x∈S ∀y∈Y (x ∈ Y ∨x#y). The relations between detachable,
strongly detachable and quasi-detachable subsets are partially described in [3],
Proposition 2.1. A complete description of the relationships between those sub-
sets of a set with apartness is given in the next theorem which is one of the
main results of this presentation.

Theorem 1 Let Y be a subset of S. Then:

(i) Any sd-subset is a qd-subset of S. The converse implication entails LPO

(ii) Any qd-subset Y of S satisfies ∼ Y = ¬Y .

(iii) If any qd-subset is a d-subset, then LPO holds.

(iv) If any d-subset is a qd-subset, then MP holds.

(v) Any sd-subset is a d-subset of S. The converse implication entails MP.

(vi) If any subset of a set with apartness S is a qd-subset, then LPO holds.

A relation τ defined on a set with apartness S is a co-quasiorder if it is strongly
irreflexive (τ ⊆ #), and co-transitive. By Proposition 2.3 [3], a co-quasiorder τ
is a qd-subset of S × S, and, by Theorem 1, ∼ τ = ¬ τ . Generally speaking, for
a co-quasiorder defined on a set with apartness, we cannot prove that its left
and/or right classes are d-subsets or sd-subsets. More precisely, we can prove
the following result.

Proposition 1 Let τ be a co-quasiorder. If aτ (aτ) is a d-subset (an sd-subset)
of S for any a ∈ S, then LPO holds.

The relations defined on a semigroup S are distinguished one from another
according to the behaviour of their related elements to the multiplication. Fol-
lowing the classical results, as much as possible, we can start with the follow-
ing definition. A co-quasiorder τ on a semigroup S is complement positive if
(a, ab), (a, ba) ∈∼ τ for any a, b ∈ S. The description of a complement positive
co-quasiorder via its classes follows.
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Theorem 2 Let τ be a co-quasiorder τ on a semigroup S.

(i) If τ is complement positive, then ∀a,b∈S (τ(ab) ⊆ τa ∩ τb).

(ii) If τa is an sd-ideal of S and a ./ τa for every a ∈ S, then τ is complement
positive and ∀a,b∈S (aτ ∪ bτ ⊆ (ab)τ).

(iii) If aτ is an sd-convex subset of S, and a ./ aτ for every a ∈ S, then τ is
a complement positive co-quasiorder.

The theory of semigroups with apartness is, of course, in its infancy, but it
promises a prospective of applications in other (constructive) mathematics dis-
ciplines, certain areas of computer science, social sciences, economics. On the
other hand, in order to have profound applications, a certain amount of the the-
ory, which can be applied, is first necessary. Among priorities, besides growing
the general theory, are further developments of: constructive relational struc-
tures - (co)quotient structures in the first place, constructive HMR-order the-
ory, theory of HMR-ordered semigroups with apartness, etc.
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Notable parts of algebra and geometry can be formalized as coherent theories
over first-order classical or intuitionistic logic. Their axioms are coherent impli-
cations, i.e., universal closures of implications D1⊃D2, where both D1 and D2

are built up from atoms using conjunction, disjunction and existential quantifi-
cation. Examples include all algebraic theories, such as group theory and ring
theory, all essentially algebraic theories, such as category theory [3], the theory
of fields, the theory of local rings, lattice theory [12], projective and affine geom-
etry [12, 9], the theory of separably closed local rings (aka “strictly Henselian
local rings”) [4, 9, 15].

Although wide, the class of coherent theories leaves out certain axioms in
algebra such as the axioms of torsion abelian groups or of Archimedean ordered
fields, or in the theory of connected graphs, as well as in the modelling of
epistemic social notions such as common knowledge. All the latter examples
can however be axiomatized by means of geometric axioms, a generalization of
coherent axioms that allows infinitary disjunctions.

Coherent and geometric implications form sequents that give a Glivenko
class [10], as shown by Barr’s Theorem.1

Theorem 1 (Barr’s Theorem [1]) If T is a coherent (geometric) theory and
A is a sentence provable from T with (infinitary) classical logic, then A is prov-
able from T with (infinitary) intuitionistic logic.

1 Barrs theorem is often alleged to achieve more in that it also allows to eliminate uses of
the axiom of choice, but see [11].
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Barr’s Theorem has its origin, through appropriate completeness results, in the
theory of sheaf models, with the following formulation:

Theorem 2 ([6], Ch.9, Thm.2) For every Grothendieck topos E there exists
a complete Boolean algebra B and a surjective geometric morphism Sh(B) −→ E.

If we limit our attention to first-order coherent theories T , an extremely
simple and purely logical proof of Barr’s Theorem has been given in [7] by means
of G3-style sequent calculi. [7] shows how to express coherent implications by
means of rules that preserve the admissibility of the structural rules of inference.
As a consequence, Barr’s theorem is proved by simply noticing that a proof in
G3cT is also a proof in the intuitionistic multisuccedent calculus G3iT.

This simple and purely logical proof of Barr’s Theorem has been extended
to geometric theories in [8]. This work considers the G3-style calculi for clas-
sical and intuitionistic infinitary logic G3[ci]ω (with finite sequents instead of
countably infinite sequents) and their extension with rules expressing geometric
implications G3[ci]ωT. To illustrate, the geometric axiom ∀x.∨n>0 .nx = 0 is
expressed by the the infinitary rule:

{nx = 0,Γ⇒ ∆ | n > 0}
Γ⇒ ∆

The main results in [8] are that in G3[ci]ωT all rules are height-preserving in-
vertible, the structural rules of weakening and contraction are height-preserving
admissible, and cut is admissible. Hence, Barr’s Theorem for geometric theories
is proved in [8] as it was done in [7] for coherent ones: a proof in G3cωT is also
a proof in the intuitionistic multisuccedent calculus G3iωT.

One weakness of the results in [8] is that the cut-elimination procedure given
in Sect. 4.1 is not constructive. This is a typical limitation of cut eliminations
in infinitary logics [2, 5, 13]. The problem is that the proof makes use of the
‘natural’ (or Hessenberg) commutative sum of ordinals α#β (see [14, 10.1.2B]),

[whose] definition utilizes the Cantor normal form of ordinals to base
ω. This normal form is not available in CZF (or IZF) and thus a
different approach is called for. [11, p.369]

We constructivize the cut-elimination proof for G3[ci]ωT by giving a procedure
that replaces induction on sums of ordinals with induction on well-founded
trees.2 In this way we are able to give a proof of Barr’s Theorem for geo-
metric theories that uses only constructively acceptable proof-theoretic tools.
Moreover, our proof strategy should allow to constructivize the cut-elimination
procedure for other infinitary calculi.
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Ever since antiquity, attempts have been made to characterize knowledge
through belief augmented by additional properties such as truth and justifica-
tion. These characterizations have been challenged by Gettier counterexamples
and their variants.

A modern proposal, what is known as defeasibility theory, characterizes
knowledge through stability under revisions of beliefs on the basis of true or
arbitrary information [3, 6]. A formal investigation of such a proposal calls for
the methods of dynamic epistemic logic: well developed semantic approaches to
dynamic epistemic logic have been given through plausibility models [1, 5] but
a corresponding proof theory is still in its beginning.

We shall recast plausibility models in terms of the more general neighbour-
hood models and develop on their basis complete proof systems, following a
methodology introduced in [4] and developed for conditional doxastic notions
in [2].

An inferential treatment of various epistemic and doxastic notions such as
safe belief and strong belief will give a new way to study their relationships;
among these, the characterization of knowledge as belief stable under arbitrary
revision will be grounded through formal labelled sequent calculus derivations..
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Logic has many applications. A logical theory is applied if it modifies the
states of the world. By changing the state of the world, applied logical theories
may change their own truth-values. While it has been known since Goedel
that consistent logical theories cannot prove their own consistency, it was clear
even before Goedel that the inconsistent logical theories can in fact prove their
consistency. Although such consistency claims are initially false, a genuinely
applied logical theory may modify the state of the world in such a way that
the truth value of its consistency claim will change from false to true. Closely
related logical processes play a central role on the market, on the web, and in
everyday life. E.g., to start up its services, a social network must attract some
initial members. To achieve that, it must convince them that their friends are
already members. Initially, this statement must be false. But if enough people
are convinced that it is true, then they will join the social network, and the
statement will become true. The social network can then provide its services,
and expand them using a variety of tools from applied logic. In this talk, I will
provide an overview of general methods of lying and deceit on the industrial
scale.
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Abstract algebra abounds with ideal objects and the invocations of trans-
finite methods, typically Zorn’s Lemma, that grant those object’s existence.
Put under logical scrutiny, ideal objects often serve for proving the semantic
conservation of additional non-deterministic sequents, that is, with finite but
not necessarily singleton succedents. By design, dynamical methods in alge-
bra [2, 3, 7] allow to eliminate the use of ideal methods by shifting focus from
semantic model extension principles to syntactic conservation theorems, which
move has enabled Hilbert’s Programme for modern algebra.

A paradigmatic case, which to a certain extent has been neglected in dy-
namical algebra proper, is Krull’s Lemma for prime ideals. A particular form
of this asserts that a multiplicative subset of a commutative ring contains the
zero element if and only if the set at hand meets every prime ideal. Prompted
by Kemper and Yengui’s novel treatment of valuative dimension, the authors of
the present note together with Yengui have recently put Krull’s Lemma under
constructive scrutiny. This development has eventually helped to unearth the
underlying general phenomenon [6]: Whenever a certificate is obtained by the
semantic conservation of certain additional non-deterministic axioms, there is
a finite labelled tree belonging to a suitable inductively generated class which
tree encodes the desired computation.

The present study was carried out within the projects “A New Dawn of Intuitionism:
Mathematical and Philosophical Advances” (ID 60842) funded by the John Templeton Foun-
dation, and “Reducing complexity in algebra, logic, combinatorics - REDCOM” belonging to
the programme “Ricerca Scientifica di Eccellenza 2018” of the Fondazione Cariverona. (The
opinions expressed in this paper are those of the authors and do not necessarily reflect the
views of those foundations.) Both authors are members of the Gruppo Nazionale per le Strut-
ture Algebriche, Geometriche e le loro Applicazioni (GNSAGA) within the Italian Istituto
Nazionale di Alta Matematica (INdAM). Last but not least, the authors wish to express their
gratitude to Ulrich Berger, Stefan Neuwirth and Iosif Petrakis for interesting discussions, as
well as to the anonymous referees of [6] for expertly and insightful remarks.
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Recall that a consequence relation on a set S is a relation � between finite
subsets1 and elements of S, which is reflexive, monotone and transitive:

U 3 a
U � a

(R)
U � a
U, V � a

(M)
U � b U, b� a

U � a
(T)

where the usual shorthand notations are in place. The ideals of a consequence
relation are the subsets a of S closed under � in the sense that if a ⊇ U and
U � a, then a ∈ a. If U is a finite subset of S, then its closure is an ideal:

〈U〉 = { a ∈ S | U � a }

A decisive aspect of our approach is the notion of a regular set for certain
non-deterministic axioms over a fixed consequence relation, where by a non-
deterministic axiom on S we understand a pair (A,B) of finite subsets of S. A
subset p of S is closed under (A,B) if A ⊆ p implies p G B, where the latter is
to say that p and B have an element in common.

Let E be a set of non-deterministic axioms over �. A prime ideal is an
ideal of � that is closed under every element of E . For instance, if � denotes
deduction, and E consists of all pairs (∅, {ϕ,¬ϕ }) for sentences ϕ, then the
(prime) ideals are exactly the (complete) theories.

A subset R of S is regular with respect to E if, for all finite subsets U of S
and all (A,B) ∈ E ,

(∀b ∈ B) 〈U, b〉 G R
〈U,A〉 G R

Abstracted from the multiplicative subsets occurring in Krull’s Lemma, regular
sets haved proved the right concept for our Universal Prime Ideal Theorem:

Proposition 1 (ZFC). A subset R of S is regular if and only if for every ideal
a we have R G a precisely when R G p for all prime ideals p ⊇ a .

Regular sets further account for the constructive version of Proposition 1.
To this end, given an ideal a, we next define a collection Ta of finite labelled
trees such that the root of every t ∈ Ta be labelled with a finite subset U of
a, and the non-root nodes with elements of S. The latter will be determined
successively by consequences of U along the elements of E .

We understand paths, which necessarily are finite, to lead from the root of
a tree to one of its leaves. Given a path π of t ∈ Ta, we write π � a when-
ever U, b1, . . . , bn � a where U labels the root of t and b1, . . . , bn are the labels
occurring at the non-root nodes of π.

Definition 1. Let a be an ideal. We generate Ta inductively according to the
following rules:

1. For every finite U ⊆ a, the trivial tree (i.e., the root-only tree) labelled
with U belongs to Ta.

1We understand a set to be finite if it can be written as { a1, . . . , an } for some n > 0.
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2. If (A,B) ∈ E and if t ∈ Ta has a path π such that π � a for every a ∈ A,
then add, for every b ∈ B, a child labelled with b at the leaf of π.

We say that t ∈ Ta terminates in R ⊆ S if for every path π of t there is r ∈ R
such that π � r.

Our Constructive Universal Prime Ideal Theorem works in (a fragment of)
Constructive Zermelo–Fraenkel set theory CZF :

Proposition 2 (CZF). A subset R of S is regular if and only if for every ideal
a we have R G a precisely when there is a tree t ∈ Ta which terminates in R.

We thus uniformise many instances of the dynamical method and generalise
the universal proof-theoretic conservation criterion offered before [5], which by
Scott–style entailment relations [1] unifies numerous phenomena, e.g. [4].
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Polynomial Rings and Dynamical Gröbner Bases, volume 2138 of Lecture
Notes in Mathematics. Springer, Cham, 2015.

26



An Overview of Mathematical Models

for Data Privacy
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For centuries, people have shared information with each other and with
institutions. In the last few decades the development of technology has made
possible to manipulate a large amount of data, but at the same time it has
developed data privacy problems. The problem of data privacy concerns how
data is collected and stored, whether and how data is shared with a third party,
as well as which laws are governing data sharing in areas such as health care,
education and financial services ([6]). We give an overview of two fundamental
mathematical models for describing data privacy problems that significantly
differ from the traditional privacy approach - privacy in context ([1]) and dif-
ferential privacy ([2]).

Privacy in context. Contextual integrity represents a philosophical ac-
count of privacy in terms of transfer of personal information. Here the term
personal information” refers to any information related to an identified or iden-
tifiable natural person, as Helen Nissenbaum defined in [4]. A formal framework
for expressing norms of transmission of personal information, inspired by con-
textual integrity, was presented in [1]. A temporal logic is used to capture the
principles of information transmission. Formulas are generated by the following
grammar:

ϕ ::= send(p1, p2,m)|contains(m, q, t)|inrole(p, r)|

incontext(p, c)|t ∈ t′|ϕ ∧ ϕ|¬ϕ|ϕUϕ|ϕSϕ
©ϕ|∃x : τ.ϕ.

Information about a subject is transmitted through a communication action
from a sender to a recipient:

• send(p1, p2,m) holds if agent p1 sent the message m to agent p2

• contains(m, q, t) holds if message m contains the attribute t of agent q.

For simplification, it is assumed that information describes a single individ-
ual. However, the model includes computation rules enabling communicating
agents to combine messages to compute additional information: t ∈ t′ holds
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if attribute t can be computed from attribute t′. Communicating agents are
associated with roles as a part of contexts, and depending on the role, commu-
nication can be permitted or prohibited:

• inrole(p, r) holds if agent p is active in role r

• incontext(p, c) holds if agent p is active in a role of context c.

This model is convenient for formalizing privacy laws because each privacy
law is drawn to protect certain types of information in particular contexts,
such as health care, employment, the marketplace and so on. Up to now, it
has been used to formalize several privacy laws, such as GLBA (Gramm-Leach-
Bliley Act), HIPAA (Health Insurance Portability and Accountability Act) and
COPPA (Children’s Online Privacy Protection Act).

Differential privacy. Privacy can also be considered from the perspective
of statistical analysis of data or the release of statistics derived from personal
data. Suppose a trusted curator is managing a sensitive database and needs
to release some statistics from this data to the public. Also suppose there
is an adversary who wants to reveal or to learn some of the sensitive data.
Differential privacy ([2]) proposed by Cynthia Dwork relies on incorporating
random noise so that everything an adversary receives is noisy and imprecise.
The question is what kind of random noise to use so that the results still can
be useful. The main challenge is achieving privacy while minimising the utility
loss.

Let D ∈ Dn be a database. A query q is a function applied on a database
D ([2]). We say M is a privacy mechanism or simply mechanism obtained by
adding noise if for every query q, M creates a new randomized query q∗(D) =
q(D) + noise. Let D,D′ ∈ Dn be two databases that differ in at most one
entry, we call them adjacent databases.

Definiton. Let ε > 0 . A mechanism M is ε -differentially private iff for
every pair of adjacent databases D,D′ and for every S ⊆ range(M):

Pr[M(D) ∈ S] ≤ exp(ε)Pr[M(D′) ∈ S],

where the probability space is over the coin flips of the mechanism M.
The following example shows what differential privacy actually provides.

Suppose Alice obtains database D ∈ Dn with n entries. She provides Bob
with output o of a mechanism M(D). Bob knows the values of n − 1 entries
(database D1), and has to guess the value of the n-th entry (dn). For each
possible value x of dn, Bob can learn the distribution induced byM(D1∪{x})
and then pick x assigned to highest probability of the output. But, if M is ε
-differentially private, for every x, y ∈ D holds

Pr[M(D1 ∪ {x}) = o]− Pr[M(D1 ∪ {y}) = o] ≤ ε.

Therefore, Bob cannot do better than random guessing. In fact, if an individ-
ual is considering to allow her/his data to be used or not, by the promise of
differential privacy, she/he can be almost indifferent between these two choices,
because participating will not cause any additional harm.
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Differential privacy has also been used to formalize privacy laws, for exam-
ple FERPA (Family Educational Rights and Privacy Act), but the best known
users of differential privacy models are certainly Apple and Google.

A brief comparison of the methods. The contextual integrity frame-
work considers privacy from the perspective of information flow and uses tem-
poral logic formulas to model privacy norms. On the other hand, differential
privacy considers privacy from the perspective of statistical analysis and releas-
ing statistics of personal data. The fundamental difference between these two
approaches is in underlying mathematical methods: logic and probability. Also,
formal logical model may allow sharing some personal information depending
on agents role, for example: a doctor can share patients private medical infor-
mation with that patient. What is not included in the formal logical model
is the communication about aggregate statistics. For example, communication
restriction such as the average salary of bank managers can be released only
if it does not identify a particular individuals salary” cannot be expressed in
formal logical model, but it is precisely the type of restriction expressed in the
differential privacy model ([5]).

Future work. We are currently exploring the possibilities of combining
different kinds of privacy formalization including inverse privacy ([3]).
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Controlled query evaluation (CQE) is an approach to guarantee data privacy
for database and knowledge base systems [1, 2, 3, 4, 9]. CQE-systems feature a
censor function that may distort the answer to a query in order to hide sensitive
information. In the present work, we use modal logic to present a highly abstract
model for dynamic query evaluation systems like CQE. We formulate several
desirable properties of CQE-systems in our framework and establish two no-go
theorems saying that certain combinations of those properties are impossible.
Note that some particular instances of our general impossibility results have
already been known [1, 9].

There are many different notions of privacy available in the literature. For
our results, we rely on provable privacy [5, 6], which is a rather weak notion
of data privacy. Using a weak definition of privacy makes our impossibility
theorems actually stronger since they state that under certain conditions not
even this weak form of privacy can be achieved.

This work has already been presented at CRYPTOLOGY 2020 [7]. A full
version is available in [8].
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The Evolution of Logic-based Static

Analysis

Pavle Subotić

Amazon

Datalog has been successfully applied to a range of applications including
program analysis. By expressing analyses declaratively, Datalog can largely
reduce the burden of defining new static analyses. Moreover, by using state-of-
the-art Datalog engines, for instance Souffl, this approach can remain compet-
itive with hand-crafted static analysers. In this talk I will give an overview of
the design of Souffl, in particular the aspects of the engine that have allowed
Datalog-based static analysis to scale to industrial scale problems. I will de-
scribe some notable use cases where Souffl has successfully been used and end
with on-going work which aims to make Souffle even more powerful for static
analysis use cases.
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Linear logic [1] and its refinements have been used as a specification language
for a number of deductive systems. This has been accomplished by carefully
studying the structural restrictions of linear logic modalities. Examples of such
refinements are subexponentials [8, 5], light linear logic [2], and soft linear logic
[3]. We bring together these refinements of linear logic in a non-commutative
setting. We introduce a noncommutative substructural system with subexpo-
nential modalities controlled by a minimalistic set of rules [7]. Namely, we
disallow the contraction and weakening rules for the exponential modality and
introduce two primitive subexponentials. One of the subexponentials allows the
multiplexing rule in the style of soft linear logic and light linear logic. The sec-
ond subexponential provides the exchange rule. For this system, we construct a
sequent calculus, establish cut elimination, and also provide a complete focused
proof system. We illustrate the expressive power of this system by simulating
Turing computations and categorial grammar parsing for compound sentences.
Using the former, we prove undecidability results. The new system employs
Lambeks non-emptiness restriction [4], which is incompatible with the standard
(sub)exponential setting [6]. Lambeks restriction is crucial for applications in
linguistics: without this restriction, categorial grammars incorrectly mark some
ungrammatical phrases as being correct. This is joint work with Max Kanovich,
Stepan Kuznetsov, and Vivek Nigam.
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Rules of thumb for test results

Zvonimir Šikić

It is well known that tests are not 100% accurate at classifying individuals.
The actual condition of an individual (e.g. diseased, or not diseased) does not
coincide with her test result (positive, or negative). Nevertheless, it is often
presupposed that individuals with negative results can be ruled out, if screening
test is highly sensitive. This has led to the mnemonic SNNOUT - SeNsitive
Negative OUT. Similarly, it is often thought that if screening test is highly
specific, individuals with positive results can be ruled in. This has led to the
mnemonic SPPIN - SPecific Positive IN. But simple probabilistic analysis of
SNNOUT and SPPIN immediately reveals that the rules are incorrect. We
devise the correct and easily applicable rules of thumb that could be of great
help to doctors and patients:

Positive rule – PASSAP (Positive: Add Sensitivity/Specificity And Preva-
lence)
If a patient is positive you need to calculate two sums: sensitivity + preva-
lence and specificity + prevalence. If both sums are less than 100% then the
probability of the patient being diseased is less than 50%.
For example, if prevalence of disease is 4%, test specificity is 85% and test
sensitivity is 95%, your chances of being diseased if positive are still less than
50%, because 85% + 4% < 100% and 95% + 4% < 100%.

Negative rule – NUFSS (Negative: Upward From Sensitivity/Specificity)
If a patient is negative and the prevalence of disease is less than 50% then the
probability of the patient not being diseased is greater than the smaller of the
two values of sensitivity and specificity.
For example, if prevalence of disease is less than 50%, test specificity is 90% and
test sensitivity is 95% your chances of not being diseased if negative are greater
than 90%.

35



Neighborhood semantics and proof

theory for infinitary intuitionistic logic∗

Matteo Tesi

Scuola Normale Superiore

Piazza dei Cavalieri 7

E-mail: matteo.tesi@sns.it

Keywords:
Infinitary logic, Intuitionistic logic, Neighborhood semantics, Proof theory.

Intuitionistic infinitary logic is intuitionistic logic extended with countable dis-
junctions and conjunctions. Its only known semantics is the algebraic one [3].
The natural extension of Kripkean semantics to the infinitary setting is not ad-
equate to deal with infinitary intuitionistic logic, as intuitionistic Kripke frames
correspond to Alexandroff topologies, i.e. topologies closed under infinitary
intersections, and thus they validate the infinitary distributive axiom:

∧

k>0

(Ak ∨B)→
∧

k>0

Ak ∨B

which is not intuitionistically valid.
To start with, we introduce a topological semantics and we prove complete-

ness with respect to countable fragments of infinitary intuitionistic logic. We
then present a neighborhood semantics for infinitary intuitionistic logic1 and
we show that the standard sequent calculus for intuitionistic infinitary logic is
sound and complete with respect to it: in particular, completeness is established
via the transformation of a topological model in a neighborhood one. The key
point is that neighborhood frames have a more fine grained structure in compar-
ison to Kripkean frames: in particular, we consider neighborhood frames which
contain the unit and are closed under supersets and finite intersections. The
latter condition maintains the validity of the finite distributivity law, but does
not entail the validity of the infinitary version.

The new semantics is exploited in order to obtain a labelled sequent cal-
culus G3Iω for intuitionistic infinitary logic and we investigate its structural

∗This work is partly in collaboration with Sara Negri.
1A neighborhood semantics for intuitionistic (finitary) logic was first introduced in [2], but

frames were closed under infinite intersections and corresponded to Alexandroff spaces, rather
than to topological spaces.
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properties along the lines of [4]. As in the tradition of labelled sequent cal-
culi, it enjoys height-preserving admissibility of weakening and contraction as
well as cut admissibility. Furthermore every rule is height-preserving invertible
differently from the unlabelled sequent calculus in which the right rule for the
implication and the right rule for infinitary conjunction are not invertible due
to the context restrictions imposed on the premises of the rules.

By exploiting the structural properties of the calculus we obtain a Takeuti-
style form of completeness via the construction of a reduction tree and the
extraction of a neighborhood countermodel. Finally we introduce an extension
of Gödel-McKinsey-Tarski translation from intuitionistic infinitary logic to an
infinitary version of the S4 modal system. The translation is proved to be sound,
in the sense that if a formula is a theorem of intuitionistic infinitary logic, then
its translation is a theorem of the infinitary S4 system. The converse direction,
namely the faithfulness of the translation, is proved via proof-theoretic methods
by transfinite induction on the height of derivations [1] in the labelled calculus
for infinitary modal logic G3S4ω based on neighborhood semantics.
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3rd workshop Formal Reasoning and Semantics

(FORMALS 2020)

a satellite workshop of 9th conference Logic and Applications
(LAP 2020)

Inter-University Center, Dubrovnik

21–25 September 2020

This workshop is organized within the research project Formal Reason-
ing and Semantics (FORMALS), supported by Croatian Science Foundation
(HRZZ), under the project UIP-2017-05-9219.

The 1st workshop (FORMALS 2018) was also co-located with Logic and Ap-
plications conference (LAP 2018) in Dubrovnik. The 2nd workshop (FORMALS
2019) was held at the Faculty of Teacher Education, University of Zagreb.

Contributions to the 3rd workshop present continuation of work on project
topics presented at previous editions, including:

• semantics and completeness of interpretability logics (L. Mikec, S. Horvat)

• advances in social choice theory (A. Hatzivelkos)

• formal methods in ontological study of cognitive and linguistic concepts
(B. Perak, T. Ban Kirigin)

• security in cyber-physical systems (V. Nigam, invited talk)

Another invited talk (S. Jelić) is about advances in M-system theory, pre-
viously presented in a contributed talk at FORMALS 2019 workshop. We are
also happy to host a contributed talk on a novel approach to Russell’s Paradox
(L. Conti). The workshop is organized in a hybrid form, part of the contributors
being present in Dubrovnik, while others participate online, due to COVID-19
pandemic, which also affects the content of the workshop in one of the talks
(M. Maretić).

We thank the directors of LAP for agreeing this workshop to be a part of
the conference once again.

On behalf of the FORMALS project research group,
Tin Perkov
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A Model for a Free Way Out
of Russell’s Paradox
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As is well-known, Russell’s Paradox blocks Frege’s logicist foundation of
arithmetic, intended as the reconstruction of Peano Arithmetic into – what we
can call – Frege’s Logic (FL), namely second-order logic augmented with Basic
Law V (BLV ). However, we know that such result does not properly prevent
the foundational issue involved in this project because we are able to achieve
the same or even a stronger result, namely deriving FA in a system – which
we will call T -FL – that is doubly weaker than FL, since it is composed by a
weakened logical framework and a restricted version of the non-properly-logical
axiom (BLV ). I briefly present the formal features of (a schematic version of)
such weak version of Logicism and its main syntactical results. Finally, I provide
a model-theoretic proof of its consistency.

1 A Free Fregean Logic – T-FL

This theory involves, as the logical core of the theory (FL) the complete set
of axioms and inference rules of first-order logic without identity (FOL) for
unrestricted first-order quantification and the axioms and inference rules of non-
inclusive negative free logic with identity (NFL=) for restricted quantification
and identity. Additionally, it involves an axiom-schema of universal instantiation
for second-order variables (∀Xφ(X)→ φ(Y )), a rule of universal generalisation
(GEN)), second-order comprehension axiom schema (CA1) and modus ponens
(MP).

The only non-logical abstraction principle that characterises this theory is
the result of a weakening of Basic Law V. I propose a Positive restriction of
BLV , namely a weakening that is explicitly devoted to avoid set-theoretic para-
doxes, by excluding their common feature, namely the circular syntactic mixture
of quantification and negation. I would like to emphasise that, in this Fregean
context, the restriction deals with a second-order version of Russell’s paradox
and then is formulated into, namely inscribed in, the range of a second order
quantifier.

T -BLV : εx.Xx = εx.Y x ↔ Πx(Xx ↔ Y x) ∧ (φ(X) ∧ φ(Y )) – where φ
means “positive”, i.e. it must be specifiable by a positive comprehension for-
mula, namely a formula φ which (even if we replace predicative constants with

1CA) ∃XΠx(Xx↔ α)
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their comprehension formula) considered in its primitive form2, contains bound
second-order variables only in the scope of an even number of negation symbols.

Such theory allows us to define a Fregean version of arithmetical vocabulary.
Additionally, we are able to derive Hume’s principle. Then, we can observe that
the derivation of Hume’s Principle (HP ) from a restricted version of BLV
does not imply its corresponding limitation. This means that, ideally, HP is
true also of cardinal terms which (by corresponding to non-positive extensions
terms) are empty. However, the original Fregean formulation of arithmetical
vocabulary does not involve such sort of the extensional – and then cardinal –
terms. Finally, we are able to prove, in the usual Fregean way, also the existence
of each cardinal number and a free version of Frege’s Theorem3.

2 A model
In this section, I describe a model of T -FL, in order to prove the consistency
of such system4. Before starting, it could be useful providing some preliminary
definitions. We inductively define the Degree n of an extension term εφn as
follows5: εφ0, if φ does not contain second-order quantifiers – namely if φ is a
Predicative formula; εφ1, if φ does contain second-order quantifiers but it does
not contain extension terms that contain second-order quantifiers; εφn+1, if φ
does contain extension terms that contain second-order quantifiers whose highest
Degree is n. Furthermore, we inductively define the Rank n of an extension term
εφn as follows: εφ0, if φ does not contain other extension terms; εφn + 1, if φ
does contain extension terms whose highest Rank is n.

2.1 Interpretation of the terms
First-order domain D and Non-Positive extension-terms The full first-
order domain D consists in the set of natural numbers N augmented with the
singleton {−1}. Such domain – D = N ∪ {-1} – is the domain of unrestricted
quantification (Π and Σ). Its proper subset, constituted by the set of natural
numbers alone – N ⊂ D – is the domain of restricted quantification (∀ and ∃).

In this case, −1 represents the conventional denotation of every “improper”
(extensional) term – which, for sake of simplicity, we will call Non-Positive
extension term. As we have seen, the semantic clauses (as consequences of the
axioms themselves) states that such object belongs to the counter-extension of
every predicate.

2We will consider primitive a formula which contains only primitive symbols of our language
LF (¬,∧,∨,=, ∃) - i.e. ∀X∃x(¬(¬Xx)) is not primitive because its expression could be reduced
to ∃X∃x(¬Xx). For such reason, other formulas, logically equivalent to the Russellian formula
(e.g. ¬∀X(¬(x = εX ∨ Xx))), are not positive because they could be reduced to ∃X(x =
εX ∧ ¬(Xx)).

3Cfr. [2]
4This model is deeply influenced by the Heck’s model for the predicative subsystem of

Frege’s Grundgesetze(cfr. [5]) and by the Frege-Carnap theory of the “chosen object”, which
admit that “improper” terms could receive, as denotation, some (and the same) purely con-
ventional denotation.

5Regarding our notation, we anticipate that the Rank of the extension terms will be indi-
cated by apices, while their Degree by subscripts.

40



Positive and Predicative extension-terms – εφ0. Order all the εφ0 in a
ω × ω-sequence:
- the terms of every Rank constitute an ω-sequence;
- the relation of increasing Rank of the terms holds on the ω-sequence (<εφ0,
εφ1, ..., εφn>)
- the relation of increasing syntactical complexity of the formulas holds on the
terms of every ω-sequence (<εφ00, εφ01, ..., εφ0n>, <εφ10, εφ11, ..., εφ1n>, ...,
<εφn0, εφn1, ..., εφnn>);
- if two terms have the same Rank and the same syntactical complexity, assign
them two distinct and consecutive (second) apices – except in cases where their
formulas are semantically equivalent.

Let J(m,n) be a pairing function that assigns a natural number to every or-
dered pair of natural number (m,n) and define a function J0(m,n) := 2J(m,n).

Domain of second-order variables – ℘(N ∪ {−1}) Remember that every
set α, which is the extension of a Positive and Predicative formula A(x), not
containing free second-order variables, belongs to ℘(N): ∀x(x ∈ α ↔ A(x) is
true). The same set must be assigned to all the semantically equivalent formulas.

Define a formula A(x) – (Positive or not) Predicative and containing free
second-order variables – and a formula A∗(x) – (Positiva or not) Predicative
and not containing free second-order variables – I/x-equivalent if and only if
they are semantically equivalent under an interpretation In of the first-order
variables x that they contain.

Show that, for every formula A(x), Predicative and containing free second-
order variables, exists a formula A∗(x), Predicative and not containing free
second-order variables, I/x-equivalent to it – under an interpretation In of their
first-order variable x: let α be the set assigned to the free second-order variable
X in A(x); since such set is in the considered domain, there is another first-order
formula A∗(x) and there is an assignment I to the variables x in A∗(x) such
that α is also the denotation of A∗(x).

Positive and Predicative Extension-terms – εφ0 – containing free
second-order variables Let εφ0 be an extension-term obtained by applying
the extension operator to a Positive and Predicative formula, containing free
second-order variables. Consider a formula φ∗0 – Positive, Predicative but not
containing free second-order variables – which is I/x-equivalent to φ0. Assign,
to εφ0, the same denotation of εφ∗0.

Positive and not Predicative extension terms – εφn where n>0 (con-
taining bound second-order variables) Order all the εφn>0 in a ω × ω-
sequence by the Rank and the Degree:
- the terms of every Degree (in the subscript) constitute a ω-sequence;
- the relation of increasing Degree of the terms holds on the ω-sequences (<εφ1,
..., ...>, <εφ2, ....,...>, ..., <εφn, ..., ...>);
- the relation of increasing Rank of the terms (in the apex) holds on the terms
of every ω-sequence (<εφ01, εφ11, ..., εφn1>, <εφ02, εφ12, ..., εφn2>, ..., <εφ0n, εφ1n,
..., εφnn>);
- if two terms have the same Degree and the same Rank, assign them two distinct
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and consecutive apices, except in cases where their formulas are semantically
equivalent.

Define another pairing function K(m,n) such that K(m,n) := 2J(m,n)+1.
Inductively prove that K(m,n) assigns a denotation to every Positive and

not Predicative extension term – εφn>0.

2.2 Verifying the axioms
In the last part of the talk, I show that, in this model, every instance of T-BLV
and of CA is true.
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M -system theory, originaly defined in [2, 1], comes from the field of electric
circuitry. In this talk we present multi-valued logic that is derivable from this
theory. Even more, results from [1] are systemized, formalized and extended.
Results about connection of obtained multi-valued logic with known logical sys-
tems, like Dunn/Belnap’s four valued logic and Shramko/Wansing’s sixteen val-
ued logic, are given. New formal results about isomorphisms between M-system
theory and above-mentioned multi-valued logical systems are the main results
that will be presented in this talk.
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Main goal of this paper is definition of a new axiom of social choice theory
which would determine if a given social choice function has the property of elect-
ing compromise winner, where compromise is modelled as a version of Sorites
paradox, as in my previous work [2, 3, 4, 5]. Additional motivation comes from
work of Chatterji, Sen and Zeng [1]. In their paper they propose a social choice
axiom that is satisfied if a social choice function can elect the middle candidate
as the winner on the following profile of preferences:

⌊
n
2

⌋ ⌈
n
2

⌉

A C
B B
C A

Table 1: Basic motivation profile

In their work, Chatterji and others analyze a class of random social choice
functions, and therefore, an axiom formulation is adjusted to that context. Nev-
ertheless, it clearly shows that there is a scientific interest in an approach to the
notion of compromise formulated upon such basic profile of preferences.

However, an axiom of social choice theory should be stated generally, not just
for three candidates scenario. The question arises: what general form should
take an axiom which would be a generalization of described three case scenario.
This leads us to the following definition:

Definition (Weak Compromise Axiom (WCA)). Social choice function Φ sat-
isfies the Weak Compromise Axiom if on every set of three or more candidates,
there is a profile of preferences α, such that the set of winning candidates of
social choice function Φ contains a candidate which is not placed first in any
preference of the profile α.

In definition of Weak Compromise Axiom, we request that there should be
a profile (for every set of three or more candidates) such that social choice
function elects a candidate which is never top-ranked in the set of winning
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candidates. Strong version of the axiom should require that set of winning
candidates contains just one candidate.

Definition (Strong Compromise Axiom (SCA)). Social choice function Φ sat-
isfies the Strong Compromise Axiom if on every set of three or more candidates,
there is a profile of preferences α, such that the set of winning candidates of so-
cial choice function Φ contains only a candidate which is not placed first in any
preference of the profile α.

From those definitions, we can see that if social choice function satisfies SCA,
then it also satisfies WCA. It is also clear that those definitions are generaliza-
tions of the motivation idea from the beginning of the paper; in three candidates
scenario only profiles of type from Table 1 can be used.

In this paper we will show that both definitions are well defined. We will
provide a criterion which positional scoring social choice function must satisfy in
order to satisfy WCA (SCA). Furthermore, we will show that axioms WCA and
SCA are independent of other established axioms of the social choice theory:
namely, Pareto axiom (PA) and positive responsiveness axiom (PRA). Logical
connection of WCA (SCA) and axiom of independence of irrelevant alternatives
(IIA) is also given.
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This talk is based on the paper [1]. Albert Visser [6] introduced system IL
in 1988. In 1990. de Jongh and Veltman proved modal completeness of that
logic. The question arises whether various extensions, such as ILW or ILM are
complete. De Jong and Veltman in [3] and [4] proved modal completeness of
logics ILM, ILP and ILW.

Evan Goris, Marta Bilkova and Joost J. Joosten [1, 5] in 2004. presented
relatively simple proof of modal completeness and decidability of ILW. They did
that by introducing so called assuring succesors.

In this talk, we will give a brief overview on Goris and Joosten [2, 5] con-
struction method for proving completeness of some interpretability logics and
we will see some properties of assuringness. We will use this to give an overview
of the proof of completeness of interpretability logic ILW.

Acknowledgment

The research reported in the paper is partly supported by Croatian Science
Foundation (HRZZ) under the projects UIP-2017-05-9219 and IP-2018-01-7459.

References

[1] Bilkova, M., Goris, E., Joosten, J. J., Smart labels, in J. van Benthem, A.
Troelstra, F. Veltman and A. Visser, editors, Liber Amicorum for Dick de
Jongh. Institute for Logic, Language and Computation, 2004.

[2] Goris, E., Joosten, J., Modal Matters in Interpretability Logics, Logic Jour-
nal of IGPL 16 (2008), 371–412

[3] de Jongh, D. H. J., Veltman, F., Provability logics for relative interpretabil-
ity, P. P. Petkov (ed.), Proceedings of the 1988 Heyting Conference, Plenum
Press, 1990, pp. 31–42

[4] de Jongh, D. H. J., Veltman, F., Modal completeness of ILW, in J. Ger-
brandy, M. Marx, M. de Rijke, and Y. Venema, editors, Essays dedicated
to Johan van Benthem on the occasion of his 50th birthday, Amsterdam
University Press, Amsterdam, 1999.

46



[5] Joosten, J. J., Interpretability formalised, PhD thesis, 2004.

[6] Visser, A., An overview of interpretability logic, Kracht, Marcus (ed.) et
al., Advances in modal logic. Vol. 1. Selected papers from the 1st interna-
tional workshop (AiML’96), Berlin, Germany, 1996, Stanford, CA: CSLI
Publications, CSLI Lect. Notes. 87, 307-359 (1998)

47



A Survey of Online Exam Proctoring

Marcel Maretić
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The coronavirus COVID-19 pandemic is the defining crisis of our time. Tra-
ditional universities are forced to transition to online universities at a moment’s
notice, opening many challenges in the process. Challenges of transitioning
online require new approaches about course delivery and assessment in almost
every possible aspect.

Majority of traditional universities already have some experience in online
teaching because of the prevalence of blended learning. Blended learning usually
includes a Learning Management System (LMS) which supports online teach-
ing. Combined with webinars (video conferencing solution) LMS makes a solid
foundation for teaching fully online. Most universities seem to have handled
the migration of the teaching process reasonably well albeit with a considerable
strain on the staff and resources. On the other hand, most of the assessment pro-
cess has not moved from the classroom (face to face). Migration of assessment
to fully online presents a much greater challenge.

Online exam proctoring tools exist, but because these are commercial they
all suffer common shortcomings: high cost, considerable maintenance demands,
closed black-box behaviour. These solutions have had little appeal for tradi-
tional universities because conducting classroom examinations with students
on-site has simply been a better option in every way. Finally, the closed nature
of these tools prevents academic inquiry about their reliability.

A development of an open sourced, automated, secure and unobtrusive proc-
toring solution for online examinations is needed, with the following desiderata:

i. low maintenance,

ii. integrated with LMS,

iii. unobtrusive and browser based (no need for additional client software),

iv. adaptable/modular (suitable in a variety of scenarios),

v. open source (to ensure low entry costs and to prevent vendor lock-in)
and open for improvement by the academic community.

In its nature, online exam proctoring is adversarial. A suitable metaphor
is an ”arms race”. With high enough stakes motivated cheaters will emerge,
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find holes in the system and gain advantage. Unfortunately, cheating in online
exams scales well. Therefore, openness and adaptability of the system is crucial.
It must be designed for constant improvement in this ”arms race setting.

The development of such a tool poses challenges and presents opportunities
for research in several scientific fields. It seems that technological requirements
for this to work today are attainable. The need for such a tool undeniably exists
now. Therefore, the single remaining obstacle is to develop this software. The
solution could originate from academia as it fits one of the principles of Open
Source: it scratches a personal itch (see [2]).
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Interpretability logics are propositional modal logics extending provability
logics with a binary modality � denoting formal interpretability over some base
theory T . A Veltman frame is a structure (W,R, {Sw : w ∈W}), where (W,R)
is a Kripke frame for the provability logic GL. We use various forms of Veltman
semantics to interpret interpretability logics. By an ILX-frame we mean (a
regular, if not stated otherwise) Veltman frame such that no theorem of ILX
can be refuted using this frame.

In [6] the logic known as ILR (IL + A�B → ¬(A�¬C)�B∧2C) was proven
to be modally complete (w.r.t. generalised semantics); and another, known as
ILW (IL + A�B → A�B ∧2¬A), was known to be modally complete much
earlier [1]. Problems occurred while trying to prove that the combination of
these two logics, ILWR, is modally complete (see [2] for the statement of the
problem and a discussion on how to overcome the problem). At the moment
we believe ILWR is modally complete if it can prove principles contained in a
certain (“W-flavoured”) series of principles.

We define the series of principles (Wn)n∈ω by stating W0 := W = A�B →
A�B ∧2¬A and for n > 0:

Un := 3Cn−1 ∨ · · · ∨3C1;

V1 := A;

for n > 1 : Vn := ¬(Cn−1 �3A ∨Bn−1 ∨ Un−1 → Vn−1 �Bn−1);

for n > 0 : Wn := A�3A ∨Bn ∨ Un → Vn �Bn.

Thus, the first few principles are (W0 actually being equivalent to W1):

W1 :A�3A ∨B1 → A�B1;

W2 :A�3A ∨B2 ∨3C1 → ¬(C1 �3A ∨B1 → A�B1) �B2;

W3 :A�3A ∨B3 ∨3C2 ∨3C1 →
→ ¬(C2 �3A ∨B2 ∨3C1 → ¬(C1 �3A ∨B1 → A�B1) �B2) �B3.
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Earlier this year we gave a talk at the Advances in Modal Logic 2020 confer-
ence where we showed that the principles Wn are arithmetically valid [7]. We
do not yet know e.g. if they are independent from other known principles. Here
we discuss their Veltman semantics.
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interpretability principles. In 13-th Advances in Modal Logic, AiML 2020,
Short papers (accepted), 2020.

[8] Visser, A., An overview of interpretability logic, in: M. Kracht, M. d. Rijke
and H. Wansing, editors, Advances in modal logic ’96, CSLI Publications,
Stanford, CA, 1997 pp. 307–359.

51



Incremental automated safety and security

reasoning with patterns

Vivek Nigam

fortiss GmbH, Munich, Germany & Federal University of Paráıba,
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The development of safety-critical systems requires the control of haz-
ards that can potentially cause harm. To this end, safety and security en-
gineers rely during the development phase on architectural solutions, called
patterns, such as safety monitors, voters, and watchdogs. The goal of these
patterns is to control (identified) faults and threats that can trigger hazards.
Safety patterns can control such faults by e.g., increasing the redundancy of
the system, while security patterns mitigate threats by, e.g., controlling in-
formation flows. Currently, the reasoning of which pattern to use at which
part of the target system to control which hazard is documented mostly
in textual form or by means of models, such as GSN-models, with limited
support for automation.

This paper proposes the use of logic programming engines for automated
reasoning about system safety and security. We propose a domain-specific
language for embedded system safety and security and specify as disjunctive
logic programs reasoning principles used by safety and security engineers
to deploy patterns, e.g., when to use safety monitors, or watchdogs. Our
machinery enables two types of automated reasoning:

(1) identification of which hazards can be controlled and which ones can-
not be controlled by the existing patterns; and

(2) automated recommendation of which patterns could be used at which
place of the system to control potential hazards.

Finally, we apply our machinery to two examples taken from the automo-
tive domain: an adaptive cruise control system and a battery management
system.
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The paper will demonstrate the ConGraCNet application [1] for distinguish-
ing word senses and identifying semantically related lexemes in a corpus by using
the syntactic-semantic patterns of language usage. This unsupervised tagged
corpus graph analysis method is based on the construction grammar approach
to syntactic dependencies. ConGraCNet relies explicitly on the coordinated
[ x and|or y] [4, 2] and [x is a y] syntactic grammatical relations between the
lexical co-occurrences for the construction of the network representation. For
a given source lexeme in a corpus, the method yields associated communities
of collocation lexemes that represent the sense structure and different meanings
based on the context of its usage. By projecting semantic value to a coordinated
syntactical relation [x and|or y], we can filter the lexical collocates with high
conceptual similarity from a corpus and construct clustered lexical networks that
reveal ambiguous referential meanings of a source lexeme. The members of a
cluster are processed with an iterative graph function that finds best candidates
for abstracted class label using [x is a y] syntactic-semantic construction.

For instance, the lexeme assertiveness-n with 20809 occurrences in En-
glish Timestamped JSI web corpus 2014-2019, when processed with n=15 col-
locates used to construct a second-degree coordination graph (pruned with:
degree≥ 2, clustering method: leiden, partition type: mvp), yields the network
of 43 elements and 4 clusters (Figure 1). The [x is a y] syntactic-semantic
construction reveals the class labels in the first and the second degree. In rela-
tion with the members of class 1: [’self-confidence-n’ ’self-esteem-n’ ’confidence-
n’ ’self-advocacy-n’ ’self-worth-n’ ’self-respect-n’ ’self-image-n’ ’esteem-n’ ’self-
awareness-n’ ’self-reliance-n’ ’independence-n’ ’pride-n’ ’Pride-n’ ’motivation-n’
’skill-n’ ], assertiveness-n is related to [’pride-n’, ’pride-n’]1 [’emotion-n’,
’motivation-n’]2. In relation with the members of class 2: [’aggressiveness-n’
’aggression-n’ ’sociability-n’ ’talkativeness-n’ ’impulsivity-n’ ’passivity-n’ ’hyper-
activity-n’ ’hostility-n’ ’irritability-n’ ’impulsiveness-n’ ’shyness-n’ ’restlessness-
n’ ’agitation-n’ ’euphoria-n’ ], assertiveness-n is related to [’aggression-n’,
’trait-n’], [’fear-n’, ’reaction-n’]2. In relation with the members of class 3:
[’decisiveness-n’ ’directness-n’ ’boldness-n’ ’optimism-n’ ’extraversion-n’ ’cour-
age-n’ ’bravery-n’ ’clarity-n’ ’frankness-n’ ], assertiveness-n is [’courage-n’,
’bravery-n’] 1, [faith-n’, ’virtue-n’]2. In relation with the members of class
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Figure 1: Second-degree coordination graph of source lexeme assertiveness-n
pruned with: degree ≥ 2, clustering method: leiden, partition type: mvp. Net-
work of 43 elements and 4 clusters.

4: [’assertiveness-n’ ’cooperativeness-n’ ’dominance-n’ ’listening-n’ ’friendliness-
n’ ], assertiveness-n is related to [’listening-n’, ’skill-n’] 1, [’issue-n’, ’pro-
blem-n’]2.

We will explain the impact of the modulation of the linguistic and graph
parameters, exemplify the application of the procedure on several lexemes in
different languages and corpora and present the implementation of the WordNet
external knowledge databases for further refinement of the results.
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