Capturing Term Algebra Computations in Matching Logic

Dorel Lucanu¹

¹Alexandru Ioan Cuza University of Iași

LAP, Dubrovnik, September 26, 2022

Dorel Lucanu (UAIC)

Term Algebra Computations in ML

▲ ③ ▶ ▲ ≧ ▶ ▲ ≧ ▶ ▲ ≧ ∽ Q ○
LAP, Dubrovnik, Sept. 26, 2022 1/26

2 A Brief Introduction To Matching Logic (ML)

3 Term Algebra in ML

4 Term Algebra Computations in ML

Plan

Introduction

- 2 A Brief Introduction To Matching Logic (ML)
- 3 Term Algebra in ML
- 4 Term Algebra Computations in ML
- 5 Conclusion

・ 何 ト ・ ヨ ト ・ ヨ ト

Matching Logic - a Foundation for K Framework¹

A minimal logic where

- definition of programming languages and
- behavioral properties of their programs

can uniformly specified.

¹https://kframework.org/

Dorel Lucanu (UAIC)

Example: Language Definition

A language definition is just a ML theory:

$$\begin{array}{l} \left\langle \texttt{if}\left(e\right) s_1 \texttt{else} s_2 \rightsquigarrow \kappa \right\rangle \left\langle \sigma \right\rangle \land \neg e \text{: } \textit{Value} \to \bullet \left\langle e \rightsquigarrow \texttt{if}\left(_\right) s_1 \texttt{else} s_2 \rightsquigarrow \kappa \right\rangle \left\langle \sigma \right\rangle \\ \left\langle v \leadsto \texttt{if}\left(_\right) s_1 \texttt{else} s_2 \rightsquigarrow \kappa \right\rangle \left\langle \sigma \right\rangle \land v \text{: } \textit{Value} \to \bullet \left\langle \texttt{if}\left(v\right) s_1 \texttt{else} s_2 \rightsquigarrow \kappa \right\rangle \left\langle \sigma \right\rangle \\ \end{array}$$

$$\begin{array}{l} \left\langle \texttt{if} \left(b \right) s_1 \texttt{else} \, s_2 \rightsquigarrow \kappa \right\rangle \left\langle \sigma \right\rangle \wedge b \texttt{:} \textit{Bool} \to \bullet \left\langle s_1 \rightsquigarrow \kappa \right\rangle \left\langle \sigma \right\rangle \wedge b = \texttt{true} \\ \lor \\ \bullet \left\langle s_2 \rightsquigarrow \kappa \right\rangle \left\langle \sigma \right\rangle \wedge b = \texttt{false} \end{array}$$

 $\begin{array}{l} \langle \operatorname{choose} x \operatorname{from} e \rightsquigarrow \kappa \rangle \langle \sigma \rangle \wedge \neg e \colon Value \to \bullet \langle e \rightsquigarrow \operatorname{choose} x \operatorname{from} _ \rightsquigarrow \kappa \rangle \langle \sigma \rangle \\ \langle v \rightsquigarrow \operatorname{choose} x \operatorname{from} _ \rightsquigarrow \kappa \rangle \langle \sigma \rangle \wedge v \colon Value \to \bullet \langle \operatorname{choose} x \operatorname{from} v \rightsquigarrow \kappa \rangle \langle \sigma \rangle \end{array}$

$$\langle \text{choose } x \text{ from } v \rightsquigarrow \kappa \rangle \langle \sigma \rangle \land v : Value \to \bullet \exists x_0. \langle \kappa \rangle \langle \sigma[x \mapsto x_0] \rangle \land x_0 \in v$$

where

 $\bullet\varphi'$ is matched by all the configurations for that there exists a next configuration in φ' (strong next)

Example: Program Properties

Program properties are also ML patterns:

$$\text{(while (x > 0) x = x-1;} \langle x \mapsto \$x \rangle \land \$x > 3 \to \Box_w \langle \cdot \rangle \langle x \mapsto 0 \rangle$$

(while (true) {}) $\langle x \mapsto \$x \rangle \rightarrow \Box_w \langle \cdot \rangle \langle x \mapsto 0 \rangle$

where

$$\begin{split} \circ \varphi' &\equiv \neg \bullet \neg \varphi' \text{ (all-paths/weak next)} \\ \Box_w \psi &\equiv \nu X. \ \psi \lor (\circ X \land \bullet \top) \qquad \text{(weak always finally)} \end{split}$$

э

The Addressed Challenge

the program properties are checked using symbolic execution (SE)

- **SE** uses various algorithms: matching, unification, anti-unifiction, etc.
- these computations are ML term patterns transformers
- questions:
 - what is the relationship between the initial pattern and the transformed one?
 - how this relation is proved internally within ML?

Introduction

2 A Brief Introduction To Matching Logic (ML)

3 Term Algebra in ML

4 Term Algebra Computations in ML

5 Conclusion

• # • • = • • = •

An ML Itinerary

- An alternative to Hoare/Floyd Logic (Roşu, Ellison, Schulte, AMAST 2010)
- (Many-sorted) Matching Logic (Roşu, LMCS 2017)
- Matching mu-Logic (Chen, Roşu, LICS 2019)
- Applicative Matching Logic (Chen & Roşu, TR 2019; Chen & Lucanu & Roşu: Matching Logic explained. JLAMP 2021.)

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

Syntax

Patterns:

elementary variable $(x \in EV)$ $\varphi ::= x$ |X|set variabile $(X \in SV)$ symbol ($\sigma \in \Sigma$) σ application $\varphi_1 \varphi_2$ bottom $|\varphi_1 \rightarrow \varphi_2|$ implication $|\exists x.\varphi$ existential binder $\mid \mu X.\varphi$ if φ is positive in X least fixpoint binder

3

Semantics Intuitively

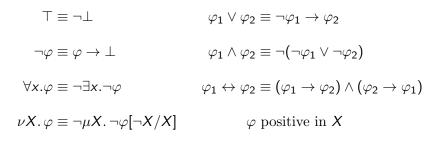
M a set

 ρ : elementary-variables \cup set-variables $\rightarrow M \cup \mathcal{P}(M)$

X	singleton subset $\{\rho(x)\}$
X	subset $\rho(X) \subseteq M$
σ	subset $\sigma_M \subseteq M$
$ \varphi_1 \varphi_2$	$_\cdot_: M \times M \to \mathcal{P}(M)$
⊥	Ø
$\mid \varphi_1 \to \varphi_2$	$M \setminus (arphi_1 _{\mathcal{M}, ho} \setminus arphi_2 _{\mathcal{M}, ho})$
$ \exists x. \varphi$	$\bigcup_{a\in M} \varphi _{M,\rho[a/x]}$
$\mid \mu X. \varphi$	$lfp(A\mapsto \varphi _{M,\rho[A/X]})$

 $M \models \varphi$ iff $|\varphi|_{M,\rho} = M$ for all ρ

3



< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ∧ < ○</p>
LAP, Dubrovnik, Sept. 26, 202212 / 26

Definedness Theory

theory DEF Symbols: def Notations: $\lceil \varphi \rceil \equiv def \varphi$ Axioms: (Definedness) $\forall x. \lceil x \rceil$ Notations:

$$\begin{split} \lfloor \varphi \rfloor &\equiv \neg \lceil \neg \varphi \rceil & // \text{ totality} \\ \varphi_1 &= \varphi_2 \equiv \lfloor \varphi_1 \leftrightarrow \varphi_2 \rfloor & // \text{ equality} \\ \varphi_1 &\subseteq \varphi_2 \equiv \lfloor \varphi_1 \rightarrow \varphi_2 \rfloor & // \text{ set inclusion} \\ x &\in \varphi \equiv x \subseteq \varphi & // \text{ membership} \\ \textbf{endtheory} \end{split}$$

э

くほう くほう くほう

Introduction

2 A Brief Introduction To Matching Logic (ML)

3 Term Algebra in ML

4 Term Algebra Computations in ML

5 Conclusion

・ 何 ト ・ ヨ ト ・ ヨ ト

Term Algebra

- Sorts: S
- Operation symbols: F each operation symbol f ∈ F has a type s₁...s_n → s (we equivalently write f ∈ F_{s1...sn,s}) if n = 0, then f is a constant
- (algebraic) signature: $\Sigma = (S, F)$, $f \in F_{s_1...s_n,s}$
- variables: $X = (X_s)_{s \in S}$; we write x : s for $x \in X_s$

• terms:
$$T_{\Sigma}(X) = (T_{\Sigma}(X)_s)_{s \in S}$$

►
$$X_s \subseteq T_{\Sigma}(X)_s$$

► if $t_i \in T_{\Sigma}(X)_{s_i}$, $i = 1, ..., n$, and $f \in F_{s_1...s_n,s}$, then
 $f(t_1, ..., t_n) \in T_{\Sigma}(X)_s$
(for $n = 0$, we get $F_{[],s} \subseteq T_{\Sigma}(X)_s$)

- $T_{\Sigma}(X)$ is the Σ -algebra freely generated by X
- $T_{\sigma} = T_{\Sigma}(\emptyset)$ is the initial algebra in the category of Σ -algebras

Sorts

theory SORT Imports: DEF Symbols: inh, Sort, $s \in S$ Notations:

$$T_{s} \equiv inh \ s$$

$$s_{1} \leq s_{2} \equiv T_{s_{1}} \subseteq T_{s_{2}}$$

$$\neg_{s}\varphi \equiv (\neg \varphi) \land T_{s}$$

$$\forall x : s. \varphi \equiv \forall x. x \in T_{s} \rightarrow \varphi$$

$$\exists x : s. \varphi \equiv \exists x. x \in T_{s} \land \varphi$$

$$\mu X : s. \varphi \equiv \mu X. X \subseteq T_{s} \land \varphi$$

$$\nu X : s. \varphi \equiv \nu X. X \subseteq T_{s} \land \varphi$$

$$\varphi : s \equiv \exists z : s. \varphi = z$$
Axioms:
$$\forall x. x \in T_{Sort} \leftrightarrow [T_{x}]$$

$$\exists x. x = Sort$$

$$Sort \in T_{Sort}$$

$$s \in T_{Sort}$$

// inhabitants of sort s // subsort relation // negation within sort s // \forall within sort s // \exists within sort s // μ within sort s // ν within sort s // "typing"

endtheory

э

Function Symbols F^2

theory ALGEBRA(S, F) Symbols: $s \in S, f \in F$, SigOps, SigArgs Notations:

 $f: s_1 \otimes \cdots \otimes s_n \bigoplus s \equiv \forall x_1: s_1 \dots \forall x_n: s_n. \exists y: s. f x_1 \dots x_n = y$ Axioms:

 $\begin{array}{ll} ({\rm Sort}) & s:Sort \quad {\rm for} \ s \in S \\ ({\rm Function}) & f:s_1 \otimes \cdots \otimes s_n \bigoplus s \quad {\rm for} \ f \in F_{s_1 \ldots s_n,s} \\ ({\rm Signature \ Ops}) & {\rm T}_{{\rm SigOps}} = \bigvee_{f \in F} f \\ ({\rm Signature \ Args}) & {\rm T}_{{\rm SigArgs}} = \bigvee_{f \in F_{s_1 \ldots s_n,s}} {\rm T}_{s_1 \otimes \cdots \otimes s_n} \end{array}$

²Product, sum, and function sorts are defined in Chen & Lucanu & Roşu: Matching Logic Explained. JLAMP 2021.

Dorel Lucanu (UAIC)

No-Confusion and No-Junk Properties

theory NOCONFUSION(S, F) Imports: ALGEBRA(S, F) Axioms:

 $\begin{array}{ll} \mbox{(Distinct Function)} & f \neq f' & \mbox{for distinct operation symbols } f, f' \in F \\ \mbox{(No Confusion)} & & \forall f, f': \mbox{SigOps.} \forall \textit{args}, \textit{args}': \mbox{SigArgs.} \\ & & (f \textit{args}) = (f' \textit{args}') \rightarrow f = f' \land \textit{args} = \textit{args}' \\ \end{array}$

endtheory

theory NOJUNK(S, F) Imports: ALGEBRA(S, F)Notations:

$$\begin{array}{l} D_s \equiv (\text{proj } i \ D) \text{ if } s \text{ is } s_i \text{ for some } s_i \in S_{\text{nonvoid}} \\ D_s \equiv \bot \text{ if } s \in S_{\text{nonvoid}} \\ f \ D_w \equiv f \ D_{s_1'} \dots D_{s_m'} \quad \text{where } w = s_1' \dots s_m' \\ F \ D \equiv \left\langle \bigvee_{f \in F_{w,s_1}, w \in S^*} f \ D_w , \dots , \bigvee_{f \in F_{w,s_n}, w \in S^*} f \ D_w \right\rangle \end{array}$$

Axioms:

 $\begin{array}{ll} \mbox{(No Junk Void)} & \mbox{$T_s=$\bot$ for each $s\in S_{void}$} \\ \mbox{(No Junk Non-Void)} & \mbox{$\langle T_{s_1},\ldots,T_{s_n}\rangle=\mu D.\,F\,D$} \\ \mbox{endtheory} \end{array}$

Term Algebra³

theory TERMALGEBRA(S, F)
Imports: NOCONFUSION(S, F)
Imports: NOJUNK(S, F)
endtheory

Theorem

If $M \models \text{TERMALGEBRA}(F)$, then $\alpha(M)$ is isomorphic to the term algebra T_F .

where $\alpha(M)$ is the algebra A with

• A_s the interpretation of the pattern T_s ,

▶ $A_f : A_{s_1} \times \cdots \times A_{s_n} \to A_s$ (enforced by the axiom $f : s_1 \otimes \cdots \otimes s_n \bigoplus s$)

³Chen & Lucanu & Rosu: Initial algebra semantics in matching logic- TR UIUC 2020. Dorel Lucanu (UAIC) Term Algebra Computations in ML LAP, Dubrovnik, Sept. 26, 202219/26

Plan

1 Introduction

- 2 A Brief Introduction To Matching Logic (ML)
- 3 Term Algebra in ML
- 4 Term Algebra Computations in ML

5 Conclusion

・ 何 ト ・ ヨ ト ・ ヨ ト

Computations in Term Algebra (Partial List)

- matching: given t_1 and t_2 , compute σ s.t. $t_2 = t_1 \sigma$ (if any);
- unification: given t_1 and t_2 , compute (the most general) σ s.t. $t_2\sigma = t_1\sigma$ (if any);
- antiunification: given t_1 and t_2 , compute (the least general) t and σ_1, σ_2 s.t. $t \sigma_1 = t_1$ and $t \sigma_2 = t_2$;
- ▶ rewriting: $t_1 \Rightarrow_R t_2$ iff there is a rule $\ell \Rightarrow r \in R$, a context *u*, and a matching substitution σ s.t. $t_1 = u[\ell \sigma]$ and $t_2 = u[r \sigma]$;
- ▶ narrowing: $t_1 \Rightarrow_R t_2$ iff there is a rule $\ell \Rightarrow r \in R$, a context u, and a unifier σ s.t. $t_1 = u[\ell \sigma]$ and $t_2 = u[r \sigma]$;

Questions:

- Which of these can be captured in ML?
- If yes, can the corresponding algorithm be instrumented to produce proof objects for the relationships between their inputs and outputs?

Example: Capturing the Unification I

Term Algebra	ML
term <i>t</i>	t
ground instances of t	$\exists var(t). t$
substitution σ (σ not circular ⁴)	$\phi^{\sigma} \equiv \bigwedge_{x \mapsto u \in \sigma} x = u$
tσ	$\exists \mathit{var}(t) \setminus \mathit{var}(t \sigma). t \wedge \phi^{\sigma}$
$\sigma \leq \eta$ w.r.t. t	$\exists var(t,\eta). t \land \phi^{\eta} \to \exists var(t,\sigma). t \land \phi^{\sigma}$
σ unifier of t_1 and t_2 $(t_1\sigma = t_2\sigma)$	$\exists \mathit{var}(\sigma) \setminus \mathit{var}(t_1,t_2). t_1 \wedge t_2 \wedge \phi^\sigma$
most general unifier $mgu(t_1, t_2)$	$t_1\wedge t_2 \hspace{0.1in} (=(t_i\wedge (t_1=t_2)))$

 $^{4}\forall x. \forall i \geq 1. x \notin var(x \sigma^{i})$

Dorel Lucanu (UAIC)

· · ◆ 母 ▶ · ◆ 聖 ▶ · ◆ 国 ▶ · ○ ♀ ○ LAP, Dubrovnik, Sept. 26, 2022.22 / 26

Example: Capturing the Unification II⁵

Unification Algorithm

Delete:	$P \cup \{t \doteq t\} \Rightarrow P$
Decomposition:	$P \cup \{(f t_1 \ldots t_n) \doteq (f t'_1 \ldots t'_n)\} \Rightarrow P \cup \{t_1 \doteq t'_1, \ldots, t_n \doteq t'_n\}$
Orient:	$P \cup \{(f t_1 \ldots t_n) \doteq x\} \Rightarrow P \cup \{x \doteq (f t_1 \ldots t_n)\}$
Elimination:	$P \cup \{x \doteq t\} \Rightarrow P\{x \mapsto t\} \cup \{x \doteq t\} \text{ if } x \notin var(t), x \in var(P)$
Symbol clash:	$P \cup \{(f t_1 \ldots t_n) \doteq (g t'_1 \ldots t'_n)\} \Rightarrow \dashv$
Occurs check:	$P \cup \{x \doteq (f t_1 \ldots t_n)\} \Rightarrow \exists, \text{ if } x \in var(((f t_1 \ldots t_n)))$

Capturing Unification Algorithm in ML

Unification Algorithm	ML
$P = \{u_1 \doteq v_1, \ldots, u_n \doteq v_n\}$	$\phi^P = \bigwedge_i u_i = v_i$
execution step $P \Rightarrow P'$	$\phi^{\mathcal{P}} \leftrightarrow \phi^{\mathcal{P}'}$
	proof object for TERMALGEBRA($\mathcal{S},\mathcal{F}) \vdash \phi^{\mathcal{P}} \leftrightarrow \phi^{\mathcal{P}'}$
successful execution $P \Rightarrow \sigma$	$\phi^P \leftrightarrow \phi^\sigma$
	proof object for TERMALGEBRA $(S,F) \vdash \phi^P \leftrightarrow \phi^\sigma$

Plan

1 Introduction

- 2 A Brief Introduction To Matching Logic (ML)
- 3 Term Algebra in ML
- 4 Term Algebra Computations in ML

・ 何 ト ・ ヨ ト ・ ヨ ト

Concluding remarks

- Matching Logic (ML) faithfully captures the term algebra (up to an isomorphism).
- Many meta-level concepts in term algebra can be internally represented within ML.
- Certain algorithms in the term algebra can be seen as transformers of ML patterns logically related (e.g., equivalent patterns).
- These algorithms can be instrumented to produce proof objects for the logical relation between patterns.
- ► This talk presented the particular case of the syntactical unification.

く 何 ト く ヨ ト く ヨ ト

Questions?

Thanks!

Dorel Lucanu (UAIC)

Term Algebra Computations in ML

LAP, Dubrovnik, Sept. 26, 202226 / 26

æ

< □ > < □ > < □ > < □ > < □ >