Various notions of computability of subsets of topological and metric spaces (2)

Vedran Čačić, Marko Horvat, Zvonko Iljazović

23/09/2021

Let (X, d, α) be a computable metric space, $A, B \subseteq X$ and $\varepsilon>0$. We write $A \preceq_{\varepsilon} B$ if for all $a \in A$, there exists $b \in B$ such that $d(a, b)<\varepsilon$. We write $A \approx_{\varepsilon} B$ if $A \preceq_{\varepsilon} B$ and $B \preceq_{\varepsilon} A$.

Let (X, d, α) be a computable metric space, $A, B \subseteq X$ and $\varepsilon>0$. We write $A \preceq_{\varepsilon} B$ if for all $a \in A$, there exists $b \in B$ such that $d(a, b)<\varepsilon$. We write $A \approx_{\varepsilon} B$ if $A \preceq_{\varepsilon} B$ and $B \preceq_{\varepsilon} A$.
$N \subseteq X$ is computable if N is compact and there is a recursive function $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $k \in \mathbb{N}, N \approx_{2^{-k}} \Lambda_{\varphi(k)}$.

Let (X, d, α) be a computable metric space, $A, B \subseteq X$ and $\varepsilon>0$. We write $A \preceq_{\varepsilon} B$ if for all $a \in A$, there exists $b \in B$ such that $d(a, b)<\varepsilon$. We write $A \approx_{\varepsilon} B$ if $A \preceq_{\varepsilon} B$ and $B \preceq_{\varepsilon} A$.
$N \subseteq X$ is computable if N is compact and there is a recursive function $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $k \in \mathbb{N}, N \approx_{2^{-k}} \Lambda_{\varphi(k)}$.

When (X, d) is complete, we get that N is compact at a discount:

Lemma

Let (X, d, α) be a computable metric space such that (X, d) is complete. If N is closed in (X, d) and there is a recursive function $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $k \in \mathbb{N}, N \approx_{2^{-k}} \Lambda_{\varphi(k)}$, then N is computable in (X, d, α).

Proof.

Since N is a closed subset of a complete metric space, N is also complete. Additionally, for all $k \in \mathbb{N}$, there exists a finite set $\Lambda_{\varphi(k)}$ such that $N \preceq_{2-k} \Lambda_{\varphi(k)}$, so N is totally bounded. These two properties of N imply that N is compact.

We say that $M \subseteq X$ is computable from above in (X, d, α) if there is a recursive $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $k \in \mathbb{N}, M \preceq_{2^{-k}} \Lambda_{f(k)}$.
$N \subseteq X$ is computable if N is compact and there is a recursive function $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $k \in \mathbb{N}, N \approx_{2^{-k}} \Lambda_{\varphi(k)}$.

This is the theorem we want to prove next:
Theorem
Let (X, d, α) be a computable metric space such that (X, d) is complete. Then $M \subseteq X$ is computable from above in (X, d, α) if and only if there exists a computable $N \supseteq M$.

Theorem

Let (X, d, α) be a computable metric space such that (X, d) is complete. Then $M \subseteq X$ is computable from above in (X, d, α) if and only if there exists a computable $N \supseteq M$.

Proof.

\Leftrightarrow Trivial. For all $k, N \approx_{2^{-k}} \Lambda_{f(k)}$ implies $N \preceq_{2^{-k}} \Lambda_{f(k)}$, which in turn implies $M \preceq_{2^{-k}} \Lambda_{f(k)}$ since $M \subseteq N$.
\Rightarrow We define the (c.e.) relation $\Gamma \subseteq \mathbb{N}^{3}$ with $\Gamma(u, k, v): \Longleftrightarrow$

$$
\begin{align*}
& (\forall j \in[u])(j \in[v]) \wedge \tag{1}\\
& (\forall j \in[v])\left(\exists j^{\prime} \in[u]\right)\left(d\left(\alpha_{j}, \alpha_{j^{\prime}}\right)<3 \cdot 2^{-k}\right) \wedge \tag{2}\\
& (\forall j \in[f(k+1)])\left(\forall j^{\prime} \in[u]\right)\left(d\left(\alpha_{j}, \alpha_{j^{\prime}}\right) \leq \frac{3}{2} \cdot 2^{-k} \rightarrow j \in[v]\right) . \tag{3}
\end{align*}
$$

$\Lambda_{u} \subseteq \Lambda_{v} \quad \Lambda_{v} \preceq_{3 \cdot 2^{-k}} \Lambda_{u} \quad$ given by f in next step and no one left behind goes in \Rightarrow close really close \Rightarrow goes in

$$
\begin{align*}
& (\forall j \in[u])(j \in[v]) \wedge \tag{1}\\
& (\forall j \in[v])\left(\exists j^{\prime} \in[u]\right)\left(d\left(\alpha_{j}, \alpha_{j^{\prime}}\right)<3 \cdot 2^{-k}\right) \wedge \tag{2}\\
& (\forall j \in[f(k+1)])\left(\forall j^{\prime} \in[u]\right)\left(d\left(\alpha_{j}, \alpha_{j^{\prime}}\right) \leq \frac{3}{2} \cdot 2^{-k} \rightarrow j \in[v]\right) . \tag{3}
\end{align*}
$$

We can prove that $\forall u \forall k \exists v \Gamma(u, k, v)$: simply take v such that

$$
[v]=[u] \cup\left\{j \in[f(k+1)]: d\left(\alpha_{j}, \Lambda_{u}\right)<2 \cdot 2^{-k}\right\} .
$$

Hence there exists a recursive function φ such that for all u and k we have $\Gamma(u, k, \varphi(u, k))$. We define by primitive recursion:

$$
\begin{aligned}
\psi(0) & :=f(0), \\
\psi(k+1) & :=\varphi(\psi(k), k) .
\end{aligned}
$$

The function ψ is recursive and for all $k, \Gamma(\psi(k), k, \psi(k+1))$ holds. Let

$$
N:=\overline{\bigcup_{k \in \mathbb{N}} \Lambda_{\psi(k)}}
$$

$$
\begin{gathered}
(\forall j \in[u])(j \in[v]) \\
(\forall j \in[v])\left(\exists j^{\prime} \in[u]\right)\left(d\left(\alpha_{j}, \alpha_{j^{\prime}}\right)<3 \cdot 2^{-k}\right) \\
\Lambda_{\psi(k)} \approx_{3 \cdot 2^{-k}} \Lambda_{\psi(k+1)}\left(\text { due to }\left(\Gamma_{1}\right),\left(\Gamma_{2}\right)\right) \\
\Lambda_{\psi(k)} \approx_{3 \cdot 2^{-k}} \Lambda_{\psi(k+1)} \approx_{3 \cdot 2^{-k-1}} \Lambda_{\psi(k+2)} \approx_{3 \cdot 2^{-k-2}} \Lambda_{\psi(k+3)} \ldots \\
\Lambda_{\psi\left(k_{1}\right)} \approx_{3 \cdot 2^{-k_{1}\left(1+\frac{1}{2}+\frac{1}{4}+\ldots\right)}} \Lambda_{\psi\left(k_{2}\right)} \text { when } k_{1}<k_{2} \\
\Lambda_{\psi\left(k_{1}\right)} \approx_{3 \cdot 2^{1-k_{1}}} \Lambda_{\psi\left(k_{2}\right)} \text { when } k_{1}<k_{2} \\
\left.\Lambda_{\psi\left(k_{1}\right)} \approx_{3 \cdot 2^{1-k_{1}}} \bigcup_{k} \Lambda_{\psi(k)} \text { (use }\left(\Gamma_{1}\right) \text { for } k \leq k_{1}\right) \\
\Lambda_{\psi\left(k_{1}\right)} \approx_{4 \cdot 2^{1-k_{1}}} \overline{\bigcup_{k} \Lambda_{\psi(k)}} \\
\Lambda_{\psi\left(k_{1}\right)} \approx_{2^{-\left(k_{1}-3\right)}} N
\end{gathered}
$$

Hence, for all $k \in \mathbb{N}$ we have

$$
\Lambda_{\psi(k+3)} \approx_{2^{-k}} N
$$

Since $k \mapsto \psi(k+3)$ is recursive, by our Lemma N is computable.

$$
\begin{equation*}
(\forall j \in[f(k+1)])\left(\forall j^{\prime} \in[u]\right)\left(d\left(\alpha_{j}, \alpha_{j^{\prime}}\right) \leq \frac{3}{2} \cdot 2^{-k} \rightarrow j \in[v]\right) \tag{3}
\end{equation*}
$$

Finally, to prove $M \subseteq N$, we first prove that for all k, $M \preceq_{2^{-k}} \Lambda_{\psi(k)}$ holds. We do so by induction on k :
$k=0$ We have that $M \preceq_{2^{-k}} \Lambda_{f(0)}=\Lambda_{\psi(0)}$.
$k+1$ Let $x \in M$. From $M \preceq_{2-(k+1)} \Lambda_{f(k+1)}$, there exists $j \in[f(k+1)]$ such that $d\left(x, \alpha_{j}\right)<2^{-k-1}$. The induction hypothesis implies there exists $j^{\prime} \in[\psi(k)]$ such that $d\left(x, \alpha_{j^{\prime}}\right)<2^{-k}$ holds. We now have

$$
d\left(\alpha_{j}, \alpha_{j^{\prime}}\right)<\frac{3}{2} \cdot 2^{-k}
$$

so $j \in[\psi(k+1)]$ due to $\left(\Gamma_{3}\right)$.
To see that $M \subseteq N$, let $x \in M$. For all $k \in \mathbb{N}$, there is an $x_{k} \in \Lambda_{\psi(k)}$ such that $d\left(x, x_{k}\right)<2^{-k}$. The sequence $\left(x_{k}\right)$ in $\bigcup_{k} \Lambda_{\psi(k)}$ converges to x, so $x \in \overline{\bigcup_{k} \Lambda_{\psi(k)}}=N$.

Theorem

Let (X, d, α) be a computable metric space. If $K \subseteq X$ is semicomputable, then K is computable from above.

Proof.

We define

$$
\Gamma:=\left\{(k, j) \in \mathbb{N}^{2}: K \subseteq J_{j}, \rho_{i}<2^{-k} \text { for all } i \in[j]\right\}
$$

The set K is compact, so it is totally bounded. Hence, for all $k \in \mathbb{N}$, there exists $j \in \mathbb{N}$ such that $\Gamma(k, j)$ holds. By the selection theorem, there exists a recursive function $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $k \in \mathbb{N}, \Gamma(k, \varphi(k))$ holds. Hence we have

$$
K \preceq_{2^{-k}}\left\{\lambda_{i}: i \in[\varphi(k)]\right\} .
$$

Let τ be the bijective enumeration of \mathbb{N}^{2} and τ_{1} its first coordinate map. Then by the above we get

$$
K \preceq_{2^{-k}}\left\{\alpha_{i}: i \in \tau_{1}([\varphi(k)])\right\} .
$$

The function $k \mapsto \tau_{1}([\varphi(k)])$ is c.f.v., so there exists a recursive function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $k \in \mathbb{N},[f(k)]=\tau_{1}([\varphi(k)])$. Therefore,

$$
K \preceq_{2^{-k}}\left\{\alpha_{i}: i \in[f(k)]\right\}=\Lambda_{f(k)}
$$

Note that the converse does not hold in general by a simple cardinality argument. There exist only countably many semicomputable sets (as there are only countably many recursive functions), but e.g. every one-element subset of $[0,1]$ is computable from above (due to the trivial direction of the first theorem).

