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Let (X , d , α) be a computable metric space, A,B ⊆ X and ε > 0.
We write A �ε B if for all a ∈ A, there exists b ∈ B such that
d(a, b) < ε. We write A ≈ε B if A �ε B and B �ε A.

N ⊆ X is computable if N is compact and there is a recursive
function ϕ : N→ N such that for all k ∈ N, N ≈2−k Λϕ(k).

When (X , d) is complete, we get that N is compact at a discount:

Lemma
Let (X , d , α) be a computable metric space such that (X , d) is
complete. If N is closed in (X , d) and there is a recursive function
ϕ : N→ N such that for all k ∈ N, N ≈2−k Λϕ(k), then N is
computable in (X , d , α).

Proof.
Since N is a closed subset of a complete metric space, N is also
complete. Additionally, for all k ∈ N, there exists a finite set Λϕ(k)
such that N �2−k Λϕ(k), so N is totally bounded. These two
properties of N imply that N is compact.
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We say that M ⊆ X is computable from above in (X , d , α) if there
is a recursive f : N→ N such that for all k ∈ N, M �2−k Λf (k).

N ⊆ X is computable if N is compact and there is a recursive
function ϕ : N→ N such that for all k ∈ N, N ≈2−k Λϕ(k).

This is the theorem we want to prove next:

Theorem
Let (X , d , α) be a computable metric space such that (X , d) is
complete. Then M ⊆ X is computable from above in (X , d , α) if
and only if there exists a computable N ⊇ M.
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Theorem
Let (X , d , α) be a computable metric space such that (X , d) is
complete. Then M ⊆ X is computable from above in (X , d , α) if
and only if there exists a computable N ⊇ M.

Proof.
⇐ Trivial. For all k , N ≈2−k Λf (k) implies N �2−k Λf (k), which in
turn implies M �2−k Λf (k) since M ⊆ N.

⇒ We define the (c.e.) relation Γ ⊆ N3 with Γ(u, k , v) :⇐⇒

(∀j ∈ [u])(j ∈ [v ]) ∧ (Γ1)

(∀j ∈ [v ])(∃j ′ ∈ [u])
(
d(αj , αj ′) < 3 · 2−k

)
∧ (Γ2)

(∀j ∈ [f (k + 1)])(∀j ′ ∈ [u])
(
d(αj , αj ′) ≤ 3

2 · 2
−k → j ∈ [v ]

)
. (Γ3)

Λu ⊆ Λv Λv �3·2−k Λu given by f in next step and
no one left behind goes in ⇒ close really close ⇒ goes in

4 / 9



(∀j ∈ [u])(j ∈ [v ]) ∧ (Γ1)

(∀j ∈ [v ])(∃j ′ ∈ [u])
(
d(αj , αj ′) < 3 · 2−k

)
∧ (Γ2)

(∀j ∈ [f (k + 1)])(∀j ′ ∈ [u])
(
d(αj , αj ′) ≤ 3

2 · 2
−k → j ∈ [v ]

)
. (Γ3)

We can prove that ∀u ∀k ∃v Γ(u, k , v): simply take v such that

[v ] = [u] ∪
{
j ∈ [f (k + 1)] : d(αj ,Λu) < 2 · 2−k

}
.

Hence there exists a recursive function ϕ such that for all u and k
we have Γ

(
u, k , ϕ(u, k)

)
. We define by primitive recursion:

ψ(0) := f (0),
ψ(k + 1) := ϕ

(
ψ(k), k

)
.

The function ψ is recursive and for all k , Γ
(
ψ(k), k , ψ(k + 1)

)
holds. Let

N :=
⋃

k∈N
Λψ(k).
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(∀j ∈ [u])(j ∈ [v ]) (Γ1)

(∀j ∈ [v ])(∃j ′ ∈ [u])
(
d(αj , αj ′) < 3 · 2−k

)
(Γ2)

Λψ(k) ≈3·2−k Λψ(k+1) (due to (Γ1),(Γ2))

Λψ(k) ≈3·2−k Λψ(k+1) ≈3·2−k−1 Λψ(k+2) ≈3·2−k−2 Λψ(k+3) . . .

Λψ(k1) ≈3·2−k1 (1+1
2+1

4+...)
Λψ(k2) when k1 < k2

Λψ(k1) ≈3·21−k1 Λψ(k2) when k1 < k2

Λψ(k1) ≈3·21−k1

⋃
k

Λψ(k) (use (Γ1) for k ≤ k1)

Λψ(k1) ≈4·21−k1

⋃
k

Λψ(k)

Λψ(k1) ≈2−(k1−3) N

Hence, for all k ∈ N we have

Λψ(k+3) ≈2−k N.

Since k 7→ ψ(k + 3) is recursive, by our Lemma N is computable.
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(∀j ∈ [f (k + 1)])(∀j ′ ∈ [u])
(
d(αj , αj ′) ≤ 3

2 · 2
−k → j ∈ [v ]

)
(Γ3)

Finally, to prove M ⊆ N, we first prove that for all k ,
M �2−k Λψ(k) holds. We do so by induction on k :

k = 0 We have that M �2−k Λf (0) = Λψ(0).

k + 1 Let x ∈ M. From M �2−(k+1) Λf (k+1), there exists
j ∈ [f (k + 1)] such that d(x , αj) < 2−k−1. The induction
hypothesis implies there exists j ′ ∈ [ψ(k)] such that
d(x , αj ′) < 2−k holds. We now have

d(αj , αj ′) < 3
2 · 2

−k ,

so j ∈ [ψ(k + 1)] due to (Γ3).

To see that M ⊆ N, let x ∈ M. For all k ∈ N, there is an
xk ∈ Λψ(k) such that d(x , xk) < 2−k . The sequence (xk) in⋃

k Λψ(k) converges to x , so x ∈
⋃

k Λψ(k) = N.
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Theorem
Let (X , d , α) be a computable metric space. If K ⊆ X is
semicomputable, then K is computable from above.

Proof.
We define

Γ := {(k , j) ∈ N2 : K ⊆ Jj , ρi < 2−k for all i ∈ [j ]}.

The set K is compact, so it is totally bounded. Hence, for all
k ∈ N, there exists j ∈ N such that Γ(k , j) holds. By the selection
theorem, there exists a recursive function ϕ : N→ N such that for
all k ∈ N, Γ(k , ϕ(k)) holds. Hence we have

K �2−k {λi : i ∈ [ϕ(k)]}.
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Let τ be the bijective enumeration of N2 and τ1 its first coordinate
map. Then by the above we get

K �2−k {αi : i ∈ τ1([ϕ(k)])}.

The function k 7→ τ1([ϕ(k)]) is c.f.v., so there exists a recursive
function f : N→ N such that for all k ∈ N, [f (k)] = τ1([ϕ(k)]).
Therefore,

K �2−k {αi : i ∈ [f (k)]} = Λf (k).

Note that the converse does not hold in general by a simple
cardinality argument. There exist only countably many
semicomputable sets (as there are only countably many recursive
functions), but e.g. every one-element subset of [0, 1] is computable
from above (due to the trivial direction of the first theorem).
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