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Let (X, d,a) be a computable metric space, A,B C X and € > 0.
We write A <, B if for all a € A, there exists b € B such that
d(a,b) < e. We write A~. Bif A=<, B and B <. A.
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When (X, d) is complete, we get that N is compact at a discount:

Lemma

Let (X, d,«) be a computable metric space such that (X, d) is
complete. If N is closed in (X, d) and there is a recursive function
¢ : N — N such that for all k € N, N ~2p—« Ny(i), then N is
computable in (X, d, a).

Proof.

Since N is a closed subset of a complete metric space, N is also
complete. Additionally, for all k € N, there exists a finite set Ay
such that N =5« A(x), so N is totally bounded. These two
properties of N imply that N is compact. O
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We say that M C X is computable from above in (X, d, «) if there
is a recursive f : N — N such that for all k € N, M =5« Ag(y).

N C X is computable if N is compact and there is a recursive
function ¢ : N — N such that for all k € N, N 55—« Ay

This is the theorem we want to prove next:

Theorem

Let (X, d,«) be a computable metric space such that (X, d) is
complete. Then M C X is computable from above in (X, d, «) if
and only if there exists a computable N O M.
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Theorem

Let (X, d,«) be a computable metric space such that (X, d) is
complete. Then M C X is computable from above in (X, d,«) if
and only if there exists a computable N O M.

Proof.
Trivial. For all k, N a5« Ag() implies N =<5« Ag(y), which in
turn implies M =, .« Ag(x) since M C N.

We define the (c.e.) relation ' C N3 with '(u, k, v) :<=

(Vj € [u)U € [vD) A (T1)
(vj € W(E' € [u])(d(ay, ) <3-275) A (M2)
(Vj e [f(k+ D]V € [u])(d(aj,aj/) < % 27k e [v]) (3)

AN, CA, Ay =30-« A, given by f in next step and
no one left behind goes in = close really close = goes in
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(Vj € [u)l € VD) A (M)
(vj € V(3 € [uD)(d(ay, ayr) <3-279) A (M2)
(Vj € [F(k + 1)) € [u]) (d(ay, 0) < §-27 = j € [v]). (T3)

We can prove that VuVk 3v I (u, k,v): simply take v such that
[ = W] U {J € [F(k + D] s (o, ) < 2-27).

Hence there exists a recursive function ¢ such that for all v and k
we have r(u, k, o(u, k)) We define by primitive recursion:

$(0) = £(0),
Bk +1) = p((k), k).

The function 1 is recursive and for all k, F(¢(k), k,(k + 1))

holds. Let
N = UkEN /\w(k)
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(7 € [uDl € [V]) (M)
(V) € WDE € [ul)(d(ay, ) <3-27%) (M2)
Ny (k) R3.2-k Ny(ky1) (due to (M1),(M2))
Ny F3.2-k Np(kt1) R3.2-k-1 Np(kt2) F3.0-k-2 Ny(k3) - -
Nk %3.2—k1(1+%+%+._) Ny(ko) When ki < ko

At/)(kl) N3.01—ky /\w(kz) when ki < ky
Al/)(/q) Ro3.01—k Uk A¢(k) (use (I'1) for k < ky)
Notr) Faar-n [, Nt
Ny(ka) Ro-ta-3 N
Hence, for all kK € N we have
Ay(k+3) Ro-x N.

Since k — 1(k + 3) is recursive, by our Lemma N is computable.
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(%) € [f(k+ ()" € [u]) (d(aj,05) < 5 -27 = j e [v]) (T3)

Finally, to prove M C N, we first prove that for all k,
M =5« Ay(ky holds. We do so by induction on k:

We have that M =k /\f(o) = /\1/1(0)-

Let x € M. From M =,_(+1) Af(ky1), there exists
j € [f(k +1)] such that d(x, ;) < 2751, The induction
hypothesis implies there exists j' € [1)(k)] such that

d(x, ;1) < 27 holds. We now have

d(aj,ap) < 3-275,

so j € [¢(k + 1)] due to (I'3).

To see that M C N, let x € M. For all k € N, there is an
Xk € Ny(k) such that d(x, xx) < 27k, The sequence (x) in
Uy Ay(k) converges to x, so x € [J, Ay) = N.
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Theorem
Let (X, d,«) be a computable metric space. If K C X is
semicomputable, then K is computable from above.

Proof.
We define

M= {(k,j) € N?: K C J;, p; < 27  for all i € []}.

The set K is compact, so it is totally bounded. Hence, for all

k € N, there exists j € N such that I'(k, ) holds. By the selection
theorem, there exists a recursive function ¢ : N — N such that for
all k € N, T'(k, ¢(k)) holds. Hence we have

K =o-k {Ait i € [p(k)]}.

8/9



Let 7 be the bijective enumeration of N2 and 7 its first coordinate
map. Then by the above we get

K Zp-k {aj: i € m([e(K)])}

The function k — 11([(k)]) is c.f.v., so there exists a recursive
function f : N — N such that for all k € N, [f(k)] = m1([¢(k)]).

Therefore,
K =o—k {O[,‘Z i € [f(k)]} = /\f(k)' L]

Note that the converse does not hold in general by a simple
cardinality argument. There exist only countably many
semicomputable sets (as there are only countably many recursive
functions), but e.g. every one-element subset of [0, 1] is computable
from above (due to the trivial direction of the first theorem).
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