
1

Automating Safety Proofs about Cyber-Physical
Systems using Rewriting Modulo SMT

Vivek Nigam2,3, abd Carolyn Talcott1

3Federal University of Paraíba, Brazil

1SRI International, USA
2Huawei Munich Research Center, Germany

2

Cyber-Physical Systems

Cyber-Physical Systems (CPSs) are being used in the most varied
domains to carry out autonomously different task.

Package Delivery

Precision Agriculture

Drone Taxi

Vehicle Platooning

Autonomous Vehicles

3

Complexity Dimensions [Sifakis 2019]

CPSs are being used in many safety-critical applications with different
levels of complexity.

4

Logical Scenario: Vehicle Following

• Psafer := dist ≥ vf × (1[s] + gapsafer) − vl × 1[s]
• Psafe := vf × (1[s] + gapsafer) − vl × 1[s]) > dist ≥

vf × (1[s] + gapsafe) − vl × 1[s]
• Punsafe := dist < vf × (1[s] + gapsafe) − vl × 1[s]

Safety Properties

Oper. Design Domain
Specifies the conditions for
the logical scenario, e.g.,
speed bounds, maximum
acceleration / deceleration.

60km/h ≤ vf ≤ 120km/h

−2m/s2 ≤ αf ≤ 8m/s2

Key Challenge
Provide evidence
that vehicles do
not reach an
unsafe situation for
all instances of a
logical scenario.

5

Problems/Challenges

Autonomous CPS are based on ML.
These are extremely fragile. These systems present more failures

than acceptable to safety-critical systems [Jha et al. SafeComp 2020].

Adaptive Control for Autonomous CPS.
To compensate the lack of direct human intervention, we advocate

extensive use of adaptive control techniques. [Sifakis 2018].

Symbolic versus Enumerative.
The characterization of the effect of harmful events ... cannot be

enumerative and exhaustive; it should be symbolic and
conservative, the result of a global model-based analysis. [Sifakis

2018].

6

Safety Assurance Evidence

Simulation-based

Main Existing Approaches

Positive These methods can be
used to validate concrete
implementations, e.g., ML.

Negative requires to run a
sufficiently large number of
simulations and may miss
corner-cases.

Verified Planners

Positive Planners are guaranteed
to avoid unsafe conditions.

Negative algorithms have to be
proved by hand. Moreover, they
often do not consider other
functions in the system, e.g.,
communication channels, and
local knowledge bases.

7

Soft-Agents Framework

Soft-Agents
Executable (Formal) Model

Deliberation Physical

Symbolic
Verification

Intruder Models Fault Models

Realistic
Simulators

Perception

Counterfactual
Reasoning

Security-informed
Safety [VNC 2020]

Soft-agents framework is implemented in Maude using Rewriting
Logic.

SMT-Solvers

Statistical Model
Checking

[Co-Sim’17]

Safety Proofs
[WRLA 2022] Verification of

Adaptive Control
Mechanisms

[Submitted Paper]

8

Soft-Agents Framework

Soft-Agents
Executable (Formal) Model

Deliberation Physical

Symbolic
Verification

Intruder Models Fault Models

Realistic
Simulators

Perception

Counterfactual
Reasoning

Security-informed
Safety [VNC 2020]

Soft-agents framework is implemented in Maude using Rewriting
Logic.

SMT-Solvers

Statistical Model
Checking

[Co-Sim’17]

Safety Proofs
[WRLA 2022] Verification of

Adaptive Control
Mechanisms

[Submitted Paper]

9

Contributions

Soft Agents Framework with Rewriting Modulo SMT:
Instead of using concrete values for speed, acceleration, etc, we
enable the use of symbols constrained by (non-linear) theories.

Vehicle Platooning Specification:
We demonstrate the Soft Agent frame- work on the vehicle following
scenario.

Verification Trade-off between Rewriting and Constraint Solving:
We investigate the trade-offs of delegating verification to Z3 and to
Rewriting.

10

Soft-Agent: Overview

11

Symbolic Configurations

eq v1posx = vv(2,"ag1-positionX") . eq v1posy = vv(3,"ag1-positionY") .
eq v1vel = vv(5,"ag1-speed") . eq maxacc1 = vv(9,"ag1-maxAcc") .
eq maxdec1 = vv(10,"ag1-maxDec") . eq acc1 = vv(32,"ag1-acc") .

(acc1 <= maxacc1) and (acc1 >= maxdec1)

Library of Symbolic Functions:

op ldist : Nat Loc Loc -> NatSymTermBoolean .
eq ldist(i,loc(x0,y0),loc(x1,y1))
= {s(i),vv(i,"dist"), (vv(i,"dist") >= 0/1) and
vv(i,"dist") * vv(i,"dist") === ((y1 - y0) * (y1 - y0) +

(x1 - x0) * (x1 - x0)) } .

Example of symbols:

Example of constraints on symbols:

fresh symbol

non-linear
constraint
on the fresh
symbol

12

Symbolic Configurations
Local Knowledge Base: A set of possibly timestamped facts.

(at(ag1,loc(v1posx,v1posy)) @ 0) (speed(ag1,v1vel) @ 0)
(accel(ag1,acc1) @ 0)
(dir(v(1),loc(v1ix,v1iy),loc(v1tx,v1ty),v1mag) @ 0)

Configurations:

asysI = { [eid | (kb constraint(i,condI))]
[v(0) : veh | lkb : kb0] [v(1) : veh | lkb : kb1] }

Environment agent specifies
the actual situation.

Two agents with their local
knowledge bases.

Set of constraints on
symbols.

Semantics:

A −→Tick A1 −→doTasks A2 · · ·

Advances time updating physical
attributes. The symbol timeDuration
specifies the duration of a logical tick.

Agents compute their next actions.

13

Safety Properties

op mkSPCond : SP ASystem -> SPSpec .
ceq mkSPCond(saferSP, { conf env }) = {k + 1,dis,cond00,nucond}
if [id0 | kb] := env
/\ (atloc(v(0),l0) @ t0) (atloc(v(1),l1) @ t1)
(speed(v(0),v0) @ t2) (speed(v(1),v1) @ t3)
(gapSafety(v(1),gapSafer,gapSafe)) (constraint(n,cond)) kb1 := kb

/\ {k,dis,cond00} := ldist(n,l1,l0)
/\ nucond := (dis >= ((1/1 + gapSafer) * v1) - v0) .

op enforceSP : SP ASystem -> ASystem .

ag0-positionX |-> (0/1).Real, ag0-positionY |-> (1/1).Real
ag1-positionX |-> (0/1).Real, ag1-positionY |-> (0/1).Real,
ag0-speed |-> (7/1).Real, ag1-speed |-> (2/1).Real,
ag1-safer |-> (3/1).Real

search enforceSP(safeSP,setStopTime(asysI,2)) =>*
asys such that checkSP(unsafeSP,asys) .

No solution. states: 63 rewrites: 394686 in 20134ms

Safety Properties:

Based on the current
environment KB, a
constraint specifying
the property is
constructed.

Returns a configuration
that satisfies a safety
property.

Example of instance of a
configuration satisfying saferSP

Verification Properties:
Starting from any safe
configuration.

Bound search to two logical ticks.

Check whether an unsafe
configuration is reachable.

14

Design Choices
More SMT, Less Rewriting
ceq symValSpeedRed(i,str,vmin,vmax,vminD,vmaxD,cond) =
{i + 2, [vv(i),vv(i + 1),nuCond and cond]}
if cond1 := vmin >= vmaxD
/\ cond11 := vv(i) === vmin and

vv(i + 1) === ((vmin + vmax) / 2/1) and cond1
/\ cond2 := vmax <= vminD
/\ cond21 := vv(i) === ((vmin + vmax) / 2/1)

and vv(i + 1) === vmax and cond2
...
/\ cond6 := vmin >= vminD and vmax < vmaxD
/\ cond61 := vv(i) === vmin and vv(i + 1) === max and cond6
/\ nuCond := (cond11 or cond21 or cond31 or cond41 or cond51 or cond61) .

Less SMT, More Rewriting
ceq symValSpeedRed-Split(i,str,vmin,vmax,vminD,vmaxD,cond) =
{i + 2, [vv(i),vv(i + 1),cond11 and cond]}
{i + 2, [vv(i),vv(i + 1),cond21 and cond]}
...
{i + 2, [vv(i),vv(i + 1),cond61 and cond]}
if cond1 := vmin >= vmaxD
...
/\ cond61 := vv(i) === vmin and vv(i + 1) === vmax and cond6.

Several cases for the
agent’s controller are
incorporated in the
constraints using an
logical or. (Similar to
Guarded Terms). This
means that the
SMT-solver will need to
consider all cases.

The different
conditions are split
into different terms.
(Kind of the opposite
of Guarded Terms.)
This means that the
rewriting engine will
need to traverse these
cases.

15

More Design Options
All Pruning

Search is interrupted whenever a
configuration’s constraints is unsat.
This means that there more calls to
the SMT-solver, but less states to
traverse.

No Pruning Search continues although a
configuration’s constraints is unsat.
This means that there more less calls
to the SMT-solver, but more states to
traverse. The satisfiability of the
configuration is only checked when the
time bound is reached.

Tick Prunning Satisfiability of configuration is checked after
tick rules only. This leads to less calls to the
SMT-solver and still prunes the search tree.

16

Experiments

For more complicated properties, no
pruning and less SMT leads to better
results. We believe that all pruning may
be improved if one can exploit the
incremental verification available in
SMT-solvers. Search does not yet
support this.

For simpler properties, the balanced
case performs better due to the
smaller search space and lower
overhead in calling the SMT-solver.

DNF – aborted after 5h.

17

Soft-Agents Framework

Soft-Agents
Executable (Formal) Model

Deliberation Physical

Symbolic
Verification

Intruder Models Fault Models

Realistic
Simulators

Perception

Counterfactual
Reasoning

Security-informed
Safety [VNC 2020]

SMT-Solvers

Statistical Model
Checking

[Co-Sim’17]

Safety Proofs
[WRLA 2022] Verification of

Adaptive Control
Mechanisms

[Submitted Paper]

Future Work:
• Use the framework for proving safety properties of vehicle

scenarios, such as resilience properties (see our ICTAC
2022 paper).

• Research how to exploit the incremental features of
SMT-solvers to improve search.

