

Minimal models for graphs-related operadic algebras Michael Batanin¹, Martin Markl² and Jovana Obradović

arXiv:2002.06640

- ¹ Macquarie University, NSW 2109, Australia
- ² Institute of Mathematics, Czech Academy of Sciences

$$A \vdash B$$
 $A \vdash A$ ax $A \vdash B \land B \vdash C$ cut

$$A_1,\ldots,A_n \vdash B$$
 $\overline{A \vdash A}$ ax $\underline{\Gamma \vdash A \quad \Delta_1,A,\Delta_2 \vdash B}$ cut

$$A_1, \dots, A_n \vdash B$$
 $A_1, \dots, A_n \vdash B$ $A_1, \dots, A_n \vdash B$ cut

a multicategory

$$A_1,\ldots,A_n \vdash B$$
 $x = \frac{\Gamma \vdash A \quad \Delta_1,A,\Delta_2 \vdash B}{\Delta_1,\Gamma,\Delta_2 \vdash B} \text{ cut}$ an operad

Strongly homotopy modular operads within the framework of operadic categories.

Strongly homotopy modular operads within the framework of operadic categories.

 $\circ~$ Modular operads are algebras for the terminal operad $1_{\tt Grc}.$

Strongly homotopy modular operads within the framework of operadic categories.

- Modular operads are algebras for the terminal operad 1_{Grc}.
- \circ S. h. modular operads are algebras for the minimal model $\mathfrak{M}_{\mathtt{Grc}}$ of $1_{\mathtt{Grc}}$.

$$H_n(\mathfrak{M}_{\mathtt{Grc}}(\Gamma)) = H_n(1_{\mathtt{Grc}}(\Gamma)) = egin{cases} \mathbb{k}, & n = 0 \ 0, & n \ge 1 \end{cases}$$

Strongly homotopy modular operads within the framework of operadic categories.

- o Modular operads are algebras for the terminal operad 1_{Grc}.
- \circ S. h. modular operads are algebras for the minimal model $\mathfrak{M}_{\mathtt{Grc}}$ of $1_{\mathtt{Grc}}$.

$$H_n(\mathfrak{M}_{\mathtt{Grc}}(\Gamma)) = H_n(\mathbf{1}_{\mathtt{Grc}}(\Gamma)) = egin{cases} \mathbb{k}, & n = 0 \ 0, & n \geq 1 \end{cases}$$

Modular operads: the terminal operad 1_{Grc}

Modular operads: the terminal operad $1_{\tt Grc}$

Modular operads: the terminal operad $1_{\tt Grc}$

Modular operads: the terminal operad $1_{\mbox{\scriptsize Grc}}$

$$\mathbf{1}_{\mathtt{Grc}}(\Gamma)=\Bbbk,\ \forall\,\Gamma\in\mathtt{Grc}$$

Modular operads: the terminal operad $\mathbf{1}_{\mathtt{Grc}}$

$$\mathbf{1}_{\mathtt{Grc}}(\Gamma) = \mathbb{k}, \ \forall \, \Gamma \in \mathtt{Grc}$$

$$\circ_f: 1_{\operatorname{Grc}}\left(\begin{smallmatrix}3&2&2\\2&2&2\end{smallmatrix}
ight) \otimes 1_{\operatorname{Grc}}\left(\begin{smallmatrix}3&2&2&2\\2&2&2&2\end{smallmatrix}
ight)
i$$

Hypergraph polytopes, a.k.a. nestohedra

P.-L. Curien, J. Obradović, J. Ivanović Syntactic aspects of hypergraph polytopes Journal of Homotopy and Related Structures 14, pp. 235–279, 2019

Hypergraph terminology

$$H = \{x, y, u, v\}$$

$$\mathbf{H} = \{\{x\}, \{y\}, \{u\}, \{v\}, \{x, u\}, \{u, v\}, \{x, v\}, \{x, y\}, \{x, u, v\}\}\}$$

Hypergraph terminology

$$H = \{x, y, u, v\}$$

$$\mathbf{H} = \{\{x\}, \{y\}, \{u\}, \{v\}, \{x, u\}, \{u, v\}, \{x, v\}, \{x, y\}, \{x, u, v\}\}\}$$

H is saturated:
$$(\forall X, Y \in \mathbf{H}) \ X \cap Y \neq \emptyset \Rightarrow X \cup Y \in \mathbf{H}$$

$$Sat(\mathbf{H}) = \mathbf{H} \cup \{\{x, y, u\}, \{x, y, v\}, \{x, y, z, u\}\}\$$

$$\mathbf{H} = \{\{x\}, \{y\}, \{u\}, \{v\}, \{x, u\}, \{u, v\}, \{x, v\}, \{x, y\}, \{x, u, v\}\}\}$$
$$Sat(\mathbf{H}) = \mathbf{H} \cup \{\{x, y, u\}, \{x, y, v\}, \{x, y, z, u\}\}$$

$$\mathbf{H} = \{\{x\}, \{y\}, \{u\}, \{v\}, \{x, u\}, \{u, v\}, \{x, v\}, \{x, y\}, \{x, u, v\}\}\}$$
$$Sat(\mathbf{H}) = \mathbf{H} \cup \{\{x, y, u\}, \{x, y, v\}, \{x, y, z, u\}\}$$

$$\mathbf{H} = \{\{x\}, \{y\}, \{u\}, \{v\}, \{x, u\}, \{u, v\}, \{x, v\}, \{x, y\}, \{x, u, v\}\}\}$$
$$Sat(\mathbf{H}) = \mathbf{H} \cup \{\{x, y, u\}, \{x, y, v\}, \{x, y, z, u\}\}$$

$$\mathbf{H} = \{\{x\}, \{y\}, \{u\}, \{v\}, \{x, u\}, \{u, v\}, \{x, v\}, \{x, y\}, \{x, u, v\}\}\}$$
$$Sat(\mathbf{H}) = \mathbf{H} \cup \{\{x, y, u\}, \{x, y, v\}, \{x, y, z, u\}\}$$

$$\mathbf{H} = \{\{x\}, \{y\}, \{u\}, \{v\}, \{x, u\}, \{u, v\}, \{x, v\}, \{x, y\}, \{x, u, v\}\}\}$$
$$Sat(\mathbf{H}) = \mathbf{H} \cup \{\{x, y, u\}, \{x, y, v\}, \{x, y, z, u\}\}$$

$$\mathbf{H} = \{\{x\}, \{y\}, \{u\}, \{v\}, \{x, u\}, \{u, v\}, \{x, v\}, \{x, y\}, \{x, u, v\}\}\}$$
$$Sat(\mathbf{H}) = \mathbf{H} \cup \{\{x, y, u\}, \{x, y, v\}, \{x, y, z, u\}\}$$

$$\mathbf{H} = \{\{x\}, \{y\}, \{u\}, \{v\}, \{x, u\}, \{u, v\}, \{x, v\}, \{x, y\}, \{x, u, v\}\}\}$$
$$Sat(\mathbf{H}) = \mathbf{H} \cup \{\{x, y, u\}, \{x, y, v\}, \{x, y, z, u\}\}$$

$$\mathbf{H} = \{\{x\}, \{y\}, \{u\}, \{v\}, \{x, u\}, \{u, v\}, \{x, v\}, \{x, y\}, \{x, u, v\}\}\}$$
$$Sat(\mathbf{H}) = \mathbf{H} \cup \{\{x, y, u\}, \{x, y, v\}, \{x, y, z, u\}\}$$

$$\mathbf{H} = \{\{x\}, \{y\}, \{u\}, \{v\}, \{x, u\}, \{u, v\}, \{x, v\}, \{x, y\}, \{x, u, v\}\}\}$$
$$Sat(\mathbf{H}) = \mathbf{H} \cup \{\{x, y, u\}, \{x, y, v\}, \{x, y, z, u\}\}$$

Strongly homotopy modular operads: the minimal model $\mathfrak{M}_{\tt Grc}$ of $1_{\tt Grc}$

The ingenious lemma

The faces of $\mathcal{G}(\mathbf{H}_{\Gamma})$ can be oriented, so that $\mathfrak{M}_{\mathtt{Grc}}(\Gamma)$ is the cellular chain complex $(C_*(\mathcal{G}(\mathbf{H}_{\Gamma})), \partial_*)$ of free abelian groups $C_k(\mathcal{G}(\mathbf{H}_{\Gamma}))$ generated by k-dimensional faces of $\mathcal{G}(\mathbf{H}_{\Gamma})$, whose differential ∂_* is given by

$$\partial_*(\lambda) := \sum_{\delta \leqslant \lambda} \eta_\lambda^\delta \cdot \delta,$$

where $\eta_{\lambda}^{\delta}:=+1$ if δ is oriented compatibly with λ and $\eta_{\lambda}^{\delta}:=-1$ otherwise.

The ingenious lemma

The faces of $\mathcal{G}(\mathbf{H}_{\Gamma})$ can be oriented, so that $\mathfrak{M}_{\mathtt{Grc}}(\Gamma)$ is the cellular chain complex $(C_*(\mathcal{G}(\mathbf{H}_{\Gamma})), \partial_*)$ of free abelian groups $C_k(\mathcal{G}(\mathbf{H}_{\Gamma}))$ generated by k-dimensional faces of $\mathcal{G}(\mathbf{H}_{\Gamma})$, whose differential ∂_* is given by

$$\partial_*(\lambda) := \sum_{\delta \leqslant \lambda} \eta_\lambda^\delta \cdot \delta,$$

where $\eta_{\lambda}^{\delta}:=+1$ if δ is oriented compatibly with λ and $\eta_{\lambda}^{\delta}:=-1$ otherwise.

Proof. Pick an orientation of the n-dimensional face. Pick a (k-1)-dimensional face a and choose $a \lessdot e$. If a occurs in $\partial(e)$ with the +, give it the compatible orientation; otherwise, give it the orientation opposite to the compatible one.

The ingenious lemma

The faces of $\mathcal{G}(\mathbf{H}_{\Gamma})$ can be oriented, so that $\mathfrak{M}_{\mathtt{Grc}}(\Gamma)$ is the cellular chain complex $(C_*(\mathcal{G}(\mathbf{H}_{\Gamma})), \partial_*)$ of free abelian groups $C_k(\mathcal{G}(\mathbf{H}_{\Gamma}))$ generated by k-dimensional faces of $\mathcal{G}(\mathbf{H}_{\Gamma})$, whose differential ∂_* is given by

$$\partial_*(\lambda) := \sum_{\delta \leqslant \lambda} \eta_\lambda^\delta \cdot \delta,$$

where $\eta_{\lambda}^{\delta}:=+1$ if δ is oriented compatibly with λ and $\eta_{\lambda}^{\delta}:=-1$ otherwise.

Proof. Pick an orientation of the n-dimensional face. Pick a (k-1)-dimensional face a and choose a < e. If a occurs in $\partial(e)$ with the +, give it the compatible orientation; otherwise, give it the orientation opposite to the compatible one.

This receipt does not depend on the choice of e, thanks to:

If a is a (k-1)-dimensional face of $\mathcal{G}(\mathbf{H})$ such that a < e', e'', then there exists a (k+1)-dimensional face h such that e', e'' < h.

Thank you!

This work has been supported by the Praemium Academiae of M. Markl and RVO:67985840.

