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Hypergraph polytopes, a.k.a. nestohedra

K. Dogen, Z. Petri¢
Hypergraph polytopes
Topology and its Applications 158, pp. 1405-1444, 2011

P.-L. Curien, J. Obradovi¢, J. Ivanovié
Syntactic aspects of hypergraph polytopes
Journal of Homotopy and Related Structures 14, pp. 235-279, 2019
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H is saturated: (VX,YeH) XN Y#() = XUYeH

Sat(H)=HU {{z, 3, u}, {z,y,v},{z, 9,2 u}}
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The ingenious lemma

The faces of G(Hr) can be oriented, so that Migc(I") is the cellular chain
complex (Cy(G(Hr)), 04) of free abelian groups Ci(G(Hr)) generated by
k-dimensional faces of G(Hr), whose differential 0, is given by

0.(N) =D 1} -6,
S<A
where ni := 41 if § is oriented compatibly with A and 77?\ := —1 otherwise.
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This receipt does not depend on the choice of e, thanks to:

If ais a (k— 1)-dimensional face of G(H) such that a < ¢, ¢,
then there exists a (k+ 1)-dimensional face & such that ¢/, ¢’ < h.
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