Algorithmic Properties of CatLog3

Max Kanovich, Stepan G. Kuznetsov,
Stepan L. Kuznetsov, Andre Scedrov

Catlog

» Catlog is a categorial grammar parser (theorem-prover), being
developed by Glyn Morrill and his team in UPC, Barcelona.

» In categorial grammars, words (lexemes) of the target
language are associated with syntactic types, that is, formulae
of a non-classical logic.

> a1...a, is accepted, if there exist such formulae Aq,..., A,
that A; is associated with a; and the sequent Ay,..., A, = S
is derivable.

» The calculus used in CatLog is an extension of the Lambek
calculus (Lambek, 1958).

The Lambek Calculus with the Unit

Ao Ald
=B Al,C,A2:>D/ B=C IR
A1, C/B,T,Ay =D r=C/B
r=A Al,C,A2:>D\ AT = C \R
Al,F,A\C,A2:>D F:>A\C
A1, A B, Ay = D A=A T=8B g,
A1, AeB, Ay =D °* AT = AeB °
A, D= A

Mo, AL ASTIR

Parasitic Extraction and Subexponentials

“the paper that John signed [| without reading []”

» Two gaps (extraction sites); the one after “reading” is the
parasitic one.

» Parasitic extraction is handled using a subexponential modality
which allows non-local contraction:
M,!1A T2, 1A T3=C M,1A T, 1A T3 = C
I'l,!A, r2,|_3:> C I'1,F2,!A, I'3:> C

» Another important rule for | is dereliction:
Fl, A, F2 = C
M,1A T, = C

» One can also impose permutation rules, but usually not
weakening (which is linguistically inadequate).

Parasitic Extraction and Subexponentials

“the paper that John signed [| without reading []”

> In the lexicon, “that” receives a type with !, namely,
(CN\ CN) /(S /IN).
» The corresponding sequent is derived as follows:
N, (N\S)/N,N,((N\S)\(N\S))/(N\S),(N\S)/N,N =S
N, (N\S)/N,'N,((N\S)\(N\S)) /(N\'S),(N\S)/N,!N =S
N, (N\S)/N,((N\S)\(N\S)) /(N\S),(N\S)/N,!N =S
N,(N\S)/N,(N\S)\(N\S))/(N\S),(N\S)/N=S/N CN,CN\ CN = CN
CN, (CN\ CN) /(S /IN), N, (N\S)/N,((N\ S)\(N\S)) /(N\S),(N\S)/N=CN N=N
N/ CN,CN,(CN\ CN) /(S /'N), N,(N\S)/ N,((N\S)\(N\S)) /(N\S),(N\S) /N = N

» The sequent on top corresponds to
“John signed the paper without reading the paper”

and is derivable in the Lambek calculus.

The Workflow

General idea: contraction leads to undecidability.

Technical issues: undecidability proof becomes more involved for
sophisticated versions of contraction which involve brackets.

System with contraction Undecidability proof
Lambek calculus with full-power exponential Lincoln et al. 1992
(allows weakening, permutation, and contraction)
Lambek calculus with a relevant modality K. K. S., FG 2016

(permutation & contraction, no weakening)
no brackets

The system with brackets K. K. S., FCT 2017
of Morrill & Valentin 2015, Morrill 2017
The new system with brackets this talk

of Morrill 2018-19 (resembling Morrill 2011)

Brackets

*“the paper that John signed and Pete ate a pie”

» This noun phrase is clearly ungrammatical.

» However it is generated by our grammar, since “John signed
the paper and Pete ate a pie” is a correct sentence.

» In order to address this issue, Morrill (1992) and Moortgat
(1996) introduce brackets which embrace islands not allowed
to be penetrated by !V.

» Strong islands, like and-coordinated sentences, are
double-bracketed; no penetration possible.

» Subject groups, without-clauses, ... are weak islands. These are
single-bracketed and can be penetrated using the special form
of contraction. This is used for parasitic extraction.

The Lambek Calculus with Brackets

> Now the antecedents are built using both comma
(metasyntactic product) and brackets.

» Lambek rules: A= A
= E(Al,C,Az):>D/L rB=C IR
=(A1,C/B,T,A)) =D r=C/B A 'R
r=A =Z(A,C,A)=D Al=C \R (AL A) = A
=(A1,T,A\C, A7) = D Fr=A\C (A1, 1,0,) = A
E(Al,A,B,Ag):>D . A=A =B oR
=(A1,AeB,Ay) = D AT = AeB
» Rules operating brackets, using bracket modalities:
(A1, A A) = B i [E]= A iR
=(Ay[[7'AL A2) = B ==[7'A
E(Al’[A]7A2):> B <>L == A <>R
(A1, ()A A2) = B [El= (A

Lambek Grammars with Brackets

» For bracketed calculi, the definition of acceptance of a word by
the grammar should be modified.

> 3;...a, is t-accepted by the grammar, if there exists such Il
that I = S is derivable and removing all brackets (but not
bracket modalities) from I yields Ay, ..., A, where A; is
associated with a;.

» For example, “John likes Mary and Pete likes Ann" should be
bracketed as follows: “[[[John] likes Mary and [Pete | likes
Ann |]"” before deriving.

» In CatlLog, the bracketing is requested from the user. However,
there exist bracket induction (guessing) algorithms for
fragments of the CatLog calculus (Morrill et al., FG 2018).

» \We shall discuss bracket induction in the end of the talk.

Contraction with Brackets

» In Morrill's systems, the |-formulae are kept in special areas
called stoups. Stoups are multisets of formulae.

» This is an element of focusing used to facilitate proof search.

» Each bracketed domain has a stoup, as well as the whole
antecedent.

» Morrill presents two versions of the rule set for |. Their general
idea is that contraction erases one !-formula from a weak
island, provided the same formula is in the outer area.
However, the island has to be somehow modified, in order to
prevent double usage.

Two Morrill's Systems
» The rules operating the stoup and ! on the left (dereliction and
permutation) are the same in both systems:
SGM AR =B ECAMR) =B |
=((,A T, T)=B (¢, A L) =B
» The older system (Morrill 2017 in Linguistics and Philosophy)
uses the following versions of contraction and right rule for !:

=(¢A T, [A T, T3) = B c GA= A R
=(¢, ATy, T2, T3) =B GA=1A"

Undecidability proved in our FCT 2017 paper.
» The new system (Morrill 2018 in J. Lang. Model. and 2019 in
J. Log. Lang. Inform., resembling Morrill 2011 book):

=AML AT = B A= B
=(GATL[ETLT3) =B o A= 18 K

» The right rule is not needed in undecidability proofs. In
linguistic applications, one needs !A = 1A,

Lambek and Bracket Rules with Stoups

o ASAd

(=B E(Cz:AhC,Az)éD/ Gr,B=C
=(C1,Gi 81, €/ B,T, A7) = D cr=c/B/

iF=A =(:A1,CA)=D GAT=C
=(¢1, G A, TLANC, A2) = D \ C;F:>A\C\

E(C;A17A587A2):>D L 41;A:>A C2;r:>B
(A, AeB,Ay) =D ° G, AT = AeB

=G ALA)= A

(G ALLAY) = A o A=1 IR
=(¢; A1, A D) = B Ly Zi[E]=A |
=(¢ AL 9 [[7MA]L A2) = B ! ==1'A !
=(¢; A1, [25 Al Ar) = B oL == A OR

(¢ AL A A)) = B ;2] = (A

Example of Derivation

N = N

N = ()N s=5
ON\S = ON\S (M, ON\S = 5

M= L ONS, (ON\ S NN\ S) = 5

N, (NN) / N, N, (ONN S NN\ 9) = 5
ON\S = ON\S N, (ONNS) /NN, TTHONN NN\ S = s

N= N N (ONNS) /NN TN\ S NON N\) /(ONNS), N\ Sl = S
N, (NN S) /NN 0T HCON N) NCONN) /(ONN9), (ON\'S) /N, N = 5
VL, (ONNS) /Ny N N @ HCON N) \NCONN) /(ONNS), (ON\'S) /N = S
NN, (NN S) /N, I @M\ S NCONN) /(ONNS), (ON\S) /N =S

NN, (NN S) /N IO CON N S NONN) /(ONNS), (ON\S) /M) =S

CN = CN CN => CN
CN, CN \ CN = CN

N, (ONNS) /N, T CON N) NONN9) /(ONNS), (ON\S) /NI, IN = 5

CN, [[T(CN\ CN)] = CN

N, (ONNS) /N I HCEON N) \NONN) /(ONNS), (ON\S) /N =5/ N

N, [T NN \ em)] = ev

N, [T NN \ ey /(s /N, IV, (N) /N T HCON N\) NIO N\) /()

NA\'S), (ON\ S) /NI = N

N/ CN, N T HEN \ V) /(S /), INL (CONNS) /N, T HCON N) NCON N 9) /(ONNS), (ON\S) /NITT = N

the paper [[that John signed [[without reading]]]]

N = N

Motivation for the New System
Following Morrill (2018), consider the following example:

**the man who likes”

Using the old contraction rule, one can analyse ‘“likes” as a
dependent clause with two gaps, where the parasitic one is the
subject (“man who likes himself"):

N =N
[Nl= (N S=S
N= N [N], ON\S = S
[N], (ON\S)/N,N = S
[N; AL (()N\S) /N, N =S
N; [N; Al (ON\S)/N =S
N; (()N\S)/N =S
(ON\S)/N,'N=S
((ON\S)/N=S/IN

In this derivation, ! C instantiates an empty subject island.
With the new !C, this island should be explicitly declared (as a
strong one) in the bracketing, and we can disallow empty ones.

Motivation for the New System
Following Morrill (2018), consider the following example:

**the man who likes”

Using the old contraction rule, one can analyse ‘“likes” as a
dependent clause with two gaps, where the parasitic one is the
subject (“man who likes himself"):

N =N
[Nl= (N S=S
N= N [N], ON\S = S
[N], (ON\S)/N,N = S
[N; AL (()N\S) /N, N =S
N; [N; Al (ON\S)/N =S
N; (()N\S)/N =S
(ON\S)/N,'N=S
((ON\S)/N=S/IN

In this derivation, ! C instantiates an empty subject island.
With the new !C, this island should be explicitly declared (as a
strong one) in the bracketing, and we can disallow empty ones.

Motivation for the New System
Following Morrill (2018), consider the following example:

**the man who likes”

Using the old contraction rule, one can analyse ‘“likes” as a
dependent clause with two gaps, where the parasitic one is the
subject (“man who likes himself"):

N =N
[Nl= (N S=S
N= N [N], ON\S = S
[N], (ON\S)/N,N = S
[N; AL (()N\S) /N, N =S
N; [N; AL (ON\S)/N =S
N; (()N\S)/N =S
(ON\S)/N,'N=S
((ON\S)/N=S/IN

In this derivation, ! C instantiates an empty subject island.
With the new !C, this island should be explicitly declared (as a
strong one) in the bracketing, and we can disallow empty ones.

Undecidability Proof Sketch

» Encoding semi-Thue systems.

» Each rewriting rule x1 ... xm — y1...yk is encoded by
Ai=(x10...0xn)/(y10...0y).

> Z=[71(1A e ON).

» Theorem. The sequent

V0 Zy, V0 Za VOO Zy, Zn [N 31y a0 = s

is derivable iff a1 ... ay is derivable from s in the semi-Thue
system.

Undecidability Proof Sketch
» Theorem. The sequent
;[[A]]aalv'-‘vaf =S

is derivable iff a1 ... ay is derivable from s in the semi-Thue
system.
» The l /... formulae are used to handle the base (s — s) case.

» For the rewriting step, one uses contraction and puts !Z; into

the island:
(Al ~ [A

Next, []! removes the brackets, the extra ! over A; puts it
into the right place, and () ()1 restores the island.

» The backward translation is done by forgetting brackets and
mapping onto the Lambek calculus with a full-power
subexponential: this yields a sequent equivalent to
A1,...,1A,, a1, ...,30 = s (Lincoln et al. 1992).

Positive Results

» The calculi discussed above are actually used in CatLog—so
how could they be undecidable?

» Linguistically interesting sequents fall into decidable fragments.

» For the older system, such a fragment is guarded by the
bracket non-negative condition (BNNC): in any negative
I-formula there should be no positive occurrences of [~ and
no negative occurrences of ().

» Derivability problem for sequents obeying BNNC is decidable

(Morrill & Valentin, 2015), belonging to NP (K. K. S., FCT
2017).

Positive Results

» For the new system, we introduce a dual bracket non-positive
condition (BNPC): in any negative !-formula there should be
no negative occurrences of [|~! and no positive occurrences of
()-

» The reason for such a dualisation is as follows. In Morrill’s
older system, |C removes a pair of brackets (when viewed from
top to bottom). In the new system, it replaces one pair of
brackets with two, i.e., adds a pair of brackets.

» Under the BNPC, Morrill's new system is decidable and
belongs to NP.

» Interestingly enough, one does not need to invent sophisticated
proof-search algorithms: once the BNPC is imposed, the
standard non-deterministic proof search would terminate in
polynomial time.

Decidability Proof Idea

>

>

| 4

The only rule which could potentially make proof search
infinite, is 1C (contraction).

However, we can estimate the number of contractions using
brackets.

For the new calculus, we have

#[| = #B" — #B~ +#!C,

where #[] is the number of bracket pairs in the goal sequent;
#B™ is the number of [7L and ()R applications; #B~ is the
number of [|71R and ()L; #!C is the number of !C.

This gives #!C < #B~ 4 #[], and the latter is bounded by
the number of bracket pairs and bracket modalities ([]7%, ())
in the goal sequent.

Thus, we get the necessary complexity bound and quickly
achieve NP decidability.

Additive Connectives

» The systems in question can be extended by additive
operations, A (additive conjuction) and V (additive
disjunction).

» Inferences rules for them are as follows:

E(A):>D E(B):>D [r= A r:>B/\R
=(AANB)=D =(AAB)=D = AAB
=(A)= D =(B)=D
(A) (B) " r= A r=8 . p

=(AVB) =D = AVB T=AVB

Additive Connectives

» The systems with additive operations are conservative
extensions of the multiplicative-additive Lambek calculus
(MALC).

» MALC is PSPACE-complete.

» The lower bound is due to Kanovich (1994), and the upper
one is based on the fact that MALC proofs’ depth can be
bounded polynomially.

» For Morrill's systems extended with additive operations, under
bracket restrictions (BNNC for the older one and BNPC for
the new one), we also obtain the PSPACE upper bound.

Bracket Induction

» Finally, let us discuss more complicated algorithmic problems
than derivability.

» These problems arise in practical parsing using categorial
grammars.

> First, a word of the language can have several syntactic types,
so before proving the sequent the algorithm should determine
which types to use.

» This is not an issue, because our algorithms are already
non-deterministic.

> A more serious issue is as follows. In order for our algorithms
to work, the sequent should be properly bracketed before
starting proof search.

» In real life, brackets should also be guessed, or induced.

Bracket Induction

» Formally, the bracket induction problem is formulated as
follows: given a sequent of the form A;,..., A, = B (without
brackets and stoups), determine whether there is a way to put
brackets on its left-hand side, so that the resulting sequent
would be derivable in the given calculus.

» For Morrill's older system, bracket induction is decidable for
sequents obeying the BNNC.

» The reason is in the following estimation on the maximal
number of brackets in the goal:

#[= #BT —#B~ —#IC < #BT <n.

Bracket Induction

» In contrast, for the newer system bracket induction is
undecidable even under the BNPC.

» The undecidability proof here involves creating an unbounded
number of empty strong islands, [[A]], at the stage of guessing
brackets.

» Each island allows one application of |C, thus, the number of
contraction also becomes unbounded.

» This allows more or less standard undecidability encodings.

» Thus, for the newer system bracket induction is essentially
harder than derivability check.

[Thank you]

