Algorithmic Properties of CatLog3

Max Kanovich, Stepan G. Kuznetsov, Stepan L. Kuznetsov, Andre Scedrov

CatLog

- CatLog is a categorial grammar parser (theorem-prover), being developed by Glyn Morrill and his team in UPC, Barcelona.
- In categorial grammars, words (lexemes) of the target language are associated with syntactic types, that is, formulae of a non-classical logic.
- $a_{1} \ldots a_{n}$ is accepted, if there exist such formulae A_{1}, \ldots, A_{n} that A_{i} is associated with a_{i} and the sequent $A_{1}, \ldots, A_{n} \Rightarrow S$ is derivable.
- The calculus used in CatLog is an extension of the Lambek calculus (Lambek, 1958).

The Lambek Calculus with the Unit

$$
\begin{gathered}
\overline{A \Rightarrow A} \text { id } \\
\frac{\Gamma \Rightarrow B \quad \Delta_{1}, C, \Delta_{2} \Rightarrow D}{\Delta_{1}, C / B, \Gamma, \Delta_{2} \Rightarrow D} / L \quad \frac{\Gamma, B \Rightarrow C}{\Gamma \Rightarrow C / B} / R \\
\frac{\Gamma \Rightarrow A \quad \Delta_{1}, C, \Delta_{2} \Rightarrow D}{\Delta_{1}, \Gamma, A \backslash C, \Delta_{2} \Rightarrow D} \backslash L \\
\frac{A, \Gamma \Rightarrow C}{\Gamma \Rightarrow A \backslash C} \backslash R \\
\frac{\Delta_{1}, A, B, \Delta_{2} \Rightarrow D}{\Delta_{1}, A \bullet B, \Delta_{2} \Rightarrow D} \bullet L \\
\frac{\Delta \Rightarrow A \Gamma \Rightarrow B}{\Delta, \Gamma \Rightarrow A \bullet B} \bullet R \\
\Delta_{1}, \mathbf{I}, \Delta_{2} \Rightarrow A \\
I L
\end{gathered} \frac{\overline{\Lambda \Rightarrow \mathbf{I}} \mathbf{I R}}{}
$$

Parasitic Extraction and Subexponentials

> "the paper that John signed [] without reading []"

- Two gaps (extraction sites); the one after "reading" is the parasitic one.
- Parasitic extraction is handled using a subexponential modality which allows non-local contraction:

$$
\frac{\Gamma_{1},!A, \Gamma_{2},!A, \Gamma_{3} \Rightarrow C}{\Gamma_{1},!A, \Gamma_{2}, \Gamma_{3} \Rightarrow C} \quad \frac{\Gamma_{1},!A, \Gamma_{2},!A, \Gamma_{3} \Rightarrow C}{\Gamma_{1}, \Gamma_{2},!A, \Gamma_{3} \Rightarrow C}
$$

- Another important rule for ! is dereliction:

$$
\frac{\Gamma_{1}, A, \Gamma_{2} \Rightarrow C}{\Gamma_{1},!A, \Gamma_{2} \Rightarrow C}
$$

- One can also impose permutation rules, but usually not weakening (which is linguistically inadequate).

Parasitic Extraction and Subexponentials

"the paper that John signed [] without reading []"

- In the lexicon, "that" receives a type with !, namely, $(C N \backslash C N) /(S /!N)$.
- The corresponding sequent is derived as follows:
$\frac{\frac{N,(N \backslash S) / N, N,((N \backslash S) \backslash(N \backslash S)) /(N \backslash S),(N \backslash S) / N, N \Rightarrow S}{N,(N \backslash S) / N,!N,((N \backslash S) \backslash(N \backslash S)) /(N \backslash S),(N \backslash S) / N,!N \Rightarrow S}}{\frac{N,(N \backslash S) / N,((N \backslash S) \backslash(N \backslash S)) /(N \backslash S),(N \backslash S) / N,!N \Rightarrow S}{N,(N \backslash S) / N,((N \backslash S) \backslash(N \backslash S)) /(N \backslash S),(N \backslash S) / N \Rightarrow S /!N} \quad C N, C N \backslash C N \Rightarrow C N} \quad \frac{C N,(C N \backslash C N) /(S /!N), N,(N \backslash S) / N,((N \backslash S) \backslash(N \backslash S)) /(N \backslash S),(N \backslash S) / N \Rightarrow C N}{N / C N, C N,(C N \backslash C N) /(S /!N), N,(N \backslash S) / N,((N \backslash S) \backslash(N \backslash S)) /(N \backslash S),(N \backslash S) / N \Rightarrow N}$
- The sequent on top corresponds to
"John signed the paper without reading the paper" and is derivable in the Lambek calculus.

The Workflow

General idea: contraction leads to undecidability.
Technical issues: undecidability proof becomes more involved for sophisticated versions of contraction which involve brackets.

System with contraction
Undecidability proof
Lambek calculus with full-power exponential (allows weakening, permutation, and contraction)

Lambek calculus with a relevant modality
Lincoln et al. 1992 (permutation \& contraction, no weakening) no brackets
The system with brackets
K. K. S., FG 2016
K. K. S., FCT 2017 of Morrill \& Valentin 2015, Morrill 2017

The new system with brackets
of Morrill 2018-19 (resembling Morrill 2011)

this talk

Brackets

*"the paper that John signed and Pete ate a pie"

- This noun phrase is clearly ungrammatical.
- However it is generated by our grammar, since "John signed the paper and Pete ate a pie" is a correct sentence.
- In order to address this issue, Morrill (1992) and Moortgat (1996) introduce brackets which embrace islands not allowed to be penetrated by! N.
- Strong islands, like and-coordinated sentences, are double-bracketed; no penetration possible.
- Subject groups, without-clauses, ... are weak islands. These are single-bracketed and can be penetrated using the special form of contraction. This is used for parasitic extraction.

The Lambek Calculus with Brackets

- Now the antecedents are built using both comma (metasyntactic product) and brackets.
Lambek rules: $\quad \overline{A \Rightarrow A}$

$$
\begin{aligned}
& \frac{\Gamma \Rightarrow B \quad \equiv\left(\Delta_{1}, C, \Delta_{2}\right) \Rightarrow D}{\equiv\left(\Delta_{1}, C / B, \Gamma, \Delta_{2}\right) \Rightarrow D} / L \quad \frac{\Gamma, B \Rightarrow C}{\Gamma \Rightarrow C / B} / R \quad \overline{\Lambda \Rightarrow 1} I R \\
& \frac{\Gamma \Rightarrow A \quad \Xi\left(\Delta_{1}, C, \Delta_{2}\right) \Rightarrow D}{\equiv\left(\Delta_{1}, \Gamma, A \backslash C, \Delta_{2}\right) \Rightarrow D} \backslash L \quad \frac{A, \Gamma \Rightarrow C}{\Gamma \Rightarrow A \backslash C} \backslash R \quad \frac{\equiv\left(\Delta_{1}, \Delta_{2}\right) \Rightarrow A}{\equiv\left(\Delta_{1}, \mathbf{l}, \Delta_{2}\right) \Rightarrow A} I L \\
& \frac{\equiv\left(\Delta_{1}, A, B, \Delta_{2}\right) \Rightarrow D}{\equiv\left(\Delta_{1}, A \bullet B, \Delta_{2}\right) \Rightarrow D} \bullet L \quad \frac{\Delta \Rightarrow A \quad \Gamma \Rightarrow B}{\Delta, \Gamma \Rightarrow A \bullet B} \bullet R
\end{aligned}
$$

Rules operating brackets, using bracket modalities:

$$
\begin{aligned}
\frac{\equiv\left(\Delta_{1}, A, \Delta_{2}\right) \Rightarrow B}{\equiv\left(\Delta_{1},\left[[]^{-1} A\right], \Delta_{2}\right) \Rightarrow B}[]^{-1} L & \frac{[\equiv] \Rightarrow A}{\equiv \Rightarrow[]^{-1} A}[]^{-1} R \\
\frac{\equiv\left(\Delta_{1},[A], \Delta_{2}\right) \Rightarrow B}{\equiv\left(\Delta_{1},\langle \rangle A, \Delta_{2}\right) \Rightarrow B}\rangle L & \frac{\equiv \Rightarrow A}{[\bar{\equiv} \Rightarrow\rangle A}\rangle R
\end{aligned}
$$

Lambek Grammars with Brackets

- For bracketed calculi, the definition of acceptance of a word by the grammar should be modified.
- $a_{1} \ldots a_{n}$ is t-accepted by the grammar, if there exists such Π that $\Pi \Rightarrow S$ is derivable and removing all brackets (but not bracket modalities) from Π yields A_{1}, \ldots, A_{n}, where A_{i} is associated with a_{i}.
- For example, "John likes Mary and Pete likes Ann" should be bracketed as follows: "[[[John] likes Mary and [Pete] likes Ann]]" before deriving.
- In CatLog, the bracketing is requested from the user. However, there exist bracket induction (guessing) algorithms for fragments of the CatLog calculus (Morrill et al., FG 2018).
- We shall discuss bracket induction in the end of the talk.

Contraction with Brackets

- In Morrill's systems, the !-formulae are kept in special areas called stoups. Stoups are multisets of formulae.
- This is an element of focusing used to facilitate proof search.
- Each bracketed domain has a stoup, as well as the whole antecedent.
- Morrill presents two versions of the rule set for !. Their general idea is that contraction erases one !-formula from a weak island, provided the same formula is in the outer area. However, the island has to be somehow modified, in order to prevent double usage.

Two Morrill's Systems

- The rules operating the stoup and! on the left (dereliction and permutation) are the same in both systems:

$$
\begin{array}{ll}
\frac{\Xi\left(\zeta ; \Gamma_{1}, A, \Gamma_{2}\right) \Rightarrow B}{\equiv\left(\zeta, A ; \Gamma_{1}, \Gamma_{2}\right) \Rightarrow B}!P & \frac{\Xi\left(\zeta, A ; \Gamma_{1}, \Gamma_{2}\right) \Rightarrow B}{\bar{\Xi}\left(\zeta ; \Gamma_{1},!A, \Gamma_{2}\right) \Rightarrow B}!L
\end{array}
$$

- The older system (Morrill 2017 in Linguistics and Philosophy) uses the following versions of contraction and right rule for !:

$$
\frac{\equiv\left(\zeta, A ; \Gamma_{1},\left[A ; \Gamma_{2}\right], \Gamma_{3}\right) \Rightarrow B}{\equiv\left(\zeta, A ; \Gamma_{1}, \Gamma_{2}, \Gamma_{3}\right) \Rightarrow B}!C \quad \frac{\zeta ; \Lambda \Rightarrow A}{\zeta ; \Lambda \Rightarrow!A}!R
$$

Undecidability proved in our FCT 2017 paper.

- The new system (Morrill 2018 in J. Lang. Model. and 2019 in J. Log. Lang. Inform., resembling Morrill 2011 book):

$$
\frac{\equiv\left(\zeta, A ; \Gamma_{1},\left[\xi, A ; \Gamma_{2}\right], \Gamma_{3}\right) \Rightarrow B}{\equiv\left(\zeta, A ; \Gamma_{1},\left[\left[\xi ; \Gamma_{2}\right]\right], \Gamma_{3}\right) \Rightarrow B}!C \quad \frac{\varnothing ;!A \Rightarrow B}{\varnothing ;!A \Rightarrow!B}!R
$$

- The right rule is not needed in undecidability proofs. In linguistic applications, one needs $!A \Rightarrow!A$.

Lambek and Bracket Rules with Stoups

$$
\begin{aligned}
& \overline{\varnothing ; A \Rightarrow A} \text { id } \\
& \frac{\zeta_{1} ; \Gamma \Rightarrow B \quad \equiv\left(\zeta_{2} ; \Delta_{1}, C, \Delta_{2}\right) \Rightarrow D}{\equiv\left(\zeta_{1}, \zeta_{2} ; \Delta_{1}, C / B, \Gamma, \Delta_{2}\right) \Rightarrow D} / L \quad \frac{\zeta ; \Gamma, B \Rightarrow C}{\zeta ; \Gamma \Rightarrow C / B} / R \\
& \frac{\zeta_{1} ; \Gamma \Rightarrow A \quad \equiv\left(\zeta_{2} ; \Delta_{1}, C, \Delta_{2}\right) \Rightarrow D}{\Xi\left(\zeta_{1}, \zeta_{2} ; \Delta_{1}, \Gamma, A \backslash C, \Delta_{2}\right) \Rightarrow D} \backslash L \quad \frac{\zeta ; A, \Gamma \Rightarrow C}{\zeta ; \Gamma \Rightarrow A \backslash C} \backslash R \\
& \frac{\equiv\left(\zeta ; \Delta_{1}, A, B, \Delta_{2}\right) \Rightarrow D}{\bar{\equiv}\left(\zeta ; \Delta_{1}, A \bullet B, \Delta_{2}\right) \Rightarrow D} \bullet L \quad \frac{\zeta_{1} ; \Delta \Rightarrow A \quad \zeta_{2} ; \Gamma \Rightarrow B}{\zeta_{1}, \zeta_{2} ; \Delta, \Gamma \Rightarrow A \bullet B} \bullet R \\
& \frac{\equiv\left(\zeta ; \Delta_{1}, \Delta_{2}\right) \Rightarrow A}{\overline{\equiv\left(\zeta ; \Delta_{1}, \mathbf{I}, \Delta_{2}\right) \Rightarrow A}} \mathbf{I L} \quad \overline{\varnothing ; \Lambda \Rightarrow \mathbf{I}} \mathbf{I R} \\
& \frac{\equiv\left(\zeta ; \Delta_{1}, A, \Delta_{2}\right) \Rightarrow B}{\equiv\left(\zeta ; \Delta_{1},\left[\varnothing ;[]^{-1} A\right], \Delta_{2}\right) \Rightarrow B}[]^{-1} L \quad \frac{\varnothing ;[\equiv] \Rightarrow A}{\equiv \Rightarrow[]^{-1} A}[]^{-1} R \\
& \frac{\equiv\left(\zeta ; \Delta_{1},[\varnothing ; A], \Delta_{2}\right) \Rightarrow B}{\equiv\left(\zeta ; \Delta_{1},\langle \rangle A, \Delta_{2}\right) \Rightarrow B}\left\rangle L \quad \frac{\equiv \Rightarrow A}{\varnothing ;[\equiv] \Rightarrow\langle \rangle A}\rangle R\right.
\end{aligned}
$$

Example of Derivation

$$
\begin{aligned}
& \begin{array}{c}
N \Rightarrow N \\
{[N] \Rightarrow\rangle N}
\end{array} \\
& \rangle N \backslash S \Rightarrow\rangle N \backslash S \quad[N],\langle \rangle N \backslash S \Rightarrow S \\
& \begin{array}{c}
N \Rightarrow N \overline{[N],\langle \rangle N \backslash S,(\langle \rangle N \backslash S) \backslash(\langle \rangle N \backslash S)) \Rightarrow S} \\
[N],(\langle \rangle N \backslash S) / N, N,(\langle \rangle N \backslash S) \backslash(\langle \rangle N \backslash S)) \Rightarrow S
\end{array} \\
& \left\rangle N \backslash S \Rightarrow \left\rangle N \backslash S \quad[N],(\langle \rangle N \backslash S) / N, N,\left[[]^{-1}((\langle \rangle N \backslash S) \backslash(\langle \rangle N \backslash S))\right] \Rightarrow S\right.\right. \\
& N \Rightarrow N \quad[N],(\langle \rangle N \backslash S) / N, N,\left[\left([]^{-1}((\langle \rangle N \backslash S) \backslash(\langle \rangle N \backslash S))\right) /(\langle \rangle N \backslash S),\langle \rangle N \backslash S\right] \Rightarrow S \\
& \frac{[N],(\langle \rangle N \backslash S) / N, N,\left[\left([]^{-1}((\langle \rangle N \backslash S) \backslash(\langle \rangle N \backslash S))\right) /(\langle \rangle N \backslash S),(\langle \rangle N \backslash S) / N, N\right] \Rightarrow S}{[N],(\langle \rangle N \backslash S) / N, N,\left[N ;\left([]^{-1}((\langle \rangle N \backslash S) \backslash(\langle \rangle N \backslash S))\right) /(\langle \rangle N \backslash S),(\langle \rangle N \backslash S) / N\right] \Rightarrow S} \\
& \frac{N ;[N],(\langle \rangle N \backslash S) / N,\left[N ;\left([]^{-1}((\langle \rangle N \backslash S) \backslash(\langle \rangle N \backslash S))\right) /(\langle \rangle N \backslash S),(\langle \rangle N \backslash S) / N\right] \Rightarrow S}{\left.N_{i}[N],(\langle \rangle N \backslash S) / N,\left[\left([]^{-1}((\langle \rangle N \backslash S) \backslash(\langle \rangle N \backslash S))\right) /(\langle \rangle N \backslash S),(\langle \rangle N \backslash S) / N\right]\right] \Rightarrow S} \\
& \begin{array}{c}
C N \Rightarrow C N \quad C N \Rightarrow C N \\
C N, C N \backslash C N \Rightarrow C N \\
\hline
\end{array} \\
& {[N],(\langle \rangle N \backslash S) / N,\left[\left[\left([]^{-1}((\langle \rangle N \backslash S) \backslash(\langle \rangle N \backslash S))\right) /(\langle \rangle N \backslash S),(\langle \rangle N \backslash S) / N\right]\right],!N \Rightarrow S} \\
& {[N],(\langle \rangle N \backslash S) / N,\left[\left[\left([]^{-1}((\langle \rangle N \backslash S) \backslash(\langle \rangle N \backslash S))\right) /(\langle \rangle N \backslash S),(\langle \rangle N \backslash S) / N\right]\right] \Rightarrow S /!N} \\
& \left.C N,[]^{-1}(C N \backslash C N)\right] \Rightarrow C N \\
& C N,\left[\left[[]^{-1}[]^{-1}(C N \backslash C N)\right]\right] \Rightarrow C N \\
& C N,\left[\left[\left([]^{-1}[]^{-1}(C N \backslash C N)\right) /(S /!N),[N],(\langle \rangle N \backslash S) / N,\left[\left[\left([]^{-1}((\langle \rangle N \backslash S) \backslash(\langle \rangle N \backslash S))\right) /(\langle \rangle N \backslash S),(\langle \rangle N \backslash S) / N\right]\right]\right] \Rightarrow C N \Rightarrow N \Rightarrow N\right. \\
& N / C N, C N,\left[\left[\left([]^{-1}[]^{-1}(C N \backslash C N)\right) /(S /!N),[N],(\langle \rangle N \backslash S) / N,\left[\left[(]^{-1}((\langle \rangle N \backslash S) \backslash(\langle \rangle N \backslash S))\right) /(\langle \rangle N \backslash S),(\langle \rangle N \backslash S) / N\right]\right]\right] \Rightarrow N \\
& \text { the paper [[that John signed [[without reading]]]] }
\end{aligned}
$$

Motivation for the New System

Following Morrill (2018), consider the following example:
*"the man who likes"

Using the old contraction rule, one can analyse "likes" as a dependent clause with two gaps, where the parasitic one is the subject ("man who likes himself"):

$$
\begin{gathered}
\frac{N \Rightarrow N}{[N] \Rightarrow\rangle N} \quad S \Rightarrow S \\
\frac{N \Rightarrow N}{[N],\langle \rangle N \backslash S \Rightarrow S} \\
\frac{[N],(\langle \rangle N \backslash S) / N, N \Rightarrow S}{[N ; \Lambda],(\langle \rangle N \backslash S) / N, N \Rightarrow S} \\
\frac{N ;[N ; \Lambda],(\langle \rangle N \backslash S) / N \Rightarrow S}{N+S} \\
\frac{N ;(\langle \rangle N \backslash S) / N \Rightarrow S}{(\rangle N \backslash S) / N,!N \Rightarrow S} \\
(\rangle N \backslash S) / N \Rightarrow S /!N
\end{gathered}
$$

In this derivation, ! C instantiates an empty subject island. With the new ! C, this island should be explicitly declared (as a strong one) in the bracketing, and we can disallow empty ones.

Motivation for the New System

Following Morrill (2018), consider the following example:
*"the man who likes"

Using the old contraction rule, one can analyse "likes" as a dependent clause with two gaps, where the parasitic one is the subject ("man who likes himself"):

$$
\begin{gathered}
\frac{N \Rightarrow N}{[N] \Rightarrow\rangle N} \quad S \Rightarrow S \\
\frac{N \Rightarrow N}{[N],\langle \rangle N \backslash S \Rightarrow S} \\
\frac{[N],(\langle \rangle N \backslash S) / N, N \Rightarrow S}{[N ; \Lambda],(\langle \rangle N \backslash S) / N, N \Rightarrow S} \\
\frac{N ;[N ; \Lambda],(\langle \rangle N \backslash S) / N \Rightarrow S}{N+S} \\
\frac{N ;(\langle \rangle N \backslash S) / N \Rightarrow S}{(\rangle N \backslash S) / N,!N \Rightarrow S} \\
(\rangle N \backslash S) / N \Rightarrow S /!N
\end{gathered}
$$

In this derivation, ! C instantiates an empty subject island. With the new ! C, this island should be explicitly declared (as a strong one) in the bracketing, and we can disallow empty ones.

Motivation for the New System

Following Morrill (2018), consider the following example:
*"the man who likes"

Using the old contraction rule, one can analyse "likes" as a dependent clause with two gaps, where the parasitic one is the subject ("man who likes himself"):

$$
\begin{gathered}
\frac{N \Rightarrow N}{[N] \Rightarrow\rangle N} \quad S \Rightarrow S \\
\frac{N \Rightarrow N}{[N],\langle \rangle N \backslash S \Rightarrow S} \\
\frac{[N],(\langle \rangle N \backslash S) / N, N \Rightarrow S}{[N ; \Lambda],(\langle \rangle N \backslash S) / N, N \Rightarrow S} \\
\frac{N ;[N ; \Lambda],(\langle \rangle N \backslash S) / N \Rightarrow S}{N+S} \\
\frac{N ;(\langle \rangle N \backslash S) / N \Rightarrow S}{(\rangle N \backslash S) / N,!N \Rightarrow S} \\
(\rangle N \backslash S) / N \Rightarrow S /!N
\end{gathered}
$$

In this derivation, ! C instantiates an empty subject island. With the new ! C, this island should be explicitly declared (as a strong one) in the bracketing, and we can disallow empty ones.

Undecidability Proof Sketch

- Encoding semi-Thue systems.
- Each rewriting rule $x_{1} \ldots x_{m} \rightarrow y_{1} \ldots y_{k}$ is encoded by $A_{i}=\left(x_{1} \bullet \ldots \bullet x_{m}\right) /\left(y_{1} \bullet \ldots \bullet y_{k}\right)$.
- $Z_{i}=[]^{-1}\left(!A_{i} \bullet\langle \rangle\langle \rangle \mathbf{I}\right)$.
- Theorem. The sequent

$$
\mathbf{I} /!Z_{1}, \ldots, \mathbf{I} /!Z_{n}, \mathbf{I} /\langle \rangle\langle \rangle \mathbf{I},!Z_{1}, \ldots,!Z_{n} ;[[\Lambda]], a_{1}, \ldots, a_{\ell} \Rightarrow s
$$

is derivable iff $a_{1} \ldots a_{\ell}$ is derivable from s in the semi-Thue system.

Undecidability Proof Sketch

- Theorem. The sequent

$$
\boldsymbol{\|} /!Z_{1}, \ldots,\left\|/!Z_{n}, \mathbf{\|} /\langle \rangle\langle \rangle\right\|!\mid Z_{1}, \ldots,!Z_{n} ;[[\Lambda]], a_{1}, \ldots, a_{\ell} \Rightarrow s
$$

is derivable iff $a_{1} \ldots a_{\ell}$ is derivable from s in the semi-Thue system.

- The \mathbf{I} / \ldots formulae are used to handle the base $(s \rightarrow s)$ case.
- For the rewriting step, one uses contraction and puts $!Z_{i}$ into the island:

$$
[[\Lambda]] \rightsquigarrow\left[![]^{-1}\left(!A_{i} \bullet\langle \rangle\langle \rangle I\right) ; \Lambda\right]
$$

Next, [] ${ }^{-1}$ removes the brackets, the extra! over A_{i} puts it into the right place, and $\rangle\rangle \mathbf{I}$ restores the island.

- The backward translation is done by forgetting brackets and mapping onto the Lambek calculus with a full-power subexponential: this yields a sequent equivalent to $!A_{1}, \ldots,!A_{n}, a_{1}, \ldots, a_{\ell} \Rightarrow s$ (Lincoln et al. 1992).

Positive Results

- The calculi discussed above are actually used in CatLog-so how could they be undecidable?
- Linguistically interesting sequents fall into decidable fragments.
- For the older system, such a fragment is guarded by the bracket non-negative condition (BNNC): in any negative !-formula there should be no positive occurrences of [] ${ }^{-1}$ and no negative occurrences of \rangle.
- Derivability problem for sequents obeying BNNC is decidable (Morrill \& Valentin, 2015), belonging to NP (K. K. S., FCT 2017).

Positive Results

- For the new system, we introduce a dual bracket non-positive condition (BNPC): in any negative !-formula there should be no negative occurrences of [$]^{-1}$ and no positive occurrences of \rangle.
- The reason for such a dualisation is as follows. In Morrill's older system, ! C removes a pair of brackets (when viewed from top to bottom). In the new system, it replaces one pair of brackets with two, i.e., adds a pair of brackets.
- Under the BNPC, Morrill's new system is decidable and belongs to NP.
- Interestingly enough, one does not need to invent sophisticated proof-search algorithms: once the BNPC is imposed, the standard non-deterministic proof search would terminate in polynomial time.

Decidability Proof Idea

- The only rule which could potentially make proof search infinite, is !C (contraction).
- However, we can estimate the number of contractions using brackets.
- For the new calculus, we have

$$
\#[]=\# B^{+}-\# B^{-}+\#!C
$$

where \#[] is the number of bracket pairs in the goal sequent; $\# B^{+}$is the number of []$^{-1} L$ and $\left\rangle R\right.$ applications; $\# B^{-}$is the number of []$^{-1} R$ and $\rangle L ; \#!C$ is the number of $!C$.

- This gives $\#!C \leq \# B^{-}+\#[]$, and the latter is bounded by the number of bracket pairs and bracket modalities ([] ${ }^{-1},\langle \rangle$) in the goal sequent.
- Thus, we get the necessary complexity bound and quickly achieve NP decidability.

Additive Connectives

- The systems in question can be extended by additive operations, \wedge (additive conjuction) and \vee (additive disjunction).
- Inferences rules for them are as follows:

$$
\begin{aligned}
& \frac{\equiv(A) \Rightarrow D}{\equiv(A \wedge B) \Rightarrow D} \quad \frac{\equiv(B) \Rightarrow D}{\equiv(A \wedge B) \Rightarrow D} \wedge L \quad \frac{\Gamma \Rightarrow A \Gamma \Rightarrow B}{\Gamma \Rightarrow A \wedge B} \wedge R \\
& \frac{\Xi(A) \Rightarrow D \quad \equiv(B) \Rightarrow D}{\equiv(A \vee B) \Rightarrow D} \vee L \quad \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \vee B} \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \vee B} \vee R
\end{aligned}
$$

Additive Connectives

- The systems with additive operations are conservative extensions of the multiplicative-additive Lambek calculus (MALC).
- MALC is PSPACE-complete.
- The lower bound is due to Kanovich (1994), and the upper one is based on the fact that MALC proofs' depth can be bounded polynomially.
- For Morrill's systems extended with additive operations, under bracket restrictions (BNNC for the older one and BNPC for the new one), we also obtain the PSPACE upper bound.

Bracket Induction

- Finally, let us discuss more complicated algorithmic problems than derivability.
- These problems arise in practical parsing using categorial grammars.
- First, a word of the language can have several syntactic types, so before proving the sequent the algorithm should determine which types to use.
- This is not an issue, because our algorithms are already non-deterministic.
- A more serious issue is as follows. In order for our algorithms to work, the sequent should be properly bracketed before starting proof search.
- In real life, brackets should also be guessed, or induced.

Bracket Induction

- Formally, the bracket induction problem is formulated as follows: given a sequent of the form $A_{1}, \ldots, A_{n} \Rightarrow B$ (without brackets and stoups), determine whether there is a way to put brackets on its left-hand side, so that the resulting sequent would be derivable in the given calculus.
- For Morrill's older system, bracket induction is decidable for sequents obeying the BNNC.
- The reason is in the following estimation on the maximal number of brackets in the goal:

$$
\#[]=\# B^{+}-\# B^{-}-\#!C \leq \# B^{+} \leq n
$$

Bracket Induction

- In contrast, for the newer system bracket induction is undecidable even under the BNPC.
- The undecidability proof here involves creating an unbounded number of empty strong islands, [[^]], at the stage of guessing brackets.
- Each island allows one application of ! C, thus, the number of contraction also becomes unbounded.
- This allows more or less standard undecidability encodings.
- Thus, for the newer system bracket induction is essentially harder than derivability check.
![Thank you]

