
Algorithmic Properties of CatLog3

Max Kanovich, Stepan G. Kuznetsov,
Stepan L. Kuznetsov, Andre Scedrov

CatLog

I CatLog is a categorial grammar parser (theorem-prover), being
developed by Glyn Morrill and his team in UPC, Barcelona.

I In categorial grammars, words (lexemes) of the target
language are associated with syntactic types, that is, formulae
of a non-classical logic.

I a1 . . . an is accepted, if there exist such formulae A1, . . . ,An

that Ai is associated with ai and the sequent A1, . . . ,An ⇒ S
is derivable.

I The calculus used in CatLog is an extension of the Lambek
calculus (Lambek, 1958).

The Lambek Calculus with the Unit

A⇒ A
id

Γ⇒ B ∆1,C ,∆2 ⇒ D

∆1,C /B, Γ,∆2 ⇒ D
/L

Γ,B ⇒ C

Γ⇒ C /B
/R

Γ⇒ A ∆1,C ,∆2 ⇒ D

∆1, Γ,A \C ,∆2 ⇒ D
\L A, Γ⇒ C

Γ⇒ A \C \R

∆1,A,B,∆2 ⇒ D

∆1,A •B,∆2 ⇒ D
•L ∆⇒ A Γ⇒ B

∆, Γ⇒ A •B •R

∆1,∆2 ⇒ A

∆1, I,∆2 ⇒ A
IL

Λ⇒ I
IR

Parasitic Extraction and Subexponentials

“the paper that John signed [] without reading []”

I Two gaps (extraction sites); the one after “reading” is the
parasitic one.

I Parasitic extraction is handled using a subexponential modality
which allows non-local contraction:

Γ1, !A, Γ2, !A, Γ3 ⇒ C

Γ1, !A, Γ2, Γ3 ⇒ C

Γ1, !A, Γ2, !A, Γ3 ⇒ C

Γ1, Γ2, !A, Γ3 ⇒ C

I Another important rule for ! is dereliction:

Γ1,A, Γ2 ⇒ C

Γ1, !A, Γ2 ⇒ C

I One can also impose permutation rules, but usually not
weakening (which is linguistically inadequate).

Parasitic Extraction and Subexponentials

“the paper that John signed [] without reading []”

I In the lexicon, “that” receives a type with !, namely,
(CN \CN) /(S / !N).

I The corresponding sequent is derived as follows:
N, (N \S) /N,N, ((N \ S) \(N \ S)) /(N \S), (N \S) /N,N ⇒ S

N, (N \ S) /N, !N, ((N \ S) \(N \ S)) /(N \S), (N \S) /N, !N ⇒ S

N, (N \S) /N, ((N \S) \(N \S)) /(N \ S), (N \S) /N, !N ⇒ S

N, (N \ S) /N, ((N \ S) \(N \ S)) /(N \S), (N \ S) /N ⇒ S / !N CN,CN \CN ⇒ CN

CN, (CN \CN) /(S / !N),N, (N \S) /N, ((N \S) \(N \ S)) /(N \ S), (N \S) /N ⇒ CN N ⇒ N

N /CN,CN, (CN \CN) /(S / !N),N, (N \ S) /N, ((N \ S) \(N \S)) /(N \ S), (N \ S) /N ⇒ N

I The sequent on top corresponds to
“John signed the paper without reading the paper”

and is derivable in the Lambek calculus.

The Workflow

General idea: contraction leads to undecidability.

Technical issues: undecidability proof becomes more involved for
sophisticated versions of contraction which involve brackets.

System with contraction Undecidability proof
Lambek calculus with full-power exponential Lincoln et al. 1992
(allows weakening, permutation, and contraction)
Lambek calculus with a relevant modality K. K. S., FG 2016
(permutation & contraction, no weakening)

no brackets
The system with brackets K. K. S., FCT 2017

of Morrill & Valentin 2015, Morrill 2017
The new system with brackets this talk

of Morrill 2018–19 (resembling Morrill 2011)

Brackets

*“the paper that John signed and Pete ate a pie”

I This noun phrase is clearly ungrammatical.
I However it is generated by our grammar, since “John signed

the paper and Pete ate a pie” is a correct sentence.
I In order to address this issue, Morrill (1992) and Moortgat

(1996) introduce brackets which embrace islands not allowed
to be penetrated by !N.

I Strong islands, like and-coordinated sentences, are
double-bracketed; no penetration possible.

I Subject groups, without-clauses, ... are weak islands. These are
single-bracketed and can be penetrated using the special form
of contraction. This is used for parasitic extraction.

The Lambek Calculus with Brackets
I Now the antecedents are built using both comma

(metasyntactic product) and brackets.
I Lambek rules: A⇒ A

Γ⇒ B Ξ(∆1,C ,∆2)⇒ D

Ξ(∆1,C /B, Γ,∆2)⇒ D
/L

Γ,B ⇒ C

Γ⇒ C /B
/R

Λ⇒ I
IR

Γ⇒ A Ξ(∆1,C ,∆2)⇒ D

Ξ(∆1, Γ,A \C ,∆2)⇒ D
\L

A, Γ⇒ C

Γ⇒ A \C
\R

Ξ(∆1,∆2)⇒ A

Ξ(∆1, I,∆2)⇒ A
IL

Ξ(∆1,A,B,∆2)⇒ D

Ξ(∆1,A •B,∆2)⇒ D
•L ∆⇒ A Γ⇒ B

∆, Γ⇒ A •B •R

I Rules operating brackets, using bracket modalities:

Ξ(∆1,A,∆2)⇒ B

Ξ(∆1, [[]
−1A],∆2)⇒ B

[]−1L
[Ξ]⇒ A

Ξ⇒ []−1A
[]−1R

Ξ(∆1, [A],∆2)⇒ B

Ξ(∆1, 〈〉A,∆2)⇒ B
〈〉L Ξ⇒ A

[Ξ]⇒ 〈〉A
〈〉R

Lambek Grammars with Brackets

I For bracketed calculi, the definition of acceptance of a word by
the grammar should be modified.

I a1 . . . an is t-accepted by the grammar, if there exists such Π
that Π⇒ S is derivable and removing all brackets (but not
bracket modalities) from Π yields A1, . . . ,An, where Ai is
associated with ai .

I For example, “John likes Mary and Pete likes Ann” should be
bracketed as follows: “[[[John] likes Mary and [Pete] likes
Ann]]” before deriving.

I In CatLog, the bracketing is requested from the user. However,
there exist bracket induction (guessing) algorithms for
fragments of the CatLog calculus (Morrill et al., FG 2018).

I We shall discuss bracket induction in the end of the talk.

Contraction with Brackets

I In Morrill’s systems, the !-formulae are kept in special areas
called stoups. Stoups are multisets of formulae.

I This is an element of focusing used to facilitate proof search.
I Each bracketed domain has a stoup, as well as the whole

antecedent.
I Morrill presents two versions of the rule set for !. Their general

idea is that contraction erases one !-formula from a weak
island, provided the same formula is in the outer area.
However, the island has to be somehow modified, in order to
prevent double usage.

Two Morrill’s Systems
I The rules operating the stoup and ! on the left (dereliction and

permutation) are the same in both systems:

Ξ(ζ; Γ1,A, Γ2)⇒ B

Ξ(ζ,A; Γ1, Γ2)⇒ B
!P

Ξ(ζ,A; Γ1, Γ2)⇒ B

Ξ(ζ; Γ1, !A, Γ2)⇒ B
!L

I The older system (Morrill 2017 in Linguistics and Philosophy)
uses the following versions of contraction and right rule for !:

Ξ(ζ,A; Γ1, [A; Γ2], Γ3)⇒ B

Ξ(ζ,A; Γ1, Γ2, Γ3)⇒ B
!C

ζ; Λ⇒ A

ζ; Λ⇒ !A
!R

Undecidability proved in our FCT 2017 paper.
I The new system (Morrill 2018 in J. Lang. Model. and 2019 in

J. Log. Lang. Inform., resembling Morrill 2011 book):

Ξ(ζ,A; Γ1, [ξ,A; Γ2], Γ3)⇒ B

Ξ(ζ,A; Γ1, [[ξ; Γ2]], Γ3)⇒ B
!C

∅; !A⇒ B
∅; !A⇒ !B

!R

I The right rule is not needed in undecidability proofs. In
linguistic applications, one needs !A⇒ !A.

Lambek and Bracket Rules with Stoups

∅;A⇒ A
id

ζ1; Γ⇒ B Ξ(ζ2; ∆1,C ,∆2)⇒ D

Ξ(ζ1, ζ2; ∆1,C /B, Γ,∆2)⇒ D
/L

ζ; Γ,B ⇒ C

ζ; Γ⇒ C /B
/R

ζ1; Γ⇒ A Ξ(ζ2; ∆1,C ,∆2)⇒ D

Ξ(ζ1, ζ2; ∆1, Γ,A \C ,∆2)⇒ D
\L

ζ;A, Γ⇒ C

ζ; Γ⇒ A \C
\R

Ξ(ζ; ∆1,A,B,∆2)⇒ D

Ξ(ζ; ∆1,A •B,∆2)⇒ D
•L

ζ1; ∆⇒ A ζ2; Γ⇒ B

ζ1, ζ2; ∆, Γ⇒ A •B •R

Ξ(ζ; ∆1,∆2)⇒ A

Ξ(ζ; ∆1, I,∆2)⇒ A
IL ∅; Λ⇒ I

IR

Ξ(ζ; ∆1,A,∆2)⇒ B

Ξ(ζ; ∆1, [∅; []−1A],∆2)⇒ B
[]−1L

∅; [Ξ]⇒ A

Ξ⇒ []−1A
[]−1R

Ξ(ζ; ∆1, [∅;A],∆2)⇒ B

Ξ(ζ; ∆1, 〈〉A,∆2)⇒ B
〈〉L Ξ⇒ A

∅; [Ξ]⇒ 〈〉A
〈〉R

Example of Derivation

N ⇒ N

〈〉N \ S ⇒ 〈〉N \ S

N ⇒ N

〈〉N \ S ⇒ 〈〉N \ S

N ⇒ N

[N] ⇒ 〈〉N S ⇒ S

[N], 〈〉N \ S ⇒ S

[N], 〈〉N \ S, (〈〉N \ S) \(〈〉N \ S)) ⇒ S

[N], (〈〉N \ S) / N, N, (〈〉N \ S) \(〈〉N \ S)) ⇒ S

[N], (〈〉N \ S) / N, N, [[]−1 ((〈〉N \ S) \(〈〉N \ S))] ⇒ S

[N], (〈〉N \ S) / N, N, [([]−1 ((〈〉N \ S) \(〈〉N \ S))) /(〈〉N \ S), 〈〉N \ S] ⇒ S

[N], (〈〉N \ S) / N, N, [([]−1 ((〈〉N \ S) \(〈〉N \ S))) /(〈〉N \ S), (〈〉N \ S) / N, N] ⇒ S

[N], (〈〉N \ S) / N, N, [N; ([]−1 ((〈〉N \ S) \(〈〉N \ S))) /(〈〉N \ S), (〈〉N \ S) / N] ⇒ S

N; [N], (〈〉N \ S) / N, [N; ([]−1 ((〈〉N \ S) \(〈〉N \ S))) /(〈〉N \ S), (〈〉N \ S) / N] ⇒ S

N; [N], (〈〉N \ S) / N, [[([]−1 ((〈〉N \ S) \(〈〉N \ S))) /(〈〉N \ S), (〈〉N \ S) / N]] ⇒ S

[N], (〈〉N \ S) / N, [[([]−1 ((〈〉N \ S) \(〈〉N \ S))) /(〈〉N \ S), (〈〉N \ S) / N]], !N ⇒ S

[N], (〈〉N \ S) / N, [[([]−1 ((〈〉N \ S) \(〈〉N \ S))) /(〈〉N \ S), (〈〉N \ S) / N]] ⇒ S / !N

CN ⇒ CN CN ⇒ CN

CN, CN \ CN ⇒ CN

CN, [[]−1 (CN \ CN)] ⇒ CN

CN, [[[]−1 []−1 (CN \ CN)]] ⇒ CN

CN, [[([]−1 []−1 (CN \ CN)) /(S / !N), [N], (〈〉N \ S) / N, [[([]−1 ((〈〉N \ S) \(〈〉N \ S))) /(〈〉N \ S), (〈〉N \ S) / N]]]] ⇒ CN N ⇒ N

N / CN, CN, [[([]−1 []−1 (CN \ CN)) /(S / !N), [N], (〈〉N \ S) / N, [[([]−1 ((〈〉N \ S) \(〈〉N \ S))) /(〈〉N \ S), (〈〉N \ S) / N]]]] ⇒ N

the paper [[that John signed [[without reading]]]]

Motivation for the New System
Following Morrill (2018), consider the following example:

*“the man who likes”

Using the old contraction rule, one can analyse “likes” as a
dependent clause with two gaps, where the parasitic one is the
subject (“man who likes himself”):

N ⇒ N

N ⇒ N

[N]⇒ 〈〉N S ⇒ S

[N], 〈〉N \ S ⇒ S

[N], (〈〉N \ S) /N,N ⇒ S

[N; Λ], (〈〉N \ S) /N,N ⇒ S

N; [N; Λ], (〈〉N \ S) /N ⇒ S

N; (〈〉N \ S) /N ⇒ S

(〈〉N \ S) /N, !N ⇒ S

(〈〉N \ S) /N ⇒ S / !N

In this derivation, !C instantiates an empty subject island.
With the new !C , this island should be explicitly declared (as a
strong one) in the bracketing, and we can disallow empty ones.

Motivation for the New System
Following Morrill (2018), consider the following example:

*“the man who likes”

Using the old contraction rule, one can analyse “likes” as a
dependent clause with two gaps, where the parasitic one is the
subject (“man who likes himself”):

N ⇒ N

N ⇒ N

[N]⇒ 〈〉N S ⇒ S

[N], 〈〉N \ S ⇒ S

[N], (〈〉N \ S) /N,N ⇒ S

[N; Λ], (〈〉N \ S) /N,N ⇒ S

N; [N; Λ], (〈〉N \ S) /N ⇒ S

N; (〈〉N \ S) /N ⇒ S

(〈〉N \ S) /N, !N ⇒ S

(〈〉N \ S) /N ⇒ S / !N

In this derivation, !C instantiates an empty subject island.
With the new !C , this island should be explicitly declared (as a
strong one) in the bracketing, and we can disallow empty ones.

Motivation for the New System
Following Morrill (2018), consider the following example:

*“the man who likes”

Using the old contraction rule, one can analyse “likes” as a
dependent clause with two gaps, where the parasitic one is the
subject (“man who likes himself”):

N ⇒ N

N ⇒ N

[N]⇒ 〈〉N S ⇒ S

[N], 〈〉N \ S ⇒ S

[N], (〈〉N \ S) /N,N ⇒ S

[N; Λ], (〈〉N \ S) /N,N ⇒ S

N; [N; Λ], (〈〉N \ S) /N ⇒ S

N; (〈〉N \ S) /N ⇒ S

(〈〉N \ S) /N, !N ⇒ S

(〈〉N \ S) /N ⇒ S / !N

In this derivation, !C instantiates an empty subject island.
With the new !C , this island should be explicitly declared (as a
strong one) in the bracketing, and we can disallow empty ones.

Undecidability Proof Sketch

I Encoding semi-Thue systems.
I Each rewriting rule x1 . . . xm → y1 . . . yk is encoded by

Ai = (x1 • . . . • xm) /(y1 • . . . • yk).
I Zi = []−1(!Ai •〈〉〈〉I).
I Theorem. The sequent

I / !Z1, . . . , I / !Zn, I /〈〉〈〉I, !Z1, . . . , !Zn; [[Λ]], a1, . . . , a` ⇒ s

is derivable iff a1 . . . a` is derivable from s in the semi-Thue
system.

Undecidability Proof Sketch
I Theorem. The sequent

I / !Z1, . . . , I / !Zn, I /〈〉〈〉I, !Z1, . . . , !Zn; [[Λ]], a1, . . . , a` ⇒ s

is derivable iff a1 . . . a` is derivable from s in the semi-Thue
system.

I The I / . . . formulae are used to handle the base (s → s) case.
I For the rewriting step, one uses contraction and puts !Zi into

the island:
[[Λ]] [![]−1(!Ai •〈〉〈〉I); Λ]

Next, []−1 removes the brackets, the extra ! over Ai puts it
into the right place, and 〈〉〈〉I restores the island.

I The backward translation is done by forgetting brackets and
mapping onto the Lambek calculus with a full-power
subexponential: this yields a sequent equivalent to
!A1, . . . , !An, a1, . . . , a` ⇒ s (Lincoln et al. 1992).

Positive Results

I The calculi discussed above are actually used in CatLog—so
how could they be undecidable?

I Linguistically interesting sequents fall into decidable fragments.
I For the older system, such a fragment is guarded by the

bracket non-negative condition (BNNC): in any negative
!-formula there should be no positive occurrences of []−1 and
no negative occurrences of 〈〉.

I Derivability problem for sequents obeying BNNC is decidable
(Morrill & Valentin, 2015), belonging to NP (K. K. S., FCT
2017).

Positive Results

I For the new system, we introduce a dual bracket non-positive
condition (BNPC): in any negative !-formula there should be
no negative occurrences of []−1 and no positive occurrences of
〈〉.

I The reason for such a dualisation is as follows. In Morrill’s
older system, !C removes a pair of brackets (when viewed from
top to bottom). In the new system, it replaces one pair of
brackets with two, i.e., adds a pair of brackets.

I Under the BNPC, Morrill’s new system is decidable and
belongs to NP.

I Interestingly enough, one does not need to invent sophisticated
proof-search algorithms: once the BNPC is imposed, the
standard non-deterministic proof search would terminate in
polynomial time.

Decidability Proof Idea

I The only rule which could potentially make proof search
infinite, is !C (contraction).

I However, we can estimate the number of contractions using
brackets.

I For the new calculus, we have

#[] = #B+ −#B− + #!C ,

where #[] is the number of bracket pairs in the goal sequent;
#B+ is the number of []−1L and 〈〉R applications; #B− is the
number of []−1R and 〈〉L; #!C is the number of !C .

I This gives #!C ≤ #B− + #[], and the latter is bounded by
the number of bracket pairs and bracket modalities ([]−1, 〈〉)
in the goal sequent.

I Thus, we get the necessary complexity bound and quickly
achieve NP decidability.

Additive Connectives

I The systems in question can be extended by additive
operations, ∧ (additive conjuction) and ∨ (additive
disjunction).

I Inferences rules for them are as follows:

Ξ(A) ⇒ D

Ξ(A ∧ B) ⇒ D

Ξ(B) ⇒ D

Ξ(A ∧ B) ⇒ D
∧L Γ ⇒ A Γ ⇒ B

Γ ⇒ A ∧ B
∧R

Ξ(A) ⇒ D Ξ(B) ⇒ D

Ξ(A ∨ B) ⇒ D
∨L Γ ⇒ A

Γ ⇒ A ∨ B
Γ ⇒ B

Γ ⇒ A ∨ B
∨R

Additive Connectives

I The systems with additive operations are conservative
extensions of the multiplicative-additive Lambek calculus
(MALC).

I MALC is PSPACE-complete.
I The lower bound is due to Kanovich (1994), and the upper

one is based on the fact that MALC proofs’ depth can be
bounded polynomially.

I For Morrill’s systems extended with additive operations, under
bracket restrictions (BNNC for the older one and BNPC for
the new one), we also obtain the PSPACE upper bound.

Bracket Induction

I Finally, let us discuss more complicated algorithmic problems
than derivability.

I These problems arise in practical parsing using categorial
grammars.

I First, a word of the language can have several syntactic types,
so before proving the sequent the algorithm should determine
which types to use.

I This is not an issue, because our algorithms are already
non-deterministic.

I A more serious issue is as follows. In order for our algorithms
to work, the sequent should be properly bracketed before
starting proof search.

I In real life, brackets should also be guessed, or induced.

Bracket Induction

I Formally, the bracket induction problem is formulated as
follows: given a sequent of the form A1, . . . ,An ⇒ B (without
brackets and stoups), determine whether there is a way to put
brackets on its left-hand side, so that the resulting sequent
would be derivable in the given calculus.

I For Morrill’s older system, bracket induction is decidable for
sequents obeying the BNNC.

I The reason is in the following estimation on the maximal
number of brackets in the goal:

#[] = #B+ −#B− −#!C ≤ #B+ ≤ n.

Bracket Induction

I In contrast, for the newer system bracket induction is
undecidable even under the BNPC.

I The undecidability proof here involves creating an unbounded
number of empty strong islands, [[Λ]], at the stage of guessing
brackets.

I Each island allows one application of !C , thus, the number of
contraction also becomes unbounded.

I This allows more or less standard undecidability encodings.
I Thus, for the newer system bracket induction is essentially

harder than derivability check.

![Thank you]

