Algorithmic Properties of CatLog3

Max Kanovich, Stepan G. Kuznetsov, Stepan L. Kuznetsov, Andre Scedrov

CatLog

- CatLog is a categorial grammar parser (theorem-prover), being developed by Glyn Morrill and his team in UPC, Barcelona.
- In categorial grammars, words (lexemes) of the target language are associated with syntactic types, that is, formulae of a non-classical logic.
- a₁... a_n is accepted, if there exist such formulae A₁,..., A_n that A_i is associated with a_i and the sequent A₁,..., A_n ⇒ S is derivable.
- The calculus used in CatLog is an extension of the Lambek calculus (Lambek, 1958).

The Lambek Calculus with the Unit

$$\overline{A \Rightarrow A}$$
 id

$$\frac{\Gamma \Rightarrow B \quad \Delta_1, C, \Delta_2 \Rightarrow D}{\Delta_1, C / B, \Gamma, \Delta_2 \Rightarrow D} / L \qquad \frac{\Gamma, B \Rightarrow C}{\Gamma \Rightarrow C / B} / R$$

$$\frac{\Gamma \Rightarrow A \quad \Delta_1, C, \Delta_2 \Rightarrow D}{\Delta_1, \Gamma, A \setminus C, \Delta_2 \Rightarrow D} \setminus L \qquad \frac{A, \Gamma \Rightarrow C}{\Gamma \Rightarrow A \setminus C} \setminus R$$

$$\frac{\Delta_1, A, B, \Delta_2 \Rightarrow D}{\Delta_1, A \bullet B, \Delta_2 \Rightarrow D} \bullet L \qquad \frac{\Delta \Rightarrow A \quad \Gamma \Rightarrow B}{\Delta, \Gamma \Rightarrow A \bullet B} \bullet R$$

$$\frac{\Delta_1, \Delta_2 \Rightarrow A}{\Delta_1, \mathbf{I}, \Delta_2 \Rightarrow A} \mathbf{I} \mathcal{L} \qquad \overline{\Lambda \Rightarrow \mathbf{I}} \mathbf{I} \mathcal{R}$$

Parasitic Extraction and Subexponentials

"the paper that John signed [] without reading []"

- Two gaps (extraction sites); the one after "reading" is the parasitic one.
- Parasitic extraction is handled using a subexponential modality which allows non-local contraction:

$$\frac{\Gamma_1, !A, \Gamma_2, !A, \Gamma_3 \Rightarrow C}{\Gamma_1, !A, \Gamma_2, \Gamma_3 \Rightarrow C} \qquad \frac{\Gamma_1, !A, \Gamma_2, !A, \Gamma_3 \Rightarrow C}{\Gamma_1, \Gamma_2, !A, \Gamma_3 \Rightarrow C}$$

Another important rule for ! is dereliction:

$$\frac{\Gamma_1, A, \Gamma_2 \Rightarrow C}{\Gamma_1, !A, \Gamma_2 \Rightarrow C}$$

 One can also impose permutation rules, but usually not weakening (which is linguistically inadequate). Parasitic Extraction and Subexponentials

"the paper that John signed [] without reading []"

In the lexicon, "that" receives a type with !, namely, (CN \ CN) /(S / !N).

The sequent on top corresponds to

"John signed the paper without reading the paper"

and is derivable in the Lambek calculus.

The Workflow

General idea: contraction leads to undecidability.

Technical issues: undecidability proof becomes more involved for sophisticated versions of contraction which involve brackets.

System with contraction	Undecidability proof
Lambek calculus with full-power exponential	Lincoln et al. 1992
(allows weakening, permutation, and contraction)	
Lambek calculus with a <i>relevant</i> modality	K. K. S., FG 2016
(permutation & contraction, no weakening)	
no brackets	
The system with brackets	K. K. S., FCT 2017
of Morrill & Valentin 2015, Morrill 2017	
The new system with brackets	this talk
of Morrill 2018–19 (resembling Morrill 2011)	

Brackets

*"the paper that John signed and Pete ate a pie"

- ▶ This noun phrase is clearly ungrammatical.
- However it is generated by our grammar, since "John signed the paper and Pete ate a pie" is a correct sentence.
- In order to address this issue, Morrill (1992) and Moortgat (1996) introduce *brackets* which embrace *islands* not allowed to be penetrated by !N.
- Strong islands, like and-coordinated sentences, are double-bracketed; no penetration possible.
- Subject groups, without-clauses, ... are weak islands. These are single-bracketed and can be penetrated using the special form of contraction. This is used for parasitic extraction.

The Lambek Calculus with Brackets

- Now the antecedents are built using both comma (metasyntactic product) and brackets.
- Lambek rules: $\overline{A \Rightarrow A}$

$$\frac{\Gamma \Rightarrow B \quad \Xi(\Delta_1, C, \Delta_2) \Rightarrow D}{\Xi(\Delta_1, C / B, \Gamma, \Delta_2) \Rightarrow D} / L \qquad \frac{\Gamma, B \Rightarrow C}{\Gamma \Rightarrow C / B} / R \qquad \frac{\Lambda \Rightarrow I}{\Lambda \Rightarrow I} IR$$

$$\frac{\Gamma \Rightarrow A}{\Xi(\Delta_1, \Gamma, A \setminus C, \Delta_2) \Rightarrow D} \setminus L \qquad \frac{A, \Gamma \Rightarrow C}{\Gamma \Rightarrow A \setminus C} \setminus R \qquad \frac{\Xi(\Delta_1, \Delta_2) \Rightarrow A}{\Xi(\Delta_1, \mathbf{I}, \Delta_2) \Rightarrow A} \mathsf{I}L$$

$$\frac{\Xi(\Delta_1, A, B, \Delta_2) \Rightarrow D}{\Xi(\Delta_1, A \bullet B, \Delta_2) \Rightarrow D} \bullet L \qquad \frac{\Delta \Rightarrow A \quad \Gamma \Rightarrow B}{\Delta, \Gamma \Rightarrow A \bullet B} \bullet R$$

Rules operating brackets, using bracket modalities:

$$\frac{\Xi(\Delta_1, A, \Delta_2) \Rightarrow B}{\Xi(\Delta_1, [[]^{-1}A], \Delta_2) \Rightarrow B} []^{-1}L \qquad \frac{[\Xi] \Rightarrow A}{\Xi \Rightarrow []^{-1}A} []^{-1}R$$
$$\frac{\Xi(\Delta_1, [A], \Delta_2) \Rightarrow B}{\Xi(\Delta_1, \langle \rangle A, \Delta_2) \Rightarrow B} \langle \rangle L \qquad \frac{\Xi \Rightarrow A}{[\Xi] \Rightarrow \langle \rangle A} \langle \rangle R$$

Lambek Grammars with Brackets

- For bracketed calculi, the definition of acceptance of a word by the grammar should be modified.
- ► $a_1 \dots a_n$ is *t*-accepted by the grammar, if there exists such Π that $\Pi \Rightarrow S$ is derivable and removing all brackets (but not bracket modalities) from Π yields A_1, \dots, A_n , where A_i is associated with a_i .
- For example, "John likes Mary and Pete likes Ann" should be bracketed as follows: "[[[John] likes Mary and [Pete] likes Ann]]" before deriving.
- In CatLog, the bracketing is requested from the user. However, there exist bracket induction (guessing) algorithms for fragments of the CatLog calculus (Morrill et al., FG 2018).
- We shall discuss bracket induction in the end of the talk.

Contraction with Brackets

- In Morrill's systems, the !-formulae are kept in special areas called *stoups*. Stoups are multisets of formulae.
- ▶ This is an element of *focusing* used to facilitate proof search.
- Each bracketed domain has a stoup, as well as the whole antecedent.
- Morrill presents two versions of the rule set for !. Their general idea is that contraction erases one !-formula from a weak island, provided the same formula is in the outer area. However, the island has to be somehow modified, in order to prevent double usage.

Two Morrill's Systems

The rules operating the stoup and ! on the left (dereliction and permutation) are the same in both systems:

$$\frac{\Xi(\zeta;\Gamma_1,A,\Gamma_2) \Rightarrow B}{\Xi(\zeta,A;\Gamma_1,\Gamma_2) \Rightarrow B} !P \qquad \frac{\Xi(\zeta,A;\Gamma_1,\Gamma_2) \Rightarrow B}{\Xi(\zeta;\Gamma_1,!A,\Gamma_2) \Rightarrow B} !L$$

The older system (Morrill 2017 in Linguistics and Philosophy) uses the following versions of contraction and right rule for !:

$$\frac{\Xi(\zeta, A; \Gamma_1, [A; \Gamma_2], \Gamma_3) \Rightarrow B}{\Xi(\zeta, A; \Gamma_1, \Gamma_2, \Gamma_3) \Rightarrow B} \ !C \qquad \frac{\zeta; \Lambda \Rightarrow A}{\zeta; \Lambda \Rightarrow !A} \ !R$$

Undecidability proved in our FCT 2017 paper.

The new system (Morrill 2018 in *J. Lang. Model.* and 2019 in *J. Log. Lang. Inform.*, resembling Morrill 2011 book):

$$\frac{\Xi(\zeta, A; \Gamma_1, [\xi, A; \Gamma_2], \Gamma_3) \Rightarrow B}{\Xi(\zeta, A; \Gamma_1, [[\xi; \Gamma_2]], \Gamma_3) \Rightarrow B} \ !C \qquad \frac{\emptyset; !A \Rightarrow B}{\emptyset; !A \Rightarrow !B} \ !R$$

► The right rule is not needed in undecidability proofs. In linguistic applications, one needs !A ⇒ !A.

Lambek and Bracket Rules with Stoups

$$\overline{\varnothing; A \Rightarrow A}$$
 id

$$\frac{\zeta_1; \Gamma \Rightarrow B \quad \Xi(\zeta_2; \Delta_1, C, \Delta_2) \Rightarrow D}{\Xi(\zeta_1, \zeta_2; \Delta_1, C/B, \Gamma, \Delta_2) \Rightarrow D} \ /L \qquad \frac{\zeta; \Gamma, B \Rightarrow C}{\zeta; \Gamma \Rightarrow C/B} \ /R$$

$$\frac{\zeta_1; \Gamma \Rightarrow A \quad \Xi(\zeta_2; \Delta_1, C, \Delta_2) \Rightarrow D}{\Xi(\zeta_1, \zeta_2; \Delta_1, \Gamma, A \setminus C, \Delta_2) \Rightarrow D} \setminus L \qquad \frac{\zeta; A, \Gamma \Rightarrow C}{\zeta; \Gamma \Rightarrow A \setminus C} \setminus R$$

$$\frac{\Xi(\zeta;\Delta_1,A,B,\Delta_2) \Rightarrow D}{\Xi(\zeta;\Delta_1,A\bullet B,\Delta_2) \Rightarrow D} \bullet L \qquad \frac{\zeta_1;\Delta \Rightarrow A \quad \zeta_2;\Gamma \Rightarrow B}{\zeta_1,\zeta_2;\Delta,\Gamma \Rightarrow A\bullet B} \bullet R$$

$$\frac{\Xi(\zeta;\Delta_1,\Delta_2) \Rightarrow A}{\Xi(\zeta;\Delta_1,\mathbf{I},\Delta_2) \Rightarrow A} \mathbf{I} \mathcal{L} \qquad \frac{\varphi;\Lambda \Rightarrow \mathbf{I}}{\varphi;\Lambda \Rightarrow \mathbf{I}} \mathbf{I} \mathcal{R}$$

$$\frac{\Xi(\zeta;\Delta_1,A,\Delta_2)\Rightarrow B}{\Xi(\zeta;\Delta_1,[\varnothing;[]^{-1}A],\Delta_2)\Rightarrow B} []^{-1}L \qquad \frac{\emptyset;[\Xi]\Rightarrow A}{\Xi\Rightarrow []^{-1}A} []^{-1}R$$

$$\frac{\Xi(\zeta;\Delta_1,[\varnothing;A],\Delta_2)\Rightarrow B}{\Xi(\zeta;\Delta_1,\langle\rangle A,\Delta_2)\Rightarrow B} \langle\rangle L \qquad \frac{\Xi\Rightarrow A}{\varnothing;[\Xi]\Rightarrow\langle\rangle A} \langle\rangle R$$

Example of Derivation

$N \Rightarrow N$				
$[N] \Rightarrow \langle \rangle N S \Rightarrow S$				
$\langle \rangle N \setminus S \Rightarrow \langle \rangle N \setminus S [N], \langle \rangle N \setminus S \Rightarrow S$				
$N \Rightarrow N \boxed{[N], \langle \rangle N \setminus S, (\langle \rangle N \setminus S) \setminus (\langle \rangle N \setminus S))} \Rightarrow S$				
$[N], (\langle \rangle N \setminus S) / N, N, (\langle \rangle N \setminus S) \setminus (\langle \rangle N \setminus S)) \Rightarrow S$				
$\langle \rangle N \setminus S \Rightarrow \langle \rangle N \setminus S \boxed{[N], (\langle \rangle N \setminus S) / N, N, [[]^{-1}((\langle \rangle N \setminus S) \setminus (\langle \rangle N \setminus S))] \Rightarrow S}$				
$N \Rightarrow N \boxed{[N], (\langle \rangle N \setminus S) / N, N, [([]^{-1}((\langle \rangle N \setminus S) \setminus (\langle \rangle N \setminus S))) / (\langle \rangle N \setminus S), \langle \rangle N \setminus S] \Rightarrow S}$				
$[N], (\langle \rangle N \setminus S) / N, N, [([]^{-1}((\langle \rangle N \setminus S) \setminus (\langle \rangle N \setminus S))) / (\langle \rangle N \setminus S), (\langle \rangle N \setminus S) / N, N] \Rightarrow S$				
$[N], (\langle \rangle N \setminus S) / N, N, [N: ([]^{-1}((\langle \rangle N \setminus S) \setminus (\langle \rangle N \setminus S))) / (\langle \rangle N \setminus S), (\langle \rangle N \setminus S) / N] \Rightarrow S$				
$\underbrace{N_{S}}_{N}[N], (\langle \rangle N \setminus S) / N, [N_{S} ([]^{-1}((\langle \rangle N \setminus S) \setminus (\langle \rangle N \setminus S))) / (\langle \rangle N \setminus S), (\langle \rangle N \setminus S) / N] \Rightarrow S$	$CN \Rightarrow CN CN \Rightarrow CN$			
$\underbrace{N: [N], (\langle \rangle N \setminus S) / N, [[([]^{-1}((\langle \rangle N \setminus S) \setminus (\langle \rangle N \setminus S))) / (\langle \rangle N \setminus S), (\langle \rangle N \setminus S) / N]] \Rightarrow S}_{I:[N], I:[N], I:[N], I:[N]}$	$CN, CN \setminus CN \Rightarrow CN$			
$[N], (\langle \rangle N \setminus S) / N, [[([]^{-1}((\langle \rangle N \setminus S) \setminus (\langle \rangle N \setminus S))) / (\langle \rangle N \setminus S), (\langle \rangle N \setminus S) / N]], !N \Rightarrow S$	$CN, [[]^{-1}(CN \setminus CN)] \Rightarrow CN$			
$\underbrace{[N], (\langle \rangle N \setminus S) / N, [[(]]^{-1}((\langle \rangle N \setminus S) \setminus (\langle \rangle N \setminus S))) / (\langle \rangle N \setminus S), (\langle \rangle N \setminus S) / N]] \Rightarrow S / !N$	$CN, [[[]^{-1}]^{-1}(CN \setminus CN)]] \Rightarrow CN$			
$\underbrace{CN, [[([]^{-1}[]^{-1}(CN \setminus CN)) / (S / !N), [N], (\langle \rangle N \setminus S) / N, [[([]^{-1}((\langle \rangle N \setminus S) \setminus (\langle \rangle N \setminus S))) / (\langle \rangle N \setminus S))) / (\langle \rangle N \setminus S))]}_{(S / !N)}$	$(\langle N \setminus S \rangle, (\langle N \setminus S \rangle / N]]] \Rightarrow CN N \Rightarrow N$			
$N / CN, CN, [[([]^{-1}[]^{-1}(CN \setminus CN)) / (S / !N), [M], (\langle \rangle N \setminus S) / N, [[([]^{-1}((\langle \rangle N \setminus S) \setminus (\langle \rangle N \setminus S))) / (\langle \rangle N \setminus S), (\langle \rangle N \setminus S) / M]]]] \Rightarrow N = N = N = N = N = N$				
the paper [[that John signed [[without reading]]]]				

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Motivation for the New System

Following Morrill (2018), consider the following example:

*"the man who likes"

Using the old contraction rule, one can analyse *"likes"* as a dependent clause with two gaps, where the parasitic one is the subject ("man who likes himself"):

	N	$\Rightarrow N$			
	[N]	$\Rightarrow \langle \rangle \Lambda$	i s	\Rightarrow	S
$N \Rightarrow N$	[N], () N `	\ <i>S</i> =	<i>⇒</i> S	
$[N], (\langle \rangle$	$N \setminus S$)/N,	$N \Rightarrow$	5	
[N; ۸], (〈	$\rangle N \setminus$	S) / N	N =	<i>⇒</i> S	
N; [N; ٨]	, (<>^	$I \setminus S) /$	N =	<i>⇒ S</i>	
N; (()	$N \setminus S$	S) / N	$\Rightarrow S$		
$(\langle \rangle N)$	5)/	'N, !N	$\Rightarrow 5$	5	
$(\langle \rangle N \setminus$	S) /	$N \Rightarrow S$	5 / !/	v	

In this derivation, !C instantiates an *empty* subject island. With the new !C, this island should be explicitly declared (as a strong one) in the bracketing, and we can disallow empty ones.

Motivation for the New System

Following Morrill (2018), consider the following example:

*"the man who likes"

Using the old contraction rule, one can analyse *"likes"* as a dependent clause with two gaps, where the parasitic one is the subject ("man who likes himself"):

	N	$\Rightarrow N$			
	[N]	$\Rightarrow \langle \rangle \Lambda$	i s	\Rightarrow	S
$N \Rightarrow N$	[N], () N `	\ <i>S</i> =	<i>⇒</i> S	
$[N], (\langle \rangle$	$N \setminus S$)/N,	$N \Rightarrow$	5	
[N; ۸], (〈	$\rangle N \setminus$	S) / N	N =	<i>⇒</i> S	
N; [N; ٨]	, (<>^	$I \setminus S) /$	N =	<i>⇒ S</i>	
N; (()	$N \setminus S$	S) / N	$\Rightarrow S$		
$(\langle \rangle N)$	5)/	'N, !N	$\Rightarrow 5$	5	
$(\langle \rangle N \setminus$	S) /	$N \Rightarrow S$	5 / !/	v	

In this derivation, !C instantiates an *empty* subject island. With the new !C, this island should be explicitly declared (as a strong one) in the bracketing, and we can disallow empty ones.

Motivation for the New System

Following Morrill (2018), consider the following example:

*"the man who likes"

Using the old contraction rule, one can analyse *"likes"* as a dependent clause with two gaps, where the parasitic one is the subject ("man who likes himself"):

	$N \Rightarrow$	- N		
	$[N] \Rightarrow$	$\langle \rangle N$	$S \Rightarrow$	S
$N \Rightarrow N$	[N],	$\langle \rangle N \setminus S$	$S \Rightarrow S$	
$[N], (\langle \rangle$	$N \setminus S)$	′ N, N	$\Rightarrow S$	
[N; Λ], (〈	$\rangle N \setminus S$	/ N, N	$I \Rightarrow S$	
Ν; [N; Λ]	$, (\langle \rangle N \setminus$	S) / N	$I \Rightarrow S$	
N; (($(N \setminus S)$	$/ N \Rightarrow$	· S	
$(\langle \rangle N)$	\ <i>S</i>) / N	/, !N ≓	<i>⊳ S</i>	
$(\langle \rangle N \setminus$	(S) / N	$\Rightarrow S$	/ !N	

In this derivation, !C instantiates an *empty* subject island. With the new !C, this island should be explicitly declared (as a strong one) in the bracketing, and we can disallow empty ones.

Undecidability Proof Sketch

- Encoding semi-Thue systems.
- ► Each rewriting rule $x_1 \dots x_m \to y_1 \dots y_k$ is encoded by $A_i = (x_1 \bullet \dots \bullet x_m) / (y_1 \bullet \dots \bullet y_k).$

$$\triangleright Z_i = []^{-1}(!A_i \bullet \langle \rangle \langle \rangle \mathbf{I}).$$

Theorem. The sequent

$$\mathbf{I} / !Z_1, \ldots, \mathbf{I} / !Z_n, \mathbf{I} / \langle \rangle \langle \rangle \mathbf{I}, !Z_1, \ldots, !Z_n; [[\Lambda]], a_1, \ldots, a_\ell \Rightarrow s$$

is derivable iff $a_1 \dots a_\ell$ is derivable from s in the semi-Thue system.

Undecidability Proof Sketch

Theorem. The sequent

 $| / !Z_1, \ldots, | / !Z_n, | / \langle \rangle \langle \rangle |, !Z_1, \ldots, !Z_n; [[\Lambda]], a_1, \ldots, a_\ell \Rightarrow s$

is derivable iff $a_1 \dots a_\ell$ is derivable from s in the semi-Thue system.

- ▶ The I / . . . formulae are used to handle the base $(s \rightarrow s)$ case.
- For the rewriting step, one uses contraction and puts !Z_i into the island:

 $[[\Lambda]] \rightsquigarrow [![]^{-1}(!A_i \bullet \langle \rangle \langle \rangle \mathsf{I}); \Lambda]$

Next, $[]^{-1}$ removes the brackets, the extra ! over A_i puts it into the right place, and $\langle \rangle \langle \rangle \mathbf{I}$ restores the island.

The backward translation is done by forgetting brackets and mapping onto the Lambek calculus with a full-power subexponential: this yields a sequent equivalent to !A₁,...,!A_n, a₁,..., a_ℓ ⇒ s (Lincoln et al. 1992).

Positive Results

- The calculi discussed above are actually used in CatLog—so how could they be undecidable?
- Linguistically interesting sequents fall into decidable fragments.
- ► For the older system, such a fragment is guarded by the bracket non-negative condition (BNNC): in any negative !-formula there should be no positive occurrences of []⁻¹ and no negative occurrences of ⟨⟩.
- Derivability problem for sequents obeying BNNC is decidable (Morrill & Valentin, 2015), belonging to NP (K. K. S., FCT 2017).

Positive Results

- For the new system, we introduce a dual bracket non-positive condition (BNPC): in any negative !-formula there should be no negative occurrences of []⁻¹ and no positive occurrences of ().
- The reason for such a dualisation is as follows. In Morrill's older system, !C removes a pair of brackets (when viewed from top to bottom). In the new system, it replaces one pair of brackets with two, i.e., adds a pair of brackets.
- Under the BNPC, Morrill's new system is decidable and belongs to NP.
- Interestingly enough, one does not need to invent sophisticated proof-search algorithms: once the BNPC is imposed, the standard non-deterministic proof search would terminate in polynomial time.

Decidability Proof Idea

- The only rule which could potentially make proof search infinite, is !C (contraction).
- However, we can estimate the number of contractions using brackets.
- For the new calculus, we have

$$\#[] = \#B^+ - \#B^- + \#!C,$$

where #[] is the number of bracket pairs in the goal sequent; $\#B^+$ is the number of $[]^{-1}L$ and $\langle\rangle R$ applications; $\#B^-$ is the number of $[]^{-1}R$ and $\langle\rangle L$; #!C is the number of !C.

- ► This gives #!C ≤ #B⁻ + #[], and the latter is bounded by the number of bracket pairs and bracket modalities ([]⁻¹, ⟨⟩) in the goal sequent.
- Thus, we get the necessary complexity bound and quickly achieve NP decidability.

Additive Connectives

- ► The systems in question can be extended by additive operations, ∧ (additive conjuction) and ∨ (additive disjunction).
- Inferences rules for them are as follows:

$$\frac{\Xi(A) \Rightarrow D}{\Xi(A \land B) \Rightarrow D} \quad \frac{\Xi(B) \Rightarrow D}{\Xi(A \land B) \Rightarrow D} \land L \qquad \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \land B} \land R$$
$$\frac{\Xi(A) \Rightarrow D \quad \Xi(B) \Rightarrow D}{\Xi(A \lor B) \Rightarrow D} \lor L \qquad \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \lor B} \quad \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \lor B} \lor R$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Additive Connectives

- The systems with additive operations are conservative extensions of the *multiplicative-additive Lambek calculus* (MALC).
- MALC is PSPACE-complete.
- The lower bound is due to Kanovich (1994), and the upper one is based on the fact that MALC proofs' depth can be bounded polynomially.
- For Morrill's systems extended with additive operations, under bracket restrictions (BNNC for the older one and BNPC for the new one), we also obtain the PSPACE upper bound.

Bracket Induction

- Finally, let us discuss more complicated algorithmic problems than derivability.
- These problems arise in practical parsing using categorial grammars.
- First, a word of the language can have several syntactic types, so before proving the sequent the algorithm should determine which types to use.
- This is not an issue, because our algorithms are already non-deterministic.
- A more serious issue is as follows. In order for our algorithms to work, the sequent should be properly bracketed before starting proof search.
- ▶ In real life, brackets should also be guessed, or *induced*.

Bracket Induction

- ► Formally, the *bracket induction problem* is formulated as follows: given a sequent of the form A₁,..., A_n ⇒ B (without brackets and stoups), determine whether there is a way to put brackets on its left-hand side, so that the resulting sequent would be derivable in the given calculus.
- For Morrill's older system, bracket induction is decidable for sequents obeying the BNNC.
- The reason is in the following estimation on the maximal number of brackets in the goal:

$$\#[] = \#B^+ - \#B^- - \#!C \le \#B^+ \le n.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Bracket Induction

- In contrast, for the newer system bracket induction is undecidable even under the BNPC.
- The undecidability proof here involves creating an unbounded number of empty strong islands, [[A]], at the stage of guessing brackets.
- Each island allows one application of !C, thus, the number of contraction also becomes unbounded.
- > This allows more or less standard undecidability encodings.
- Thus, for the newer system bracket induction is essentially harder than derivability check.

![Thank you]