
 Language Models and Relational Models
 of the Multiplicative-Additive Lambek Calculus

Max Kanovich, Stepan L. Kuznetsov, and Andre Scedrov

LAP 2021

Introduction: Algebra of Formal Languages

◮ Let Σ be a finite alphabet.

◮ By Σ+ we denote the set of all non-empty words over Σ.

◮ P(Σ+) is the set of all formal languages over Σ without the
empty word.

◮ We introduce the following algebraic operations on P(Σ+):

A · B = {uv | u ∈ A, v ∈ B}

A \B = {u ∈ Σ+ | (∀v ∈ A) vu ∈ B}

B /A = {u ∈ Σ+ | (∀v ∈ A) uv ∈ B}

A ∨ B = A ∪ B ; A ∧ B = A ∩ B

◮ The most interesting operations are two divisions, \ and /.
They are connected to product in the following way:

B ⊆ A \C ⇐⇒ A · B ⊆ C ⇐⇒ A ⊆ C /B

Relational Algebras

◮ Another class of algebraic structures we are going to keep in
mind is formed by the algebras of binary relations.

◮ Let W be a non-empty set. Fix a transitive binary relation
U ⊆ W ×W , which we shall call the “universal” one.

◮ We take P(U), the set of all subrelations of U, and introduce
algebraic operations in the same signature as on P(Σ+):

R · S = R ◦ S

R \ S = {〈y , z〉 ∈ U | (∀〈x , y〉 ∈ R) 〈x , z〉 ∈ S}

S /R = {〈x , y〉 ∈ U | (∀〈y , z〉 ∈ R) 〈x , z〉 ∈ S}

R ∨ S = R ∪ S ; R ∧ S = R ∩ S

◮ Again,

S ⊆ R \T ⇐⇒ R · S ⊆ T ⇐⇒ R ⊆ T / S

Residuated Lattices

◮ Both algebras of languages and relational algebras are special
kinds of a more general class of algebraic structures, residuated

lattices.

◮ A residuated lattice is a tuple A = (A,�, ·, \, /,∨,∧), where:
◮ � is a partial order which forms a lattice, ∨ and ∧ are lattice

join and meet;
◮ (A, ·) is a semigroup;
◮ b � a \ c ⇐⇒ a · b � c ⇐⇒ a � c / b, for any a, b, c ∈ A.

◮ Residuated lattices give algebraic semantics to substructural
logics, like, for example, Heyting algebras do for intuitionism.
N. Galatos, P. Jipsen, T. Kowalski, H. Ono. Residuated Lattices: An Algebraic

Glimpse at Substructural Logics. Springer, 2007.

◮ The logic of residuated lattices is the multiplicative-additive
Lambek calculus.

Multiplicative-Additive Lambek Calculus (MALC)

A ⊢ A
Id

Π ⊢ A Γ,B ,∆ ⊢ C

Γ,Π,A \B ,∆ ⊢ C
L \

A,Π ⊢ B

Π ⊢ A \B
R \ (Π is not empty)

Π ⊢ A Γ,B ,∆ ⊢ C

Γ,B /A,Π,∆ ⊢ C
L /

Π,A ⊢ B

Π ⊢ B /A
R / (Π is not empty)

Γ,A,B ,∆ ⊢ C

Γ,A · B ,∆ ⊢ C
L·

Π1 ⊢ A Π2 ⊢ B

Π1,Π2 ⊢ A · B
R·

Γ,A,∆ ⊢ C Γ,B ,∆ ⊢ C

Γ,A ∨ B ,∆ ⊢ C
L∨

Π ⊢ A
Π ⊢ A ∨ B

Π ⊢ B
Π ⊢ A ∨ B

R∨

Γ,A,∆ ⊢ C

Γ,A ∧ B ,∆ ⊢ C

Γ,B ,∆ ⊢ C

Γ,A ∧ B ,∆ ⊢ C
L∧

Π ⊢ A Π ⊢ B
Π ⊢ A ∧ B

R∧

Multiplicative-Additive Lambek Calculus (MALC)

◮ The cut rule of the following form:

Π ⊢ A Γ,A,∆ ⊢ C

Γ,Π,∆ ⊢ C
Cut

is admissible in MALC.

◮ As said above, algebraic models of MALC are residuated

lattices: variables and formulae are interpreted as elements of
A, and a sequent A1, . . . ,An ⊢ B is interpreted as
A1 · . . . · An � B .

◮ Models on algebras of formal languages and models on
relational algebras are called L-models and R-models

respectively.

◮ MALC can be also viewed as a non-commutative intuitionistic
version of linear logic (J.-Y. Girard, 1987). This was noticed by
V. M. Abrusci (1990).

Lambek Categorial Grammars

◮ The original motivation for the Lambek calculus is its usage
for describing natural language syntax (J. Lambek, 1958).

◮ This usage is connected to L-models.

◮ For each letter a ∈ Σ the grammar associates one or more
syntactic types, which are formulae of the Lambek calculus:
a⊲ A.

◮ A word a1 . . . an is considered grammatically correct, if the
corresponding sequent A1, . . . ,An ⊢ s is derivable.

◮ The standard example is “John loves Mary,” with the
corresponding sequent np, (np \ s) / np, np ⊢ s.

Part I: Distributivity

◮ Both L-models and R-models are distributive (as lattices):
(A ∧ B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C).

◮ In general, however, residuated lattices can be non-distributive.

◮ Thus, (A ∨ C) ∧ (B ∨ C) ⊢ (A ∧ B) ∨ C is not derivable
MALC, which prevents the latter from being L-complete or
R-complete.

◮ Indeed, if this sequent were derivable, then it would be true in
all residuated lattices, which would make them all distributive
(which is not the case).

◮ There exists a natural, non-distributive modification of
L-models which avoids this problem and gains completeness
(C. Wurm 2017).

Partial Completeness Results

◮ L∧, i.e., MALC without ∨, is R-complete (H. Andréka &
Sz. Mikulás 1994)

◮ The Lambek calculus without ∨ and ∧, is L-complete
(M. Pentus 1995)

◮ L(\, /,∧), that is, MALC with only three connectives: \, /,∧,
is L-complete (W. Buszkowski 1982)

◮ Open question: L-completeness of L∧ (i.e., MALC without ∨).

◮ It is also unknown whether adding distributivity as an extra
axiom yields completeness.

◮ We show that the situation with L∨ (i.e., MALC without ∧) is

different from the one with L∧.

Distributivity without ∧

◮ Theorem. The sequent

((x / y) ∨ x) /((x / y) ∨ (x / z) ∨ x), (x / y) ∨ x ,

((x / y) ∨ x) \((x / z) ∨ x) ⊢ (x /(y ∨ z)) ∨ x

is not derivable in L∨, but can be derived using the
distributivity axiom (and cut).

◮ Thus, L∨ is neither L-complete nor R-complete (because
L-models and R-models are distributive).

How to Guess the Sequent?

◮ Lemma. If A ⊢ D and B ⊢ D are derivable (join), then for
C = (A /D) · A · (A \B) we have C ⊢ A and C ⊢ B (meet).
(see Lambek 1958, Pentus 1994)

◮ In particular, C = (A /(A ∨ B)) · A · (A \B) is a meet for A
and B .

◮ Take A = (x / y) ∨ x and B = (x / z) ∨ x .

◮ By distributivity,

((x / y) ∨ x) ∧ ((x / z) ∨ x) ⊢ ((x / y) ∧ (x / z)) ∨ x

◮ The succedent is equivalently replaced by (x /(y ∨ z)) ∨ x .

◮ The antecedent is replaced by a stronger meet
C = (A /(A ∨ B)) · A · (A \B) (it is stronger, since C ⊢ A,
C ⊢ B , thus C ⊢ A ∧ B).

◮ This yields, using cut, derivability of our sequent in the
presence of distributivity.

Proving Non-Derivability in L∨

◮ Non-derivability of our sequent in L∨ does not come
automatically from non-derivability of the distributivity law,
since our new meet C is stronger than A ∧ B .

◮ However, the derivability problem is decidable, so we can just
use derivability-checking software (developed by P. Jipsen,
available online), which gives the answer in several seconds.

◮ In our WoLLIC 2019 paper, we also do manual proof search.

◮ One can also construct an algebraic countermodel (shorter,
but requires some creativity).

Commutative and Affine Generalizations

◮ Adding the permutation rule of the following form

Γ,A,B ,∆ ⊢ C

Γ,B ,A,∆ ⊢ C
P

to MALC (that is, making things commutative) gives the
multiplicative-additive fragment of intuitionistic linear logic
(ILL).

◮ If one additionally adds weakening

Γ,∆ ⊢ C

Γ,A,∆ ⊢ C
W

this will give the multiplicative-additive fragment of
intuitionistic affine logic (IAL).

Commutative and Affine Generalizations

◮ The sequent

((x / y) ∨ x) /((x / y) ∨ (x / z) ∨ x), (x / y) ∨ x ,

((x / y) ∨ x) \((x / z) ∨ x) ⊢ (x /(y ∨ z)) ∨ x

is still not derivable if we add commutativity (permutation
rule), that is, in ILL.

◮ For the affine case (IAL, with weakening rule), the sequent
should be slightly modified

((x / y) ∨ w) /((x / y) ∨ (x / z) ∨ w), (x / y) ∨ w ,

((x / y) ∨ w) \((x / z) ∨ w) ⊢ (x /(y ∨ z)) ∨ w

Part II: Systems with the Unit

◮ In intuitionistic linear logic, the unit constant (multiplicative
truth) is axiomatized as follows:

Γ,∆ ⊢ C

Γ, 1,∆ ⊢ C
L1

⊢ 1
R1

◮ Thus, adding 1 requires abolishing antecedent non-emptiness
restriction.

◮ In residuated lattices, this corresponds to moving from
arbitrary semigroups (recall that, in any residuated lattice,
(A, ·) is a semigroup) to monoids: (A, ·, 1).

◮ In particular, we modify the definition of L-models by allowing
the empty word in languages.

Undecidability with the Unit

◮ The multiplicative unit constant, 1, is necessarily interpreted in
L-models as {ε} (due to A · 1 ⊢ A).

◮ Axiomatising the unit as multiplicative truth in linear logic
yields incomplete systems: for example,
(1 ∧ G) · F ≡ F · (1 ∧ G) is true in L-models, but not derivable
in non-commutative linear logic.

◮ We present a minimal system L+ε(\,∧, 1), which captures the
following L-correct principles: A · {ε} = {ε} · A (“commuting”)
and {ε} · {ε} = {ε} (“doubling”).

◮ Notice that it is in the language of \,∧, 1 only.

L+ε(\,∧, 1)

A ⊢ A
Id

A, 1 ⊢ A
1

Π ⊢ A Γ,B ,∆ ⊢ C

Γ,Π,A \B ,∆ ⊢ C
L \

A,Π ⊢ B

Π ⊢ A \B
R \

Γ,A,∆ ⊢ C

Γ,A ∧ B ,∆ ⊢ C

Γ,B ,∆ ⊢ C

Γ,A ∧ B ,∆ ⊢ C
L∧

Π ⊢ A Π ⊢ B
Π ⊢ A ∧ B

R∧

Γ,A, (1 ∧ G),∆ ⊢ C

Γ, (1 ∧ G),A,∆ ⊢ C
Lε

Γ, (1 ∧ G),A,∆ ⊢ C

Γ,A, (1 ∧ G),∆ ⊢ C
Rε

Γ, (1 ∧ G), (1 ∧ G),∆ ⊢ C

Γ, (1 ∧ G),∆ ⊢ C
Dε

◮ Theorem. Any system which includes L+ε(\,∧, 1) and is
L-sound is undecidable.

◮ In particular, so is the set of all L-true sequents, but for this
set we do not even know whether it is r.e.

Undecidability Proof Sketch

◮ We encode 2-counter Minsky machines.

◮ The direction from computations to derivations is established
by constructing the corresponding proofs in L+ε(\,∧, 1).

◮ The backwards direction is performed via L-models.

Encoding Minsky Machines

◮ Atoms (propositional variables): e1, e2 (start/end markers);
p1, p2 (the number of pi ’s is the value of counter ci); ℓ0, ℓ1, . . .
(states of the machine); b.

◮ If the machine is in state Li , with c1 = k1 and c2 = k2, then it
is encoded as follows:

e1, p1, . . . , p1
︸ ︷︷ ︸

k1 times

, ℓi , p2, . . . , p2
︸ ︷︷ ︸

k2 times

, e2

Encoding Minsky Machines

◮ Each instruction I of the machine is encoded by the
corresponding formula AI

(F bb = (F \ b) \ b is the pseudo-double-negation):

I AI

Li : inc(c1); goto Lj ; ℓi \(p1 · ℓj)
bb

Li : inc(c2); goto Lj ; ℓi \(ℓj · p2)
bb

Li : dec(c1); goto Lj ; (p1 · ℓi) \ ℓ
bb
j

Li : dec(c2); goto Lj ; (ℓi · p2) \ ℓ
bb
j

Li : if (c1 = 0) goto Lj ; (e1 · ℓi) \(e1 · ℓj)
bb

Li : if (c2 = 0) goto Lj ; (ℓi · e2) \(ℓj · e2)
bb

Encoding Minsky Machines

◮ All operations are encoded into a leading 1 ∧ G , where G is a
big conjunction.

◮ G includes the following formulae:
◮ AI for each instruction I of our Minsky machine. Each AI is of

the form gα,β = β \αbb.
◮ gξ,ξ = ξ \ ξbb for each atom ξ.
◮ (e1 · ℓ0 · e2) \ b, for terminating computation. (L0 is the final

state, and the counters are required to be zero.)

Lemma

The sequent 1 ∧ G ,∆ ⊢ b, where ∆ encodes the initial

configuration of the machine, is derivable in L+ε(\,∧, 1) if and only

if the machine reaches state L0 with zero counters, starting from

this initial configuration.

From Computations to Derivations

◮ Since G includes gα,β = (β \αbb), then derivability of
1 ∧ G , α,∆ ⊢ b yields derivability of 1 ∧ G ,∆, β ⊢ b.
◮ This enables Minsky commands, but only on the left side of

the configuration.
◮ This derivation essentially uses “doubling.”

◮ Cyclic transpositions. If G includes gξ,ξ = ξ \ ξbb for any atom
ξ (which is the case), and ∆1,∆2 are all atomic, then
derivability of 1 ∧ G ,∆1,∆2 ⊢ b yields derivability of
1 ∧ G ,∆2,∆1 ⊢ b.
◮ This allows locating 1 ∧ G near the necessary place in the

configuration.

◮ Finally, we have (e1 · ℓ0 · e2) \ b in G .
◮ This encodes the finish of computation, (L0, 0, 0).

From Derivations to Computations

◮ Let Σ (alphabet) include all atoms.

◮ Let BM be the set of “terminating strings,” that is, codes of
configurations of the Minsky machine M, such that the
machine, starting from this configuration, reaches the
terminating one (L0, 0, 0).

◮ Consider the following L-interpretation:

w(a) =

{

{a}, if a 6= b

{xy | yx ∈ BM}, for a = b

◮ Lemma. For any instruction I of M, w(AI) ∋ ε. Hence,
w(1 ∧ G) = {ε}.

◮ If 1 ∧ G , e1, p1, . . . , p1
︸ ︷︷ ︸

k1 times

, ℓi , p2, . . . , p2
︸ ︷︷ ︸

k2 times

⊢ b is derivable, then

interpretation of the antecedent is in w(b), whence the
configuration (Li , k1, k2) terminates to (L0, 0, 0).

Models on Regular Languages

◮ Recall that the class of regular languages is the minimal class
of languages including ∅, {ε}, singletons {a} for any a ∈ Σ,
and closed under language multiplication, union, and iteration
(Kleene star): A∗ = {ε} ∪ A ∪ (A · A) ∪ (A · A · A) ∪ . . .

◮ A specific class of L-models includes only models in which all
languages are regular.

◮ We shall call such models Lreg-models.

◮ This definition is consistent, since the class of regular
languages is closed under Lambek operations.

◮ Without the unit constant 1, the calculus L(\, /,∧) is
complete w.r.t. Lreg-models (this follows from Buszkowski’s
and Sorokin’s work).

Models on Regular Languages

◮ The situation changes if we add the unit.

◮ We still consider theories in the language of MALC with the
unit constant.

◮ As shown by the encoding of Minsky machines above, the
theory of all L-models in the language of \,∧, 1 is undecidable;
more precisely—Σ0

1-hard.

◮ NB: we do not claim that it belongs to Σ0
1, it could be harder!

◮ On the other hand, the theory of the subclass of
Lreg-models belongs to the Π0

1 class.

◮ Indeed, we now have to quantify over regular languages, that
is, over regular expressions. This yields an arithmetical

universal quantifier, thus Π0
1.

Models on Regular Languages

◮ Since no Σ0
1-hard language can belong to Π0

1, we get the
following

Theorem

The theories of L-models and of Lreg-models, in the language of

\,∧, 1, are different.

◦NO regular model property

Theorem 1.1 We can find a sequent of the

specific form

1l ∧ G, ∆ ⊢ b

so that

(a) We can construct an L-model such

that the sequent is not valid in the

model,

(b) But the sequent is valid in any LREG-

models.

=⇒: Extra 30

◦The minimalistic propositional sys-
tems that are still PSPACE-complete

Main Complexity Results:

Commutative Non-commutative

(Linear logic) (Lambek, circular)

L1(\) is NP-complete L1(\) is polytime

(Kanovich) (Savateev)

L1(\,∧) is PSPACE-
complete

L1(\,∧) is PSPACE-
complete

L1(\,∨) is PSPACE-
complete

L1(\,∨) is PSPACE-
complete

One implication, one conjunction or one dis-

junction. Here L1(\), L1(\,∧), etc., denote

fragments with only one variable.

=⇒: Next 31

	Scedrov-LP-2021-1-corr
	Scedrov-LP-2021-2

