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Motivation

• Smart, (semi) autonomus systems are everywhere. robots, factory 
automation, warehouse management, self-driving vehicles, wearbles, 
medical devices, …


• Assuring safety and security is often critical.


• Accurate models are complex and likely intractible. Small abstract 
models give useful insights but getting the big picture is a challenge.


• As an example: Industry 4.0  is a paradigm of manufacturing where 
devices (IoT devices, sensors, …) are highly networked, to form cyber-
physical systems — think smart factories.



Example Pick n Place

• Pick n place (PnP) is typical example of a basic I4.0 system


• Elements


• An Arm -- positioned on a track (move, sense end points)


• A Gripper -- with state on/off (gripping or not)  — for example 
a vacuum


• Coordinator -- enforces pickup at one end, drop at the other 
end

• A designer might start with component 
models as Mealy automata -- receive 
signal, change state, send signal



Example Pick n Place continued

• Application Design -- a collection of interacting automata.


• Can do reachability analysis for correct, safe operation — 
search for bad states.


• The system engineer needs to make it run on hardware:


• deploying automata (implementations) on physical devices


• connected by a network 

PnP Application



Oops
• Components communicating over a network are open to attacks — tampering with 

inserting or deleting messages.


• We add attacks to the models to find which messages are vulnerable— cause safety 
violations


• Once we find the sensitive communications they can be protected by digital 
signatures.  This may influence the choice of deployment to devices.


• At the end we have a bunch of models for different purposes.


• Complex models are more faithful to the running system.


• Simpler models are more practical to analyze.


• The models may not be consistent with each other.


• What if some component design changes?


• What if a new threat is discovered?   =>



Solution idea
• Connect models by formal patterns — model transformations that preserve properties of 

interests and achieve some goal.  


• In fact application of the patterns generates models and their connections.


• Sample transformations types -- informally


• Addition of threat or fault models — may add new (undesirable) behaviors


• Converting concrete models into symbolic models (and vv) — preserves traces and 
trace based properties — reason about forall rather than for one.


• Converting abstract designs into deployment models


•  communicating automata -> networked devices 


• stuttering bisimilar,  preserves TL/next properties


• model -> Wrap(model)  — preserve some properties, add new properties, prevent 
undesired behaviors



In the remainder of the talk we

show how this is done in RWL / Maude 

for the Pick n Place example



Rewriting Logic (RWL)

•  Rewriting Logic is a logical formalism that is based on two simple ideas 


•  states of a system are represented as elements of an equationally specified 
algebraic data type


•  the behavior of a system is given by local transitions between states 
described by rewrite rules


•  It is a logic for executable specification and analysis of software systems, 
that may be concurrent, distributed, or even mobile.   


• Can also model physical aspects and cyberphysical systems


•  It is also a (meta) logic for specifying and reasoning about formal systems, 
including itself (reflection!)



Rewriting Logic Formally
• Rewrite theory:  (Signature, Labeled Rules) 


• Signature:  (Sorts, Ops, Eqns) -- an equational theory 


• Specifies data types and functions that represent structure of 
system state and operations on state.


• Sorts are partially ordered


• Axioms < Eqns


• Rules have the form   label : t => t’  if cond 


• Rewriting operates modulo equations 


• rules apply locally, matching modulo axioms


• rule application generates computations (pathways, proofs)



Rewrite rule application in pictures

reflexivity: replacement:
congruence:

f f

one step rewrite:

closed under



Rewriting Semantics
• The semantics of the equational theory (Sorts, Ops, Eqns) is its initial model.

• Isomorphic to the algebra of equivalence classes wrt Eqns.


• Equivalence classes are represented by their canonical form.


• The base rewrite relation:   t0 -> t1 

• if there is 

•   a rule: l => r if cond

•   a subterm u0 of t0  

•   a substitution s such that s(l) =[Ax] t0 and s[cond] holds.


• and t1 = t0[u0 <- s(r)]    

• We restrict attention to addmissible rewrite theories -- intuitively this means reduction 

to canonical form  commutes' with rewriting.

• Thus the full rewrite relation operates one canonical forms.

•     t -Eqn-> tc -rules-> t` -Eqn-> tc'



Maude
•   Maude is a language and tool based on rewriting logic 


•  Available at:   http://maude.cs.uiuc.edu


•  Features:


• High performance engine 


•  {ACI} matching


•  position /rule/object fair rewriting


•  Modularity and parameterization


•  Builtins --  booleans, number hierarchy, strings, SMT solving


•  Reasoning: rewriting, search and model-checking 


•  Reflection -- using descent and ascent functions!)



Maude Model of a  Vending Machine
A introduction to modeling in Maude

mod VENDING-MACHINE is
  sorts Coin Item Place Marking .
  subsorts Coin Item < Place < Marking .
  op null : -> Marking . 
               *** empty marking
  ops $ q : -> Coin .
  ops a c : -> Item .
  op _ _ : Marking Marking -> Marking
           [assoc comm id: null] .  
           *** multiset using axioms
  rl[buy-c]: $ => c .
  rl[buy-a]: $ => a q .
  rl[change]: q q q q => $ .
endm

Buy-c Buy-a change

c a q

$

4



Using Maude to analyze the vending machine

• What is one way to use 3 $s?  Use the rewrite command:

    Maude> rew $ $ $ .
    result Marking: q a c c

• How can I get 2 apples with 3 $s? Usethe search command

    Maude> search $ $ $ =>! a a M:Marking .

    Solution 1 (state 8)
    M:Marking --> q q c

    Solution 2 (state 9)
    M:Marking --> q q q a

    No more solutions.
    states: 10  rewrites: 12)



Sampling of the Maude PnP model — function block
• Vacuum (gripper) function block automata initial state:


  [fbId:Id : vac | state : st("off") ; ticked : false ;    

                               iEvEffs : none ; oEvEffs : none] .


• A vacuum transition 


    tr(st("off"), st("on"),  inEv("VacOn") is ev("VacOn"),   

                                           outEv("HasVac") :~ ev("HasVac")) 

• Application of the transition


    [fbId:Id : vac | state : st("off") ; ticked : false ; 

                                iEvEffs : inEv("VacOn") :~ ev("VacOn") ; oEvEffs : none] . 

   =>  

   [fbId:Id : vac | state : st("on") ; ticked : true ; 

                                iEvEffs : none ; oEvEffs : outEv("HasVac") :~ ev("HasVac"))] . 



Sampling of the Maude PnP model — application
• Application composed of function blocks and an intial message:

   pnpInit(emsg) = [id("pnp") | (fbs : (vacInit(id("vac"))  trackInit(id("track"))  ctlInit(id("ctl"))) ) ; 
                       iEMsgs : emsg ;  oEMsgs : none ;  ssbs : none ] . 

• The rewrite that fires enabled transitions

    crl[app-exe1]: [appId |   fbs : ([fbId : fbCid | (state : st) ; (ticked : false) ; 
                                                                                         oEvEffs : none ;  fbAttrs] fbs1) ; 
              iEMsgs : (emsgs0 iemsgs) ;  oEMsgs : oemsgs ;   ssbs : ssbs0 ;  appAttrs ] 
 => 
 [appId |   fbs : ([fbId : fbCid | (state : st1) ; (ticked : true) ; 
                                                         oEvEffs : oeffs ;  fbAttrs]  fbs1) ; 
   iEMsgs : (iemsgs[[ssbs1]]) ;  oEMsgs : oemsgs ;   ssbs : (ssbs0 ssbs1) ;   appAttrs ] 
  if symtr(st, st1,[css] csss,oeffs) symtrs  := symtrsFB(fbCid,st) 
  /\ size(emsgs0) = size(css) 
  /\({ssbs1} ssbss) := genSol1(fbId,emsgs0,css) . 

• There are two more rules in the Application+Intruder model

    **** all enabled transitions fired; collect and deliver output 
    **** intruder injects a message



Sampling of the Maude PnP model — analysis
• Specification of a bad state -- the arm drops its load mid traversal

  ceq badState(vacFB trackFB fbs) = true 
   if cidOf(vacFB) == vac  
   /\ cidOf(trackFB) == track 
   /\ (getState(vacFB) == st("off")  or getState(vacFB) == st("on-novac")) 
   /\ getState(trackFB) == st("mvL") . 
   
eq badState(fbs) = false [owise] . . 

• Command to check if PnP can reach a bad state.

   search [1] in PNP-SCENARIO : pnpInit(emsgStart) =>+ app:Application  
           such that badState(app:Application) = true . 

No solution. 
states: 24  rewrites: 7326 in 3ms cpu (3ms real) (2121019 rewrites/second) 



Formal methodology
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Space of PnP Models
• Model ~  (Module,state)


• (App, A)   A ~ [appId | fbs,iemsgs,oemsgs] — design level


• (AppI,Ac) —  with concrete intruder


• (AppI,As) —with symbolic intruder


• (Sys, S)   — system model S ~ [sysId | devs, imsgs, omsgs]


• (SysI,Si)  — system model with intruder (ground)



Transform to add Intruders
• addIc(App,A,n) ~  (AppI, [A,allMsgs,n])  — concrete intruder


• addIs (App,A,n) ~ (AppI,[A,smsgs] ) -- |smsgs| = n ,  symbolic intruder


• AppI is App + rule to deliver intruder messages


• Symbolic Intruder Theorem:  (AppI, [Ac,cmsgs,n] ) ~ (AppI,[As,smsgs])     
Each execution of an application A in a symbolic intruder environment has 
a corresponding execution of A in the concrete intruder environment with 
the same bound, and conversely.  

• The key to this result is the soundness and completeness of the symbolic 
match generation used to enumerate deliverable messages.


• Thus search for attacks in either model the finds same attacks.



Deployment transformation

• deployApp(sysId,A,idmap) = S ~ [sysId | devs, imsgs, omsgs]


• idmap maps function blocks to devices


• deployAppM(App,idmap) = Sys -- App + rules for gathering and distributing 
messages between devices


• Deployment Theorem: Executions of an application A and a deployment S of A 
are in close correspondence (stuttering bisimilar). In particular, the underlying 
function block transitions are the same and thus properties that depend only 
on function block states are preserved.


• deployApp provides the correspondence between states of A and of S



Deployment with Intruder
• deployAppI(sysId,(A,emsgs),idmap) =


        [deployApp[sysId,A,idmap], deployMsgs(emsgs,appLinks(A),idmap)] 


• deployAppIM(Sys,idmap) 


          = deployAppI(Sys,idmap) + rl[app-intruder] lifted to rl[sys-intruder]


• System Intruder Theorem:  Let (App,A) be an application model and (Sys,S) be a 
deployment of (App,A). 


1. For any execution of S in an intruder environment there is a corresponding execution 
of A in that environment; and 


2. For any execution of A in an intruder environment that does not deliver any intruder 
messages that should flow on links internal to some device, has a corresponding 
execution from S in that environment.



Wrapping to secure vulnerable communications

• We define the function getBadEMsgs([A,smsgs]) that returns the set of injected 
message sets that lead to badState. This function uses reflection to enumerate 
search paths reflecting the command


• search [A,smsgs] =>+ appInt:AppIntruder such that 
badState(appInt:AppIntruder) .


• wrapApp(A,smsgs,idmap) =     
wrapSys(deployApp(sysId,A,idmap),flatten(getBadEMsgs([A,smsgs])))


• wrapAppM(App,idmap) = wSys — Sys plus Policies for message signing.


• Wrapper Theorem : Let A be an application, S a deployment of A, and emsgs a 
set of messages containing the attack messages enumerated by symbolic 
search with an n bounded intruder. The wrapped system wrap(S,emsgs) is 
resistant to attacks by an n bounded intruder.



Summary

• We presented a simple example of the power of formal patterns to supprt high 
quality system design and correct by construction implementations.


• Some other examples of patterns


• PALS  — Physically Asynchronous Logically Synchronous architectural 
pattern for design of distributed real-time systems including medical devices.


• Distribution transform  — concurrent model to distributed message passing 


• Probablistic transform — for performance analysis


• Future directions include various forms of symbolic rewriting 
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• General theory and many examples
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• Details of the PnP case study and experimental results.


• The Maude code along with documentation, scenarios, and sample runs  
can be found at 


• https://github.com/SRI-CSL/WrapPat.git.  
•



?? Questions ?? 




