On the complexity of the Quantified Constraint Satisfaction Problem

Dmitriy Zhuk

Charles University

Logic and Applications (LAP) September 26-29, 2022, Dubrovnik, Croatia

European Research Council Established to the European Community CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 771005)

 $(\mathbb{N};=)$

$$(\mathbb{N}; =) \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4),$$

$$(\mathbb{N}; =)$$

 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}$

$$(\mathbb{N}; =) \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4),$$

$$\begin{array}{l} (\mathbb{N};=) \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{array}$$

$$\begin{aligned} &(\mathbb{N};=) \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; x = y)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (x_{i_1} = x_{j_1} \land \dots \land x_{i_s} = x_{j_s})$. Decide whether it holds.

$$\begin{aligned} &(\mathbb{N};=) \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; x = y)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (x_{i_1} = x_{j_1} \land \dots \land x_{i_s} = x_{j_s})$. Decide whether it holds.

• $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.

$$\begin{array}{l} (\mathbb{N};=) \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{array}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

• $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.

$$\begin{array}{l} (\mathbb{N};=) \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{array}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].

$$\begin{aligned} &(\mathbb{N};=)\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

$$\begin{aligned} &(\mathbb{N};=)\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- ▶ QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

$$\begin{aligned} &(\mathbb{N};=) \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- ▶ QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

A concrete question

$$\begin{aligned} &(\mathbb{N};=) \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- ▶ QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ► QCSP(N; x = y → z = t) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

A concrete question

Easy to Formulate

$$\begin{aligned} &(\mathbb{N};=) \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- QCSP(N; x = y → z = t) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

A concrete question

Open since 2007 Easy to Formulate

$$\begin{aligned} &(\mathbb{N};=)\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- ▶ QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ► QCSP(N; x = y → z = t) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

A concrete question Accessible to anyone Open since 2007 Easy to Formulate

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

▶ QCSP(
$$\mathbb{N}$$
; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

▶ QCSP(
$$\mathbb{N}$$
; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Lemma [Zhuk, Martin, 2021]

 $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-hard.

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

▶ QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Lemma [Zhuk, Martin, 2021]

 $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-hard.

Theorem [Zhuk, Martin, Bodirsky, Chen, 2021]

Suppose relations R_1, \ldots, R_s are definable by some Boolean combination of atoms of the form (x = y). Then $QCSP(\mathbb{N}; R_1, \ldots, R_s)$ is either in P, NP-complete, or PSpace-complete.

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

▶ QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Lemma [Zhuk, Martin, 2021]

 $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-hard.

Theorem [Zhuk, Martin, Bodirsky, Chen, 2021]

Suppose relations R_1, \ldots, R_s are definable by some Boolean combination of atoms of the form (x = y). Then $QCSP(\mathbb{N}; R_1, \ldots, R_s)$ is either in P, NP-complete, or PSpace-complete.

What is the complexity of $QCSP(\mathbb{Q}; x = y \rightarrow y \ge z)$?

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

▶ QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Lemma [Zhuk, Martin, 2021]

 $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-hard.

Theorem [Zhuk, Martin, Bodirsky, Chen, 2021]

Suppose relations R_1, \ldots, R_s are definable by some Boolean combination of atoms of the form (x = y). Then $QCSP(\mathbb{N}; R_1, \ldots, R_s)$ is either in P, NP-complete, or PSpace-complete.

What is the complexity of $QCSP(\mathbb{Q}; x = y \rightarrow y \ge z)$? Nobody knows!

 Γ is a set of relations on a finite set A.

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples:

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$
 QCSP instances:

 $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2),$

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples:

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$
 QCSP instances:

 $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2)$, true

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples:

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$
 QCSP instances:

 $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2)$, true

 $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y),$

 Γ is a set of relations on a finite set A.

QCSP(Г)

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples:

 $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances:

 $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2)$, true

 $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y)$, false

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples:

 $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}. \text{ QCSP instances:}$ $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$ $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y), \text{ false}$ $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2),$

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples:

 $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}. \text{ QCSP instances:}$ $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$ $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y), \text{ false}$ $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2), \text{ true}$

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples:

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$
 QCSP instances:

 $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2)$, true

 $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y)$, false

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2)$, true

Question

What is the complexity of $QCSP(\Gamma)$ for different Γ ?

Σ	dual-Σ	Classification	Complexity Classes

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$			

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists,\forall,\vee\}$		

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists,\forall,\vee\}$??????????	??????????

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists,\forall,\vee\}$??????????	??????????
$\{\exists,\lor\}$	$\{ \forall, \wedge \}$	Trivial	L

Given a sentence $\exists y_1 \ldots \exists y_t(R_1(\ldots) \lor \cdots \lor R_s(\ldots))$, where $R_1, \ldots, R_s \in \Gamma$. Decide whether it holds.

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists,\forall,\vee\}$??????????	??????????
$\{\exists,\lor\}$	$\{ \forall, \wedge \}$	Trivial	L
$\{\exists,\wedge\}$	$\{\forall, \lor\}$	CSP Dichotomy	P, NP-complete

Constraint Satisfaction Problem:

Given a sentence $\exists y_1 \ldots \exists y_t(R_1(\ldots) \land \cdots \land R_s(\ldots))$, where $R_1, \ldots, R_s \in \Gamma$. Decide whether it holds.

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists,\forall,\wedge\}$	$\{\exists,\forall,\vee\}$??????????	??????????
$\{\exists,\lor\}$	$\{ \forall, \wedge \}$	Trivial	L
$\{\exists, \wedge\}$	$\{\forall, \lor\}$	CSP Dichotomy	P, NP-complete
$\{\exists, \land, \lor\}$	$\{\forall,\wedge,\vee\}$	Trivial iff	L
		the core has	NP-complete
		one element	

Given a sentence $\exists y_1 \dots \exists y_t ((R_1(\dots) \lor R_2(\dots)) \land R_3(\dots))$, where $R_1, \dots, R_3 \in \Gamma$. Decide whether it holds.

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists,\forall,\vee\}$??????????	??????????
$\{\exists,\lor\}$	$\{ \forall, \wedge \}$	Trivial	L
$\{\exists, \land\}$	$\{\forall, \lor\}$	CSP Dichotomy	P, NP-complete
$\{\exists, \land, \lor\}$	$\{\forall, \wedge, \vee\}$	Trivial iff	L
		the core has	NP-complete
		one element	
$\{\exists, \forall, \land, \lor\}$		Positive equality	P, NP-complete
		free tetrachotomy	co-NP-complete
			PSPACE-complete

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t ((R_1(\dots) \lor R_2(\dots)) \land R_3(\dots))$, where $R_1, \dots, R_3 \in \Gamma$. Decide whether it holds.

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists, \forall, \lor\}$??????????	??????????????????????????????????????
$\{\exists, \lor\}$	$\{\forall, \wedge\}$	Trivial	L
$\{\exists, \land\}$	$\{\forall, \lor\}$	CSP Dichotomy	P, NP-complete
$\{\exists, \land, \lor\}$	$\{\forall, \land, \lor\}$	Trivial iff	L
		the core has	NP-complete
		one element	
$\{\exists,\forall,\wedge,\vee\}$		Positive equality	P, NP-complete
		free tetrachotomy	co-NP-complete
			PSPACE-complete
$\{\exists, \forall, \land, \lor, \neg\}$		Trivial iff	L
		Γ is trivial	PSPACE-complete

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t ((\neg R_1(\dots) \lor R_2(\dots)) \land \neg R_3(\dots)),$ where $R_1, \dots, R_3 \in \Gamma$. Decide whether it holds.

Σ	dual-Σ	Classification	Complexity Classes
$\{\exists, \forall, \wedge\}$	$\{\exists,\forall,\vee\}$??????????	??????????
$\{\exists,\lor\}$	$\{ \forall, \wedge \}$	Trivial	L
$\{\exists, \land\}$	$\{\forall, \lor\}$	CSP Dichotomy	P, NP-complete
$\{\exists, \land, \lor\}$	$\{\forall, \wedge, \vee\}$	Trivial iff	L
		the core has	NP-complete
		one element	
$\{\exists,\forall,\wedge,\vee\}$		Positive equality	P, NP-complete
		free tetrachotomy	co-NP-complete
			PSPACE-complete
$\{\exists,\forall,\wedge,\vee,\neg\}$		Trivial iff	L
		Γ is trivial	PSPACE-complete

Quantified Constraint Satisfaction Problem:

Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

• If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

- If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP(Γ) is in P.

- If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP(Γ) is in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on $\{0,1\}.$ Then

- $QCSP(\Gamma)$ is in P if Γ is preserved by an idempotent WNU operation,
- QCSP(Γ) is PSPACE-complete otherwise.

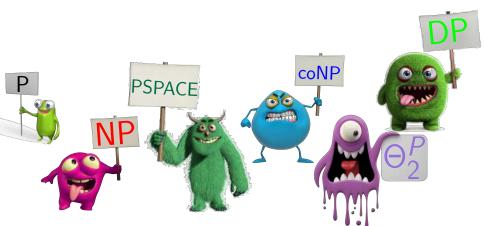
Put A' = A ∪ {*}, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).

Put A' = A ∪ {*}, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).

- Put A' = A ∪ {*}, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).
- there exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.

- Put A' = A ∪ {*}, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).
- there exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.
- there exists Γ on a 4-element domain such that QCSP(Γ) is DP-complete, where DP = NP ∧ coNP.

- Put A' = A ∪ {*}, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).
- there exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.
- there exists Γ on a 4-element domain such that QCSP(Γ) is DP-complete, where DP = NP ∧ coNP.
- there exists Γ on a 10-element domain such that QCSP(Γ) is Θ^P₂-complete.



Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on $\{0, 1, 2\}$ containing $\{x = a \mid a \in \{0, 1, 2\}\}$. Then QCSP(Γ) is

- in P, or
- NP-complete, or
- coNP-complete, or
- PSPACE-complete.

It is a game between Existential Player (EP) and Universal Player (UP).

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.
- **QCSP Complexity classes**
- P: All moves are trivial.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial. **NP:** Only EP plays, the play of UP is trivial.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.NP: Only EP plays, the play of UP is trivial.coNP: Only UP plays, the play of EP is trivial.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial. **NP:** Only EP plays, the play of UP is trivial. **coNP:** Only UP plays, the play of EP is trivial. **DP** = **NP** \land **coNP**: Each plays its own game. Yes-instance: EP wins and UP loses.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.

coNP: Only UP plays, the play of EP is trivial.

 $\textbf{DP}=\textbf{NP} \land \textbf{coNP}:$ Each plays its own game. Yes-instance: EP wins and UP loses.

 $\Theta_2^P = (NP \lor coNP) \land \dots \land (NP \lor coNP)$: Each plays many games (no interaction). Yes-instance: any boolean combination.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

 $\begin{array}{l} \textbf{P}: \mbox{ All moves are trivial.} \\ \textbf{NP: } \mbox{Only EP plays, the play of UP is trivial.} \\ \textbf{coNP: } \mbox{Only UP plays, the play of EP is trivial.} \\ \textbf{DP} = \textbf{NP} \land \textbf{coNP}: \mbox{ Each plays its own game. Yes-instance: EP wins and UP loses.} \\ \textbf{\Theta_2^P} = (\textbf{NP} \lor \textbf{coNP}) \land \dots \land (\textbf{NP} \lor \textbf{coNP}): \mbox{ Each plays many} \end{array}$

games (no interaction). Yes-instance: any boolean combination.

PSpace: EP and UP play against each other. No restrictions.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial. **NP:** Only EP plays, the play of UP is trivial. **coNP:** Only UP plays, the play of EP is trivial. **DP** = **NP** \land **coNP**: Each plays its own game. Yes-instance: EP wins and UP loses. $\Theta_2^P = (NP \lor coNP) \land \cdots \land (NP \lor coNP)$: Each plays many games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.

 $CSP(\Gamma)$

▶ is either NP-complete,

► or in P.

 $CSP(\Gamma)$

▶ is either NP-complete,

or in P.

QCSP Dichotomy Theorem $QCSP(\Gamma)$

- is either PSpace-complete,
- or in Π_2^P .

 $CSP(\Gamma)$

is either NP-complete,

or in P.

QCSP Dichotomy Theorem QCSP(Γ)

- is either PSpace-complete,
- or in Π_2^P .

Prove hardness

Find fast algorithm

 $CSP(\Gamma)$

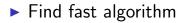
is either NP-complete,

or in P.

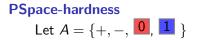
QCSP Dichotomy Theorem QCSP(Γ)

- is either PSpace-complete,
- or in Π_2^P .

Prove hardness



PSpace-hardness



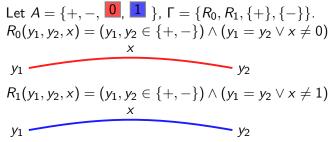
PSpace-hardness Let $A = \{+, -, 0, 1\}$, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

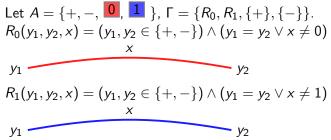
Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$
 x
 y_1
 y_2

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$
 x
 y_1
 y_2
 $R_2(y_1, y_2, x) = (y_2, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 1)$

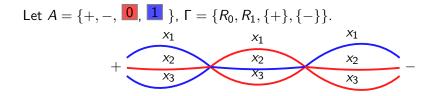
 $R_1(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 1)$

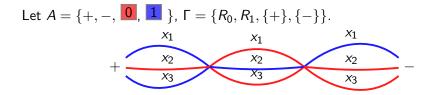




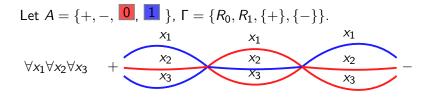
 $\exists u_1 \exists u_2 R_1(y_1, u_1, x_1) \land R_0(u_1, u_2, x_2) \land R_1(u_2, y_2, x_3)$

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

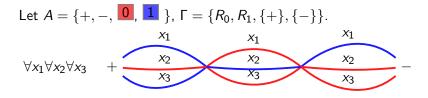




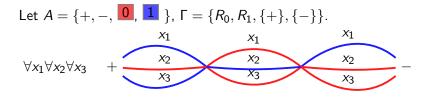
 $\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

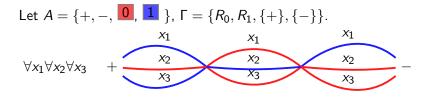


 $\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$



 $\forall x_1 \forall x_2 \forall x_3 \neg ((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$





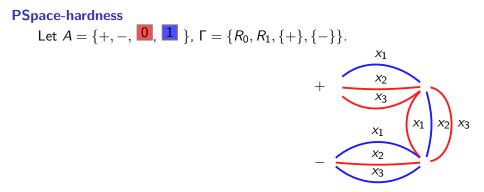
Claim

 $QCSP(\Gamma)$ is coNP-hard.

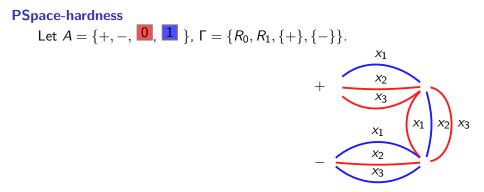
PSpace-hardness Let $A = \{+, -, 0, 1\}$, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

PSpace-hardness Let $A = \{+, -, 0, 1\}$, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

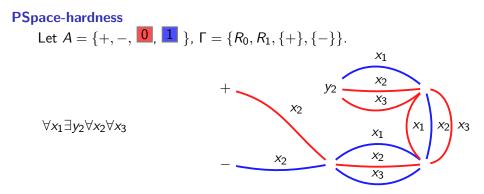
$\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$



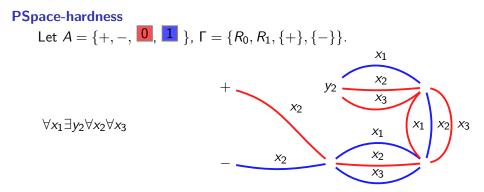
 $\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

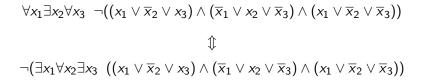


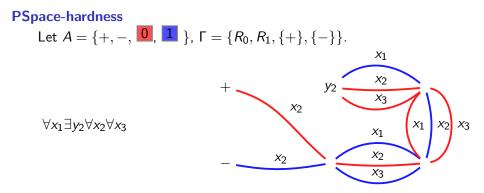
 $\forall x_1 \exists x_2 \forall x_3 \neg ((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$



 $\forall x_1 \exists x_2 \forall x_3 \neg ((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$







Claim

 $QCSP(\Gamma)$ is PSpace-hard.

Let
$$A = \{+, -, 0, 1\}$$

 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$
 $R_1(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 1)$

Let
$$A = \{+, -, 0, 1\}$$

 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$
 $R_1(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 1)$

Lemma

 $QCSP(R_0, R_1, \{+\}, \{-\})$ is PSpace-hard.

Let
$$A = \{+, -, 0, 1\}$$

 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$
 $R_1(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 1)$

Lemma

 $QCSP(R_0, R_1, \{+\}, \{-\})$ is PSpace-hard.

Theorem

Suppose

- **1.** Γ contains $\{x = a \mid a \in A\}$
- **2.** $QCSP(\Gamma)$ is PSpace-hard.

Then there exist

► $D \subseteq A$

▶ a nontrivial equivalence relation σ on D

▶ $B, C \subsetneq A$ with $B \cup C = A$

s.t. $\sigma(y_1, y_2) \lor B(x)$ and $\sigma(y_1, y_2) \lor C(x)$ are pp-definable over Γ .

QCSP Dichotomy

CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

 $CSP(\Gamma)$

is either NP-complete,

or in P.

QCSP Dichotomy Theorem

 $QCSP(\Gamma)$

- is either PSpace-complete,
- or in Π_2^P .

Prove hardness

Find fast algorithm

QCSP Dichotomy

CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

 $CSP(\Gamma)$

is either NP-complete,

or in P.

QCSP Dichotomy Theorem

 $QCSP(\Gamma)$

- is either PSpace-complete,
- or in Π_2^P .

Prove hardness

Find fast algorithm

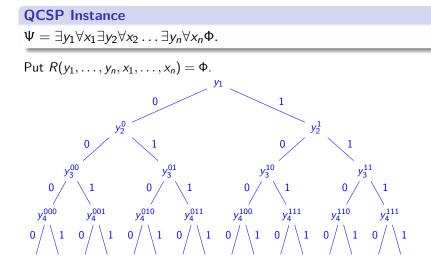
QCSP Instance

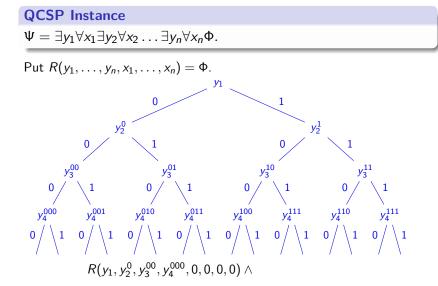
$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

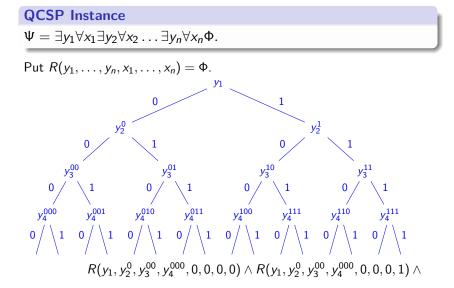
QCSP Instance

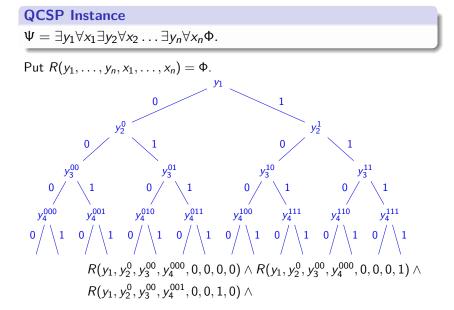
$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

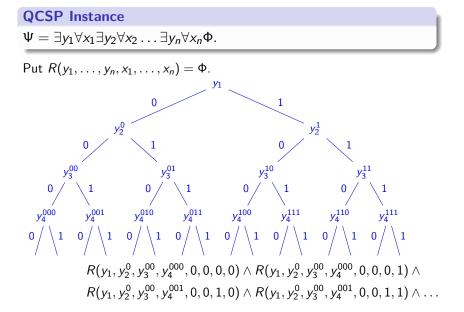
Put $R(y_1,\ldots,y_n,x_1,\ldots,x_n) = \Phi$.

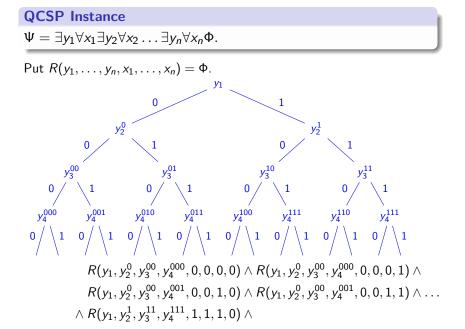


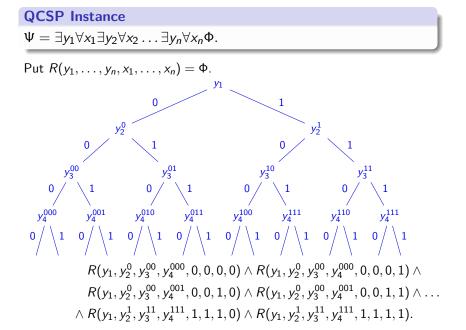


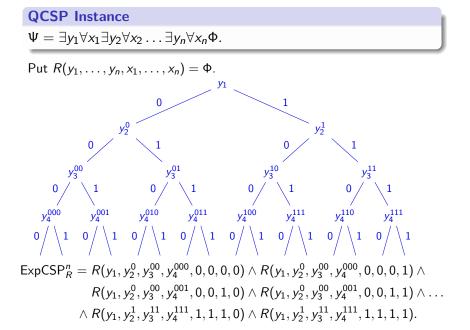












Idea

Complexity class Π_2^P

Complexity class Π_2^P

 Π^P_2 is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

Complexity class Π_2^P

 Π^{P}_{2} is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

• Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

Complexity class Π_2^P

 Π_2^P is the class of problems \mathcal{U}

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

Given an sentence Ψ = ∃y₁∀x₁∃y₂∀x₂...∃y_n∀x_nΦ.
 Put R(y₁,..., y_n, x₁,..., x_n) = Φ.

Complexity class Π_2^P

 Π^P_2 is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

• Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

• Put
$$R(y_1,\ldots,y_n,x_1,\ldots,x_n) = \Phi$$
.

Consider a CSP instance of exponential size ExpCSPⁿ_R.

Complexity class Π_2^P

 Π^{P}_{2} is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

• Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

• Put
$$R(y_1,\ldots,y_n,x_1,\ldots,x_n) = \Phi$$
.

Consider a CSP instance of exponential size ExpCSPⁿ_R.

Theorem

Suppose

Complexity class Π_2^P

 Π^P_2 is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

• Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

• Put
$$R(y_1,\ldots,y_n,x_1,\ldots,x_n) = \Phi$$
.

Consider a CSP instance of exponential size ExpCSPⁿ_R.

Theorem

Suppose

1. $QCSP(\Gamma)$ is not PSpace-hard.

Complexity class Π_2^P

 Π^P_2 is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

• Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

• Put
$$R(y_1,\ldots,y_n,x_1,\ldots,x_n) = \Phi$$
.

Consider a CSP instance of exponential size ExpCSPⁿ_R.

Theorem

Suppose

- **1.** $QCSP(\Gamma)$ is not PSpace-hard.
- **2.** $E \times pCSP_R^n$ has no solutions

Complexity class Π_2^P

 Π^P_2 is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

• Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

• Put
$$R(y_1,\ldots,y_n,x_1,\ldots,x_n) = \Phi$$
.

Consider a CSP instance of exponential size ExpCSPⁿ_R.

Theorem

Suppose

- **1.** $QCSP(\Gamma)$ is not PSpace-hard.
- **2.** ExpCSPⁿ_R has no solutions
- $\Rightarrow \exists$ polynomial-size subinstance of ExpCSP_R^n without a solution.

Complexity class Π_2^P

 Π^P_2 is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

• Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

• Put
$$R(y_1,\ldots,y_n,x_1,\ldots,x_n) = \Phi$$
.

Consider a CSP instance of exponential size ExpCSPⁿ_R.

Theorem

Suppose

- **1.** $QCSP(\Gamma)$ is not PSpace-hard.
- **2.** $E \times pCSP_R^n$ has no solutions

 $\Rightarrow \exists$ polynomial-size subinstance of ExpCSP_R^n without a solution.

 $\Psi \Leftrightarrow \forall \Omega \subseteq \mathsf{ExpCSP}_R^n \quad {}^{|\Omega| < p(|\Phi|)} \quad (\exists (y_1, y_2^0, y_2^1, y_3^{00}, \dots) \ \Omega)$

 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .

 $QCSP(\Gamma)$

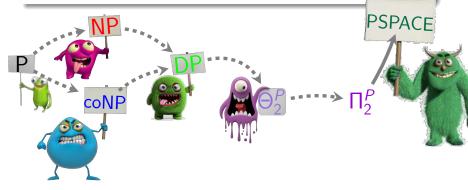
- is either PSpace-hard
- or in Π_2^P .

 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .

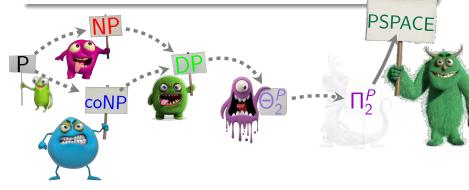
 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .



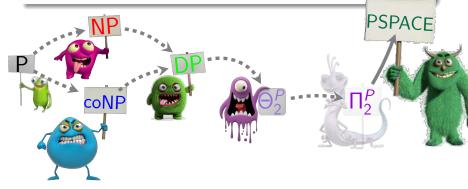
 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .



 $QCSP(\Gamma)$

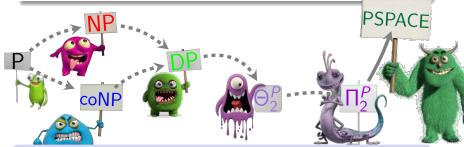
- is either PSpace-hard
- or in Π_2^P .



 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .

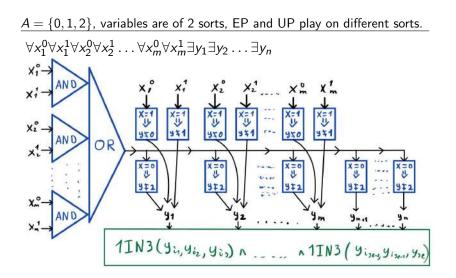
* if Γ contains $\{x = a \mid a \in A\}$ then QCSP(Γ) is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D \subseteq A$, $B, C \subsetneq A$, $B \cup C = A$, s.t. $\sigma(y_1, y_2) \lor B(x)$ and $\sigma(y_1, y_2) \lor C(x)$ are pp-definable over Γ .

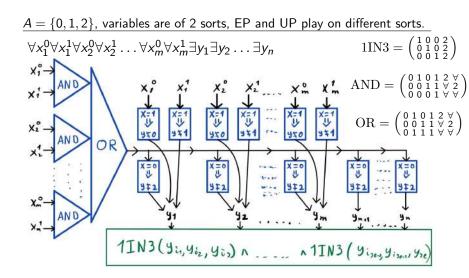


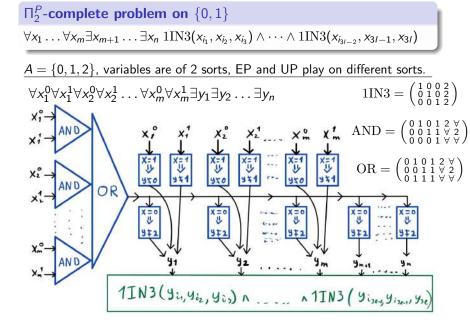
Lemma

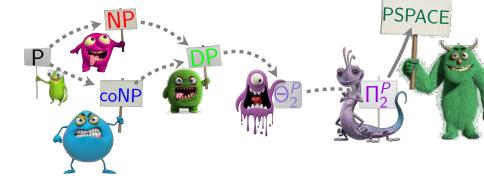
There exists Γ on a 6-element set such that $QCSP(\Gamma)$ is Π_2^P -complete.

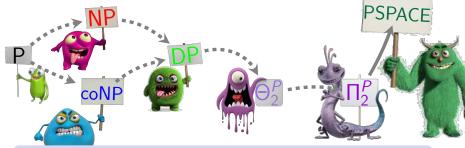
$A = \{0, 1, 2\}$, variables are of 2 sorts, EP and UP play on different sorts.











QCSP Hepta-chotomy

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.

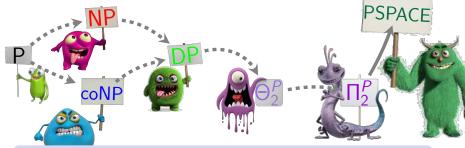
coNP: Only UP plays, the play of EP is trivial.

 $\textbf{DP}=\textbf{NP} \land \textbf{coNP}:$ Each plays its own game. Yes-instance: EP wins and UP loses.

 $\Theta_2^P = (NP \lor coNP) \land \dots \land (NP \lor coNP)$: Each plays many games (no interaction). Yes-instance: any boolean combination.

 Π_2^P : First, UP plays, then EP plays.

PSpace: EP and UP play against each other. No restrictions.



QCSP Hepta-chotomy

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.

coNP: Only UP plays, the play of EP is trivial.

 $\textbf{DP}=\textbf{NP} \land \textbf{coNP}:$ Each plays its own game. Yes-instance: EP wins and UP loses.

 $\Theta_2^P = (NP \lor coNP) \land \dots \land (NP \lor coNP)$: Each plays many games (no interaction). Yes-instance: any boolean combination.

 Π_2^P : First, UP plays, then EP plays.

PSpace: EP and UP play against each other. No restrictions.

Thank you for your attention