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MINIMUM, MAXIMUM AND MEANS
AGGREGATION OF DISTANCE FUNCTIONS

Ljubo Nedović 1 and Ðorđe Dragić 2

Abstract. In this paper, some features of the aggregation operators
min, max and generalized means, that are relevant for the construction of
new distance functions by applying aggregation operator on sequence of
some given distance functions, are examined and presented. The features
of the constructed distance function depend on the characteristics of the
applied aggregation operator.
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1. Introduction

Distance functions and metrics have significant role in many scientific disci-
plines and applications, see [2, 3, 6]. For example, in automatic image segmen-
tation distance functions represent a decision criterion for classifying pixels into
segments, see [6]. In decision making process, distance function can be a cri-
terion for decision evaluation. In mathematical models and applications where
decision making process is based on multiple criteria, aggregation functions are
natural and frequently used way to join them into one decisive criterion, see
[1, 4, 5]. By choosing an appropriate aggregation function, we can model a
information fusion criterion in accordance with the intuitive perception.

In this paper, we consider construction of new distance function by applying
aggregation operators min, max and generalized means on some given distance
functions. In paper [6], it is shown that by applying aggregation operator on
distance functions, new distance function is constructed. The features of the
constructed distance function depend both on the characteristics of the applied
aggregation function and on the initial distance functions. In the section 2
we present related definitions and previous results about aggregated distance
functions. In the section 3 we present previous and some new results about
relevant properties of min, max and generalized means aggregation operators.

2. Preliminaries and previous research

Aggregation operators are type of fuzzy operations, which have found large
application in various engineering disciplines, see [4, 5].
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Definition 2.1 (Aggregation function). For n ∈ N, an n-ary aggregation func-
tion is a function A : [0, 1]n → [0, 1] with the following properties.
(a01) Boundary conditions A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1 hold.
(a02) A function A is monotonically non-decreasing in each component, i.e.,

∀i ∈ {1, . . . , n} , ai ≤ bi ⇒ A(a1, . . . , an) ≤ A(b1, . . . , bn)

hold for each (a1, . . . , an) ∈ [0, 1]n and (b1, . . . , bn) ∈ [0, 1]n.

Additionaly, in case n = 1, A(x) = x for all x ∈ [0, 1].

Definition 2.2 (Extended aggregation function). An extended aggregation

function (aggregation operator) is a mapping A :

∞∪
n=1

[0, 1]n → [0, 1] such that

every restriction A[n] : [0, 1]
n → [0, 1] is an n-ary aggregation function.

In addition, function A could have some of the following additional proper-
ties, which are of interest for construction of new distance functions by applying
aggregation operators on sequence of initial distance functions. With A[n] we
denote aggregation function which is restriction of A on [0, 1]n.
(a03) Every restriction A[n] is continuous.
(a04) Function A is symmetric, i.e., for each n ∈ N, each (a1, . . . , an) ∈ [0, 1]n

and each permutation p of the set {1, . . . , n} hold
A[n](a1, . . . , an) = A[n](ap(1), . . . , ap(n)).

(a05) Function A is idempotent, i.e., for each n ∈ N, and all (a, . . . , a) ∈ [0, 1]n

hold A[n](a, . . . , a) = a.
(a06) Function A is additive, i.e., for each n ∈ N and all (a1, . . . , an) ∈ [0, 1]n,

(b1, . . . , bn) ∈ [0, 1]n that satisfy (a1 + b1, . . . , an + bn) ∈ [0, 1]n hold
A[n](a1 + b1, . . . , an + bn) = A[n](a1, . . . , an) +A[n](b1, . . . , bn).

(a07) Function A is sub-additive, i.e., for each n ∈ N and (a1, . . . , an) ∈ [0, 1]n,
(b1, . . . , bn) ∈ [0, 1]n that satisfy (a1 + b1, . . . , an + bn) ∈ [0, 1]n hold
A[n](a1 + b1, . . . , an + bn) ≤ A[n](a1, . . . , an) +A[n](b1, . . . , bn).

(a08) Function A is positively homogeneous, i.e., for each t ≥ 0, each n ∈ N
and all (a1, . . . , an) ∈ [0, 1]n that satisfy (ta1, . . . , tan) ∈ [0, 1]n hold
A[n](ta1, . . . , tan) = tA[n](a1, . . . , an).

(a09) Function A is positively sub-homogeneous, i.e., for each t ≥ 0, each n ∈ N
and all (a1, . . . , an) ∈ [0, 1]n that satisfy (ta1, . . . , tan) ∈ [0, 1]n hold
A[n](ta1, . . . , tan) ≤ tA[n](a1, . . . , an).

(a10) For each n ∈ N, holds: A[n](a1, . . . , an) = 0 ⇒ ∀i ∈ {1, . . . , n} , ai = 0.
(a11) For each n ∈ N holds: A[n](a1, . . . , an) = 0 ⇒ ∃i ∈ {1, . . . , n} , ai = 0.

Distance functions could be interpreted as a measure of difference between
two objects. They have many applications in diverse areas of natural and social
sciences, see [2, 3]. In [3], detailed review of various type of distance functions
and their possible properties is given, as well as a presentation of many aspects
of their application in numerous mathematic and other disciplines.
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Definition 2.3. Let X ̸= ∅ be an arbitrary set. A distance function on set
(space) X is a function d : X2 → [0,∞), which have the following properties.
(d01) ∀x, y ∈ X, d(x, y) = d(y, x), (symmetry)
(d02) ∀x ∈ X, d(x, x) = 0. (reflexivity)
Ordered pair (X, d) is then called a space with a distance.

Definition 2.4. In space X ̸= ∅, function d : X2 → [0,∞) could have following
important properties.
(d03) ∀x, y ∈ X, d(x, y) = 0 ⇒ x = y (identity of indiscernibles).
(d04) ∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).
(d05) For certain constant C ∈ [1,∞) applies:

∀x, y, z ∈ X, d(x, z) ≤ C (d(x, y) + d(y, z)) (C-triangle inequality).
(d06) d : X2 → [0, 1] ∨ ∃a > 0, d : X2 → [0, a] (boundedness).

A distance function d : X2 → [0,∞) is a metric on a set X if satisfies
identity of indiscernibles (d03) and triangle inequality (d04).

In the paper [6], method for the construction of new distance functions
and metrics by applying aggregation operators on sequence of initial distance
functions and metrics, is presented. Let di : X2 → [0, 1], i ∈ N be bounded

distance functions on set X ̸= ∅, and A :

∞∪
n=2

[0, 1]n → [0, 1] be an arbitrary

aggregation operator. Let function d : X2 × N \ {1} → [0, 1] be defined with
d(x, y;n) = A (d1(x, y), . . . , dn(x, y)), x, y ∈ X, n ∈ N \ {1},

and for each n ≥ 2 function d[n] : X
2 → [0, 1] be defined with

d[n](x, y) = d(x, y;n) = A (d1(x, y), . . . , dn(x, y)), x, y ∈ X.
In the following theorem (see [6]), certain properties of function d[n] are stated,
depending on properties of distance function di and properties of aggregation
operator A, primarily (a07), (a09), (a10) and (a11) from the page 2.

Theorem 2.5. Let di : X2 → [0, 1], i ∈ N be arbitrary sequence of distance

functions, and let A :

∞∪
n=1

[0, 1]n → [0, 1] be an arbitrary extended aggregation

function. Then for each n ∈ N, and for all functions d[n] : X
2 → [0, 1] defined

with d[n](x, y) = A (d1(x, y), . . . , dn(x, y)), x, y ∈ X following statements hold.
(ad01) Function d[n] is distance function.
(ad02) If each of distance function di, i ∈ N satisfies identity of indiscernibles

(d03) and operator A has property (a11) for each n ∈ N, then for function
d[n] identity of indiscernibles (d03) holds.

(ad03) If for at least one distance function di, i ∈ {1, . . . , n} applies identity
of indiscernibles (d03) and operator A has property (a10) for n ∈ N, then
for function d[n] identity of indiscernibles (d03) holds.

(ad04) Let all di, i ∈ N be metric, and let A be sub-additive function (property

(a07)) which restriction on set
∞∪

n=1

[0, 1]n is an aggregation operator. If

the aggregation operator A :
∞∪

n=1

[0, 1]n → [0, 1] has property (a11) for

each n ∈ N, then function d[n] is metric for each n ∈ N.
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(ad05) Let for each function di, i ∈ N C-triangle inequality (d05) holds.

Let A :
∞∪

n=1

[0,∞)n → [0,∞) be function which restriction on the set

∞∪
n=1

[0, 1]n is aggregation operator that is sub-additive and positively sub-

homogeneous, i.e. has properties (a07) and (a09). Then for functions
d[n], n ∈ N C-triangle inequality (d05) holds. Besides that, if for each
function di, i ∈ N C-triangle inequality applies with corresponding con-
stant Ci, i ∈ N, then C-triangle inequality for functions d[n], n ∈ N holds
with corresponding constants C[n] = max {C1, . . . , Cn}, n ≥ 2.

(ad06) Let A be continuous aggregation operator. If space X is equipped with
topological structure and each of distance function di, i ∈ N is continuous
on X2, then distance function d[n] is continuous on X2 for n ∈ N.

The distance functions constructed by the given procedure can find various
applications. E.g., in [6], the application in image segmentation is shown.

3. Properties of min, max and generalized means opera-
tors

In the paper [6], extended aggregation functions min, max, extended weighted
arithmetic mean and extended generalized means (see [1, 5]) and their properties
(a07), (a09), (a10) and (a11) are examined, from the aspect of their applica-
tions in the Theorem 2.5. It is known, see [1, 5], which of the properties (a03),
(a04) and (a05), these functions satisfy or not. In the following examples we
further discuss other properties of mentioned aggregation operators.

Example 3.1 (Extended WAM). For arbitrary family of real numbers

ω =

{
ωn,i ≥ 0

∣∣∣∣ n ∈ N, i ∈ {1, ..., n} ,
n∑

i=1

ωn,i = 1

}
,

with the following equation a continuous and idempotent, but not symmetrical

aggregation operator WAMω :
∞∪

n=1

[0, 1]n → [0, 1] is defined,

(3.1) WAMω(a1, . . . , an) = ωn,1a1 + · · ·+ ωn,nan, (a1, . . . , an) ∈ [0, 1]n.

Operator WAMω is called extended weighted arithmetic mean, see [5]. For
each n ∈ N, restriction WAM[n]

ω : [0, 1]n → [0, 1] of operator WAMω on the
[0, 1]n is a restriction of one linear transformation from a space Rn to R. This
means that function WAMω is additive and positively homogeneous, and so has
the properties (a06), (a07), (a08) and (a09). Also, it obviously satisfies (a11),
and the property (a10) has only if ωn,i > 0 for all n ∈ N, i ∈ {1, . . . , n}. X

Example 3.2 (min and max). Functions Amin(a1, . . . , an) = min(a1, . . . , an),
Amax(a1, . . . , an) = max(a1, . . . , an), are obviously continuous, symmetrical
and idempotent aggregation functions. Let us prove that min is positively
homogeneous, and for max proof can be performed in the same way. For n ∈ N,
let (a1, . . . , an) ∈ [0, 1]n and t ≥ 0 satisfy (ta1, . . . , tan) ∈ [0, 1]n, and let for
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some p ∈ {1, . . . , n}, min(a1, . . . , an) = ap. From previous, it is obvious that
ap ≤ ai for all i ∈ {1, . . . , n}. Because t ≥ 0, it can be concluded that tap ≤ tai,
i ∈ {1, . . . , n}, which results min(ta1, . . . , tan) = tap = tmin(a1, . . . , an). X
Example 3.3 (Extended generalized means). For α ̸= 0 with

GAα(a1, . . . , an) =

(
aα1 + · · ·+ aαn

n

) 1
α

, α > 0

i.e.,

GAα(a1, . . . , an) =


(
aα1 + · · ·+ aαn

n

) 1
α

, ∀i, ai > 0

0 , ∃i, ai = 0

, α < 0.

is defined a continuous, symmetric and idempotent aggregation function, which
is also called extended generalized average functions. For some special values
α, we obtain the well known functions arithmetic mean MA, geometric mean
MG and harmonic mean MH. In [6], properties (a07), (a09), (a10) and (a11) of
MA and MG were examined. Here, we will further consider the MH operator.
[MA] For α = 1 the operator is called extended arithmetic mean,

MA(a1, . . . , an) =
1

n
(a1 + · · ·+ an).

As a linear transformation, MA is additive, positively homogeneous, pos-
itively subhomogeneous, subadditive and satisfies (a10) and (a11).

[MG] If α → 0 the operator GAα converges to extended geometric mean

MG(a1, . . . , an) = (a1 · . . . · an)
1
n .

Function MG is positively homogeneous and positively subhomogeneous,
because for all t ≥ 0 and (a1, . . . , an) ∈ [0, 1]n, n ≥ 2 hold

MG(ta1, . . . , tan) = ((ta1) · · · · · (tan))
1
n

= t (a1 · · · · · an)
1
n = tMG(a1, . . . , an).

Function MG is not subadditive (see [6]), it obviously have the property
(a11), but do not have the property (a10).

[MH] By choosing α = −1, extended harmonic mean is obtained,

MH(a1, . . . , an) =


n

1
a1

+ · · ·+ 1
an

, ∀i, ai ̸= 0

0 , ∃i, ai = 0
.

Harmonic mean does not satisfy the property (a07), neither (a06), be-
cause e.g., for n = 2

MH(0.5 + 0.1, 0.25 + 0.2) =
18

35
> MH(0.5, 0.25) +MH(0.1, 0.2) =

7

15
.

This function is positively homogeneous and positively subhomogeneous,
which follows from the equations below. If ∃i, such that ai = 0, then
MH(ta1, . . . , tan) = tMH(a1, . . . , an) = 0, otherwise

MH(ta1, . . . , tan) =
n

1
ta1

+ · · ·+ 1
tan

=
n

1
t

(
1
a1

+ · · ·+ 1
an

)
=

tn
1
a1

+ · · ·+ 1
an

= tMH(a1, . . . , an).
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From the definition of MH function, follows that it satisfy (a11), and not
satisfy (a10).

In the general case, function GAα, α ∈ R\{0}, is continuous, symmetric and
idempotent (properties (a03), (a04) and (a05)) that follows from its definition.
It is also positively homogeneous and positively subhomogeneous (properties
(a08) and (a09)) for each α ∈ R\{0}, because for all n ∈ N, (a1, . . . , an) ∈ [0, 1]n

and t ≥ 0 such that (ta1, . . . , tan) ∈ [0, 1]n the following is obtained.
• For α < 0, if ∃i ∈ {1, . . . , n} such that ai = 0, then tai = 0 and

GAα(a1, . . . , an) = GAα(ta1, . . . , tan) = 0,

so obviously GAα(ta1, . . . , tan) = t GAα(a1, . . . , an).

• For all α > 0, or in a case α < 0 and ∀i ∈ {1, ..., n}, ai > 0 follows

GAα(ta1, . . . , tan) =

(
(ta1)

α + · · ·+ (tan)
α

n

) 1
α

=

(
tα

aα1 + · · ·+ aαn
n

) 1
α

= t

(
aα1 + · · ·+ aαn

n

) 1
α

= t GAα(a1, . . . , an). X

4. Conclusions

We consider this method of constructing of the distance functions can give
good results in the procedures for removing the noise in the image by choos-
ing an appropriate aggregation operators, initial distance functions and other
suitable parameters (such as the appropriate pixel-descriptor).
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