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IMAGE SEGMENTATION BY APPLYING
MEDIAN-AGGREGATED DISTANCE FUNCTIONS

Ljubo Nedović 1 and Marija Delić 2

Abstract. In this paper we present construction of new distance func-
tions by using aggregation operators of median type on given sequence
of distance functions. Depending on characteristics of the given distance
functions, features of new constructed function are analyzed. Also, one
application on image segmentation is presented.
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1. Introduction

Distance functions and metrics have application in various scientific disci-
plines, and one of them is automatic image segmentation. In this paper, we
consider construction of new distance function by applying aggregation opera-
tor median Med on some given distance functions, and one application of such
function on image segmentation by using Fuzzy c-means clustering algorithm
(shortly FCM), see [1]. In paper [2], it is shown that by applying aggregation
operator on distance functions, new distance function is constructed. With
certain additional properties of applied aggregation operator, constructed dis-
tance function could inherit certain good, and for application useful properties
from initial given functions. In [2], from this aspect, one class of aggregation
operators was considered, so called generalized means.

Aggregation operators are type of fuzzy operations, which have found large
application in various engineering disciplines, see [3].

Definition 1.1. Aggregation operator is function A :
∞∪

n=2

[0, 1]n → [0, 1] with

following properties.

(a01) For each n ≥ 2 and n-tuples (0, . . . , 0) ∈ [0, 1]n, (1, . . . , 1) ∈ [0, 1]n,
boundary conditions A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1 are satisfied.

(a02) Function A is monotonically non-decreasing on each component, i.e. for
each n ≥ 2 and n-tuples (a1, . . . , an) ∈ [0, 1]n, (b1, . . . , bn) ∈ [0, 1]n

∀i ∈ {1, . . . , n} , ai ≤ bi ⇒ A(a1, . . . , an) ≤ A(b1, . . . , bn)

holds.
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In addition, function A could have some of the following additional properties.

(a03) Function A is continuous.

(a04) Function A is symmetric, i.e. for each n ≥ 2, for each (a1, . . . , an) ∈ [0, 1]n

and each permutation p of set {1, . . . , n} applies

A(a1, . . . , an) = A(ap(1), . . . , ap(n)).

(a05) Function A is idempotent, i.e. for n ≥ 2 and (a, . . . , a) ∈ [0, 1]n applies

A(a, . . . , a) = a.

(a06) Function A is additive, i.e. for each n ≥ 2 and each (a1, . . . , an) ∈ [0, 1]n,
(b1, . . . , bn) ∈ [0, 1]n with a property (a1+b1, . . . , an+bn) ∈ [0, 1]n applies

A(a1 + b1, . . . , an + bn) = A(a1, . . . , an) +A(b1, . . . , bn).

(a07) Function A is sub-additive, i.e. for n ≥ 2 and each (a1, . . . , an) ∈ [0, 1]n,
(b1, . . . , bn) ∈ [0, 1]n with a property (a1+b1, . . . , an+bn) ∈ [0, 1]n applies

A(a1 + b1, . . . , an + bn) ≤ A(a1, . . . , an) +A(b1, . . . , bn).

(a08) Function A is positively homogeneous, i.e. for each t ≥ 0, each n ≥ 2 and
all (a1, . . . , an) ∈ [0, 1]n with a property (ta1, . . . , tan) ∈ [0, 1]n applies

A(ta1, . . . , tan) = tA(a1, . . . , an).

(a09) Function A is positively sub-homogeneous, i.e. for each t ≥ 0, n ≥ 2 and
all (a1, . . . , an) ∈ [0, 1]n with a property (ta1, . . . , tan) ∈ [0, 1]n applies

A(ta1, . . . , tan) ≤ tA(a1, . . . , an).

When constructing new distance functions by applying aggregation opera-
tors to ordinary distance functions, the following properties that the aggrega-

tion operator A :
∞∪

n=2

[0, 1]n → [0, 1] could have are also of interest.

(a10) For each n ≥ 2 applies: A(a1, . . . , an) = 0 ⇒ ∀i ∈ {1, . . . , n} , ai = 0.

(a11) For each n ≥ 2 applies: A(a1, . . . , an) = 0 ⇒ ∃i ∈ {1, . . . , n} , ai = 0.

Distance functions could be interpreted as a measure of difference between
two objects.

Definition 1.2. Let X ̸= ∅ be an arbitrary set. A distance function on set
(space) X is a function d : X2 → [0,∞), which have the following properties.
(d01) ∀x, y ∈ X, d(x, y) = d(y, x), (symmetry)
(d02) ∀x ∈ X, d(x, x) = 0. (reflexivity)
Ordered pair (X, d) is then called a space with a distance.

Definition 1.3. In spaceX ̸= ∅, function d : X2 → [0,∞) could have following
important properties.
(d03) ∀x, y ∈ X, d(x, y) = 0 ⇒ x = y (identity of indiscernibles).
(d04) ∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).
(d05) For certain constant C ∈ [1,∞) applies:

∀x, y, z ∈ X, d(x, z) ≤ C (d(x, y) + d(y, z)) (C-triangle inequality).
(d06) d : X2 → [0, 1] ∨ ∃a > 0, d : X2 → [0, a] (boundedness).

A distance function d : X2 → [0,∞) is a metric on a set X if satisfies
identity of indiscernibles (d03) and triangle inequality (d04).
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2. Previous research

Let di : X2 → [0, 1], i ∈ N be bounded distance functions on set X ̸= ∅,

and A :
∞∪

n=2

[0, 1]n → [0, 1] be an arbitrary aggregation operator. Let function

d : X2 × N \ {1} → [0, 1] be defined with
d(x, y;n) = A (d1(x, y), . . . , dn(x, y)), x, y ∈ X, n ∈ N \ {1},

and for each n ≥ 2 function d[n] : X
2 → [0, 1] be defined with

d[n](x, y) = d(x, y;n) = A (d1(x, y), . . . , dn(x, y)), x, y ∈ X.
In the following theorem (see [2]), certain properties of function d[n] are stated,
depending on properties of distance function di and properties of aggregation
operator A, primarily (a07), (a09), (a10) and (a11) from section 1.

Theorem 2.1. Let di : X2 → [0, 1], i ∈ N be arbitrary sequence of distance

functions, and let function A :
∞∪

n=2

[0, 1]n → [0, 1] be an arbitrary aggregation

operator. Then for each n ≥ 2, and for all functions d[n] : X
2 → [0, 1] defined

with d[n](x, y) = A (d1(x, y), . . . , dn(x, y)), x, y ∈ X following statements holds.

(ad01) Function d[n] is distance function.

(ad02) If for each of distance function di, i ∈ N applies identity of indis-
cernibles (d03) and operator A has property (a11) for each n ≥ 2, then
for function d[n] applies identity of indiscernibles (d03).

(ad03) If for at least one distance function di, i ∈ {1, . . . , n} applies identity
of indiscernibles (d03) and operator A has property (a10) for each n ≥ 2,
then for function d[n] applies identity of indiscernibles (d03).

(ad04) Let all di, i ∈ N be metric, and let A :
∞∪

n=2

[0,∞)n → [0,∞) be sub-

additive function (property (a07)), which restriction on set

∞∪
n=2

[0, 1]n is

an aggregation operator. If the aggregation operator A :

∞∪
n=2

[0, 1]n → [0, 1]

has property (a11) for each n ≥ 2, then function d[n] is metric for each
n ≥ 2.

(ad05) Let for each function di, i ∈ N applies C-triangle inequality (d05).

Let A :
∞∪

n=2

[0,∞)n → [0,∞) be function which restriction on the set

∞∪
n=2

[0, 1]n is aggregation operator that is sub-additive and positively sub-

homogeneous, i.e. has properties (a07) and (a09). Then for functions
d[n], n ≥ 2 applies C-triangle inequality (d05). Therefore, if for each
function di, i ∈ N C-triangle inequality applies with corresponding con-
stant Ci, i ∈ N, then C-triangle inequality for functions d[n], n ≥ 2 applies
with corresponding constants C[n] = max {C1, . . . , Cn}, n ≥ 2.
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(ad06) Let A be continuous aggregation operator. If space X is equipped with
topological structure and each of distance function di, i ∈ N is continuous
on X2, then distance function d[n] is continuous on X2 for n ≥ 2.

3. Certain properties of median operator

Let us test properties (a03). . . (a11) of aggregation operator statistic me-

dian med :
∞∪

n=2

[0, 1]n → [0, 1] defined as following. For arbitrary n-tuple

(x1, . . . , xn) ∈ [0, 1]n let us denote (x′
1, . . . , x

′
n) as non-decreasing permutation

of (x1, . . . , xn). Then

med (x1, . . . , xn) =


x′

n
2
+ x′

n
2 +1

2
, ∃k ∈ Z, n = 2k

x′
n+1
2

, ∃k ∈ Z, n = 2k + 1
.

It is known that med is continuous, symmetric an idempotent operator. It
easily can be verified that med is positively homogeneous, and therefore sub-
homogeneous (properties (a09) and (a08)). It does not have a property (a10)
because e.g. med (0, 0, 1) = 0, but it does have a property (a11) because ar-
guments of operator med are from [0, 1]. Following example shows that med
is not sub-additive (property (a07)), nor additive (property (a06)). E.g. for
(a1, a2, a3) = (0.2, 0.4, 0.2) and (b1, b2, b3) = (0.2, 0.5, 0.6) holds

med (a1 + b1, a2 + b2, a3 + b3) = med (0.4, 0.9, 0.8) = 0.8,
med (a1, a2, a3) +med (b1, b2, b3) = med (0.2, 0.4, 0.2) +med (0.2, 0.5, 0.6)

= 0.2 + 0.5 = 0.7
< med (a1 + b1, a2 + b2, a3 + b3).

In summary, considered properties are presented in the following table.

(a03) (a04) (a05) (a06) (a07) (a08) (a09) (a10) (a11)

med YES YES YES no no YES YES no YES

Also, considering properties of operator med, following table shows in which
statements of the theorem 2.1 this operator could be applied.

(ad01) (ad02) (ad03) (ad04) (ad05) (ad06)

med YES YES no no no YES

4. Application of median operator in image segmentation

This section shows application of median-aggregated distance function in
image segmentation by using Fuzzy c-Means Clustering Algorithm (FCM), see
[1]. Input parameters of algorithm, besides an image, are listed bellow.

• Selected number c = 4, present number of clusters that are going to be
acquired by segmentation.

• Weight coefficient m = 2.0, present parameter which choice could affect
on quality and speed of segmentation.

• Distance function d : P × P → [0,∞), where P is a set of pixels from
selected image, defines a segmentation criterion. For pixels p1, p2 ∈ P ,
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(a) Original image. (b) dMed segmentation.

Figure 1: Original picture and median-segmentation.

value d (p1, p2) ∈ [0,∞) represents a measure of difference between them,
and with appropriate selection of function d a criterion of pixel grouping
into clusters is chosen. In order to compare achieved results for used
distance function, all distance functions are normalized i.e. modified to
d : P × P → [0, 1]. In paper [2] the following statement is proved. Let
d̃ : P × P → [0, a] be bounded function for some constant a > 0, and let

function d : P × P → [0,∞) be defined with d (p1, p2) =
1

a
d̃ (p1, p2) for

p1, p2 ∈ P . Then d : P ×P → [0, 1] is normalized function, which inherits
all properties (d01). . . (d06) from function d̃. Accordingly, if function
d̃ : P ×P → [0, a] is distance function, then d : P ×P → [0, 1] is distance
function. Also, if d̃ : P × P → [0, a] is metrics, then d : P × P → [0, 1] is
metrics, etc.

Besides the segmented image obtained, as the output parameters of the algo-
rithm, the following values are presented.

• PI - performance index which measures the clustering of data. The lower
value of the PI coefficient represents stronger grouping of pixels, i.e. more
compact clusters.

• IT - number of iterations.
• RT - algorithm operating time, in seconds.

Applied FCM algorithm is coded in MATLAB, R2012b, 32-bit (win32). It is
tested on PC with Intel(R) processor Core(TM)2 Duo CPU E8400 3.00 GHz,
3.25 GB of RAM, and operating system Microsoft Windows XP, Professional,
Version 2002.

Application of distance function constructed with med aggregation operator
is presented on segmentation of color image, Figure 1a. Image is in BMP format,
225 × 300 pixels in size, with 3-byte RGB color coding. Let p = (r, g, b) ∈ P
be the pixel where r, g, b ∈ {0, . . . , 255} are codes for red, green and blue
color component of pixel, respectively. Therefore, P = {0, . . . , 255}3. Image
presented on Figure 1a is initially segmented by using normalized distance
functions

dR (p1, p2) =
1

255 · |r2 − r1|, p1 = (r1, g1, b1) ∈ P , p2 = (r2, g2, b2) ∈ P ,

dG (p1, p2) =
1

255 · |g2 − g1|, p1 = (r1, g1, b1) ∈ P , p2 = (r2, g2, b2) ∈ P ,

dB (p1, p2) =
1

255 · |b2 − b1|, p1 = (r1, g1, b1) ∈ P , p2 = (r2, g2, b2) ∈ P ,

which can be treated as L1 metrics on set {0, . . . , 255} of corresponding color
component. These metrics define segmentation criteria on single color compo-
nent. Application of these distances in FCM algorithm gives following images
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(a) dR segmentation. (b) dG segmentation. (c) dB segmentation.

Figure 2: Segmentations by using initial distance functions.

2a, 2b i 2c. Then, the image is segmented by using distance function that is
constructed by applying aggregation operator med to dR, dG and dB :

dmed (p1, p2) = med (dR (p1, p2) , dG (p1, p2) , dB (p1, p2)), p1, p2 ∈ P ,

which can be interpreted as median value of difference between color compo-
nents. Application of med operator on distance functions dR, dG and dB gives
new distance function dmed (see [2]). Segmentation results for original image,
Figure 1a, by using dmed distance function is shown on Figure 1b. Table 1 shows
output parameters of applied segmentations with different distance functions
dR, dG, dB i dmed. Application of dmed distance function does not give better

dR dG dB dmed

PI: 147.4538 141.8972 105.4255 1.2378e+07

IT: 27 21 25 27

RT: 88 73 79 204

Table 1: Output parameters of applied segmentations.

parameters PI, IT and RT in comparison to values obtained with dR, dG and
dB . However, on the author’s opinion, visual comparison of images 1b, 2a, 2b
and 2c shows that on image 1b regions are ”better” segmented, in a way that
are more appealing to human eye.
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