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WEIGHTED MINIMUM AND WEIGHTED
MAXIMUM

Ljubo Nedović 1 and Ðorđe Dragić 2

Abstract. In this paper we present weighted minimum and weighted
maximum functions. We prove that they are aggregation functions, which
special cases are ordinary minimum and maximum aggregation functions,
and that weighted minimum and weighted maximum are continuous and
idempotent, but not symmetrical aggregation functions. Additionally,
we present some properties of ordinary minimum and maximum aggre-
gation functions which are relevant for construction and properties of con-
structed distance functions, metrics, fuzzy-measures and other measure-
type functions.
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1. Introduction

This paper is continuations of research carried out [6, 7, 8]. Minimum and
maximum are basic fuzzy operations, minimum as fuzzy conjunction or fuzzy
set intersection, and maximum as fuzzy disjunction or fuzzy set union. In
research papers [6, 7, 8], some properties of minimum and maximum were in-
vestigated, as their applicability in construction of distance functions which are
further used in image segmentation. Their properties can be relevant also in
construction of other measure-type functions. In the Section 3 we present a gen-
eralization of minimum and maximum aggregation functions, so called weighted
minimum and weighted maximum functions. In the Section 3 we prove that
weighted minimum and weighted maximum are aggregation functions which
special cases are ordinary minimum and maximum, and that weighted mini-
mum and weighted maximum are continuous and idempotent, but not sym-
metrical aggregation functions.

2. Preliminaries and previous research

In this section we list the definition of aggregation function, see [1, 2, 5],
some its additional properties which are relevant for aggregation of distance
functions and measure-type functions, see [3, 8]. We also present which of
mentioned properties satisfies minimum and maximum aggregation function.
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Definition 2.1 (Aggregation function). For fixed n ∈ N, an n-ary aggregation
function is a function A[n] : [0, 1]

n → [0, 1] with the following properties.

(a01) Boundary conditions A[n](0, . . . , 0) = 0 and A[n](1, . . . , 1) = 1 hold.

(a02) Function A[n] is monotonically non-decreasing in each component, i.e.,

∀i ∈ {1, . . . , n} , ai ≤ bi ⇒ A[n](a1, . . . , an) ≤ A[n](b1, . . . , bn)

hold for arbitrary n-tuples (a1, . . . , an) ∈ [0, 1]n, (b1, . . . , bn) ∈ [0, 1]n.

In case n = 1, A[1](x) = x for all x ∈ [0, 1].

Definition 2.2 (Extended aggregation function). An extended aggregation

function is a mapping A :

∞∪
n=1

[0, 1]n → [0, 1] such that the every restriction

A[n] : [0, 1]
n → [0, 1], n ∈ N of this mapping is an n-ary aggregation function.

The following properties of aggregation functions can be relevant for prop-
erties of distance functions and fuzzy measures constructed by applying aggre-
gation function on sequence of initial functions of same type.

Definition 2.3. Let n ∈ N, and let A[n] : [0, 1]
n → [0, 1] be an n-ary aggrega-

tion function. It may have some of following properties.

(a03) A[n] is continuous.

(a04) A[n] is symmetric in each component, i.e., for each (a1, . . . , an) ∈ [0, 1]n

and each permutation p of the set {1, . . . , n} hold

A[n](a1, . . . , an) = A[n](ap(1), . . . , ap(n)).

(a05) Aggregation function A[n] is idempotent, i.e., for all (a, . . . , a) ∈ [0, 1]n

hold

A[n](a, . . . , a) = a.

(a06) A[n] is additive, i.e., for all (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n that sat-
isfy (a1 + b1, . . . , an + bn) ∈ [0, 1]n hold

A[n](a1 + b1, . . . , an + bn) = A[n](a1, . . . , an) +A[n](b1, . . . , bn).

(a07) A[n] is subadditive, i.e., for all (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n that
satisfy (a1 + b1, . . . , an + bn) ∈ [0, 1]n hold

A[n](a1 + b1, . . . , an + bn) ≤ A[n](a1, . . . , an) +A[n](b1, . . . , bn).

(a08) A[n] is superadditive, i.e., for all (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n that
satisfy (a1 + b1, . . . , an + bn) ∈ [0, 1]n hold

A[n](a1 + b1, . . . , an + bn) ≥ A[n](a1, . . . , an) +A[n](b1, . . . , bn).

(a09) Aggregation function A[n] is positively homogeneous, i.e., for each
t ≥ 0 and all (a1, . . . , an) ∈ [0, 1]n that satisfy (ta1, . . . , tan) ∈ [0, 1]n

hold

A[n](ta1, . . . , tan) = tA[n](a1, . . . , an).
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(a10) Aggregation function A[n] is positively subhomogeneous, i.e., for each
t ≥ 0 and all (a1, . . . , an) ∈ [0, 1]n that satisfy (ta1, . . . , tan) ∈ [0, 1]n hold

A[n](ta1, . . . , tan) ≤ tA[n](a1, . . . , an).

(a11) Aggregation function A[n] is positively superhomogeneous, i.e., for each
t ≥ 0 and all (a1, . . . , an) ∈ [0, 1]n that satisfy (ta1, . . . , tan) ∈ [0, 1]n hold

A[n](ta1, . . . , tan) ≥ tA[n](a1, . . . , an).

(a12) A[n](a1, . . . , an) = 0 ⇒ ∀i ∈ {1, . . . , n} , ai = 0.

(a13) A[n](a1, . . . , an) = 0 ⇒ ∃i ∈ {1, . . . , n} , ai = 0.

(a14) A[n](a1, . . . , an) < 1 ⇒ ∀i ∈ {1, . . . , n} , ai < 1.

Ordinary minimum and maximum are well known aggregation functions
and basic fuzzy operations. For fixed n ≥ 2, functions

min [n](a1, . . . , an) = min(a1, . . . , an), (a1, . . . , an) ∈ [0, 1]n,
max [n](a1, . . . , an) = max(a1, . . . , an), (a1, . . . , an) ∈ [0, 1]n,

n-ary aggregation functions. Some of their properties from the Definition 2.3
are examined in [6, 7, 8], and examination of the rest of them is easy. Summary,
considered properties of min and max function are shown in the Table 1.

min[n] max[n]

(a03) YES YES
(a04) YES YES
(a05) YES YES
(a06) no no
(a07) no YES
(a08) YES no
(a09) YES YES
(a10) YES YES
(a11) YES YES
(a12) no YES
(a13) YES YES
(a14) no YES

Table 1: Properties of min[n] and max[n].

3. Weighted minimum and maximum

In this section we analyze the properties from the Definition 2.3 of the
weighted minimum and weighted maximum aggregation function, see [4]. Prop-
erties of ordinary minimum and maximum are analyzed in [7].

Definition 3.1. For n ∈ N, let ω[n] = (ωn,1, . . . , ωn,n) ∈ [0, 1]n be an n-tuple
of nonnegative coefficient from interval [0, 1] such that max

i∈{1,...,n}
ωn,i = 1, i.e.
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ωn,i0 = 1 for some i0 ∈ {1, . . . , n}. Function min
ω[n]

[n] : [0, 1]n → [0, 1] defined
by

(3.1) min
ω[n]

[n] (a1, . . . , an) = min
i∈{1,...,n}

max(1− ωn,i, ai)

for all (a1, . . . , an) ∈ [0, 1]n. Function min
ω[n]

[n] is called weighted minimum.

Definition 3.2. For n ∈ N, let ω[n] = (ωn,1, . . . , ωn,n) ∈ [0, 1]n be an n-tuple
of nonnegative coefficient from interval [0, 1] such that max

i∈{1,...,n}
ωn,i = 1, i.e.

ωn,i0 = 1 for some i0 ∈ {1, . . . , n}. Function max
ω[n]

[n] : [0, 1]n → [0, 1] defined
by

(3.2) max
ω[n]

[n] (a1, . . . , an) = max
i∈{1,...,n}

min(ωn,i, ai)

for all (a1, . . . , an) ∈ [0, 1]n. Function max
ω[n]

[n] is called weighted maximum.

Remark 3.3. In the case when ωn,i = 1 for all i ∈ {1, . . . , n}, weighted minimum
min

ω[n]

[n] reduces to ordinary min, and weighted maximum max
ω[n]

[n] reduces to
ordinary max.

Theorem 3.4. Functions min
ω[n]

[n] and max
ω[n]

[n] are aggregation functions for
all n ∈ N.

Proof: First boundary condition A[n](0, . . . , 0) = 0 from the Definition 2.1 is
satisfied for min

ω[n]

[n] because
min

ω[n]

[n] (0, . . . , 0) = min
i∈{1,...,n}

max(1− ωn,i, 0) = min
i∈{1,...,n}

(1− ωn,i) = 0

because ωn,i = 1 for at least one i ∈ {1, . . . , n}, i.e., 1 − ωn,i = 0 for some
i ∈ {1, . . . , n}. It is also satisfied for max

ω[n]

[n] function because
max

ω[n]

[n] (0, . . . , 0) = max
i∈{1,...,n}

min(ωn,i, 0) = max
i∈{1,...,n}

0 = 0.

Second boundary condition A[n](1, . . . , 1) = 1 from the definition 2.1 is
satisfied for min

ω[n]

[n] because
min

ω[n]

[n] (1, . . . , 1) = min
i∈{1,...,n}

max(1− ωn,i, 1) = min
i∈{1,...,n}

1 = 1,

and also for max
ω[n]

[n] ,
max

ω[n]

[n] (1, . . . , 1) = max
i∈{1,...,n}

min(ωn,i, 1) = 1

because ωn,i0 = 1 hold for some index i0 ∈ {1, . . . , n}, and therefore is
min(ωn,i0 , 1) = 1.

Now we prove the monotonicity (a02) from the Definition 2.1 of function
min

ω[n]

[n] . Let ai ≤ bi for all i ∈ {1, . . . , n} and arbitrary (a1, . . . , an) ∈ [0, 1]n

and (b1, . . . , bn) ∈ [0, 1]n. Then for all i ∈ {1, . . . , n} hold
max (1− ωn,i, ai) ≤ max (1− ωn,i, bi),

and we obtain
min

ω[n]

[n] (a1, . . . , an) = min
i∈{1,...,n}

max (1− ωn,i, ai)

≤ min
i∈{1,...,n}

max (1− ωn,i, bi)
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= min
ω[n]

[n] (b1, . . . , bn).
Monotonicity (a02) of function max

ω[n]

[n] follows analogously. For arbitrary
(a1, . . . , an) ∈ [0, 1]n and (b1, . . . , bn) ∈ [0, 1]n, if ai ≤ bi for all i ∈ {1, . . . , n}
then for all i ∈ {1, . . . , n} hold

min (ωn,i, ai) ≤ min (ωn,i, bi),
and we obtain

max
ω[n]

[n] (a1, . . . , an) = max
i∈{1,...,n}

min (ωn,i, ai)

≤ max
i∈{1,...,n}

min (ωn,i, bi)

= max
ω[n]

[n] (b1, . . . , bn). 2

For weighted minimum and weighted maximum, let we consider properties
(a03), (a04) and (a05) from the Definition 2.3. For n = 1, all properties are
obviously satisfied.

Theorem 3.5. Functions min
ω[n]

[n] and max
ω[n]

[n] are continuous, idempotent,
but not symmetrical aggregation functions for all n ≥ 2.

Proof:

(a03) Functions min
ω[n]

[n] and max
ω[n]

[n] are continuous as composition of contin-
uous operations.

(a04) Functions min
ω[n]

[n] and max
ω[n]

[n] are not symmetrical, except when ωn,i = 1

for all i ∈ {1, . . . , n}, when they reduce to ordinary min and max aggre-
gation functions. For example, for n = 2, ω[2] = (0.5, 1) and (a1, a2) =
(0.8, 0.2) hold

min
ω[2]

[2] (0.8, 0.2) = 0.2 ̸= min
ω[2]

[2] (0.2, 0.8) = 0.5,

max
ω[2]

[2] (0.8, 0.2) = 0.5 ̸= max
ω[2]

[2] (0.2, 0.8) = 0.8.

(a05) We will prove that both functions min
ω[n]

[n] and max
ω[n]

[n] are idempotent.

min
ω[n]

[n] : Let a ∈ [0, 1]. From max
i∈{1,...,n}

ωn,i = 1, i.e. ωn,i0 = 1 for some

i0 ∈ {1, ..., n}, follows max(1 − ωn,i0 , a) = a for i0 ∈ {1, ..., n}, and
min

ω[n]

[n] (a, . . . , a) = min
i∈{1,...,n}

max(1 − ωn,i, a) ≤ a. On the other

side, for all i ∈ {1, ..., n} hold max(1 − ωn,i, a) ≥ a, and there-
fore is min

ω[n]

[n] (a, . . . , a) = min
i∈{1,...,n}

max(1 − ωn,i, a) ≥ a, so that

min
ω[n]

[n] (a, . . . , a) = a holds.

max
ω[n]

[n] : Let a ∈ [0, 1]. From max
i∈{1,...,n}

ωn,i = 1, i.e. ωn,i0 = 1 for some

i0 ∈ {1, . . . , n}, follows min(ωn,i0 , a) = a for i0 ∈ {1, . . . , n}, and
therefore follows max

ω[n]

[n] (a, . . . , a) = max
i∈{1,...,n}

min(ωn,i, a) ≥ a. On

the other side, min(ωn,i, a) ≤ a for all i ∈ {1, . . . , n} and con-
sequently max

ω[n]

[n] (a, . . . , a) = max
i∈{1,...,n}

min(ωn,i, a) ≤ a, so that

min
ω[n]

[n] (a, . . . , a) = a holds. 2
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4. Conclusions

We conclude that presented aggregation functions weighted minimum and
weighted maximum are generalization of ordinary min and max aggregation
functions. Interesting question for further research is which of considered prop-
erties of min and max hold also for weighted minimum and weighted maximum,
and did they suitable for aggregation of distance functions, fuzzy measures,
and other measure-type functions.
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