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Abstract

Let (I,⊕,�) be a semiring with a neutral element 0 of the ⊕ and
a neutral element 1 of the �. Let Σ be a σ-algebra of subsets of
nonempty set Ω. Pseudo probability is a function P : Σ → I with the
next properties: (1) P(∅) = 0 and P(Ω) = 1,

(2) P

( ∞⋃
i=1

Ai

)
=

∞⊕
i=1

P(Ai) for pairwise disjoint sets {Ai}i∈N from Σ.

The triple (Ω,Σ,P) is called a pseudo probability space. In this
paper will be present some properties of the pseudo probability space
and the pseudo variables.
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1 Preliminaries

We briefly present some notions from the pseudo-analysis (see [2]).
Let the order � be defined on a set I 6= ∅, and ∅ 6= I∗ ⊂ I.

Definition 1 The pseudo-operation is a binary operation ∗ : I × I → I
which is commutative, associative, positively nondecreasing (x � y implies
x ∗ u � y ∗ u, u ∈ I∗) and for which there exists a neutral element e.

The element u ∈ I is the null element of the operation ∗ : I2 → I if for any
x ∈ I, x ∗ u = u ∗ x = u holds.
Pseudo-operation ∗ is idempotent if for any x ∈ I, x ∗ x = x holds.
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Definition 2 Let ⊕ and � be two pseudo-operations defined on the ordered
set (I,�), with 0 and 1 as neutral elements, respectively. Let I⊕ = I, for
the first operation, and I� = {x ∈ I : 0 � x}, for the second operation. If �
is a distributive operation with respect to pseudo-operation ⊕ and 0 is a null
element of the operation �, we say that the triplet (I,⊕,�) is a semiring.

The semiring (I,⊕,�) will be denoted by I⊕,�.
Let I be a subinterval of [−∞, +∞] (we will take usually closed subintervals).
Then we name the operations ⊕ and � pseudo-addition and pseudo-
multiplication.
In this paper we will consider semirings with the following continuous oper-
ations:

Case I) a) (i) x⊕ y = min(x, y) x� y = x + y

on the interval (−∞, +∞]. We have 0 = +∞ and 1 = 0. The idempo-
tent operation min induces a partial (full) order in the following way:
x ≤ y if and only if min(x, y) = y. Hence this order is opposite to
the usual order on the interval (−∞, +∞]. We denote this semiring by
(−∞, +∞]min,+.

(ii) x⊕ y = max(x, y) x� y = x + y

on the interval [−∞, +∞). We have 0 = −∞ and 1 = 0.

b) (i) x⊕ y = min(x, y) x� y = x · y
on the interval (0, +∞]. We have 0 = ∞ and 1 = 1.

(ii) x⊕ y = max(x, y) x� y = x · y
on the interval [0, +∞). We have 0 = 0 and 1 = 1.

Case II) Semirings with pseudo-operations defined by monotone and continuous
generator g (see [4])

x⊕ y = g−1(g(x) + g(y)) x� y = g−1(g(x)g(y))

with the convention 0 · (+∞) = 0, on the interval [a, b]. We have 0 = a
or 0 = b. This order is defined as x � y ⇔ g(x) ≤ g(y).

Case III) a) Let ⊕ = max and � = min on the interval [−∞, +∞]. We have
0 = −∞ and 1 = +∞.

b) Let ⊕ = min and � = max on the interval [−∞, +∞]. We have
0 = +∞ and 1 = −∞.
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We suppose that I is endowed with a metric d compatible with lim sup
and lim inf, i.e., lim sup xn = x and lim inf xn = x imply lim

n→∞
d(xn, x) = 0,

and which satisfies at least one of the following conditions:

d(x⊕ y, x′ ⊕ y′) ≤ d(x, x′) + d(y, y′) (1)

d(x⊕ y, x′ ⊕ y′) ≤ max{d(x, x′), d(y, y′)}. (2)

Both conditions (1) and (2) imply that :

d(xn, yn) → 0 implies d(xn ⊕ z, yn ⊕ z) → 0.

We suppose further the monotonicity of the metric d, i.e.

x � z � y ⇒ d(x, y) ≥ max(d(x, z), d(y, z)). (3)

For the case I) a) (i) on the interval (−∞, +∞] introduce a metric

d(x, y) = |e−x − e−y|. (4)

For the case II) on the interval [a, b] introduce a metric

d(x, y) = |g(x)− g(y)|. (5)

For the case III) b) on the interval [−∞, +∞] introduce a metric

d(x, y) =
2

π
|arctgx− arctgy|. (6)

2 The pseudo-probability

Let (I,⊕,�) be a semiring. Let Ω be a non-empty set. Let Σ be a σ−algebra
of subsets of Ω.

In [4], the pseudo-integral of a bounded measurable function (for decom-
posable measure m) f : Ω → I is defined. For the case II), the pseudo-integral

reduces on g−integral, i.e.:
⊕∫
Ω

f � dm = g−1(
∫
Ω

g(f(x))dx).

Definition 3 Let
∑

be σ - algebra of subsets of a set Ω. Pseudo -
probability is a function P :

∑
→ I with the properties
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(a) P (∅) = 0 and P (Ω) = 1,

(b) P (A ∪B) = P (A)⊕P (B) , A, B ∈
∑

, A ∩B = ∅,

(c) Ai ∈
∑

, i ∈ N, Ai ⊆ Ai+1, i ∈ N ⇒ lim
i→∞

P (Ai) = P

(
∞⋃
i=1

Ai

)
.

The triple (Ω, Σ,P) is pseudo-probability space.

An equivalent definition of pseudo - probability is obtained if the condi-

tions (b) and (c) are replaced by the condition: P

(
∞⋃
i=1

Ai

)
=

∞⊕
i=1

P (Ai) ,

where {Ai}i∈N is a sequence of pairwise disjoint sets from
∑

( σ−⊕− addi-
tivity of function P ). Let as notice that the pseudo-probability is specially
case of decomposable measure.

In the case II), we have P(A) = g−1(p(A)), where p is usual probability.
Then we say that P is distorted probability (see [1]).

Definition 4 The function X : Ω → I is pseudo-variable if

X−1((·, x)) = {ω ∈ Ω : X(ω) ≺ x} = {X ≺ x} ∈ Σ, for all x ∈ I.

We also define the distribution function F of pseudo-variable X, as

FX(x) = P({X ≺ x}) = P({ω ∈ Ω : X(ω) ≺ x}).

Let σ(I) be a minimal σ−algebra containing open balls in separable metric
space (I, d). Let m be decomposable measure defined in measurable space
(I, σ(I)).

Definition 5 If there exists a function φX that holds

FX(x) =
⊕∫

X−1((·,x))

φX � dP

then we say that X is continuous pseudo-variable and that φX is the density
function.

Definition 6 A pseudo-variable X is called integrable if there exists

E(X) =

⊕∫
Ω

x� φX � dP.

and then E(X) is the pseudo-expectation of the pseudo-variable X.
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In the case II) is E(X) = g−1

(∞∫
0

g (x) · g (φX (x)) dx

)
.

Definition 7 Continuous pseudo-variables X and Y are independent if holds
φX,Y (x, y) = φX(x)� φY (y).

Definition 8 The sequence {Xn} of pseudo-variables converges in the

pseudo-probability P towards X, denoted Xn
P−→ X, if for all ε > 0 we

have
P({ω ∈ Ω : d(Xn(ω), X(ω)) ≥ ε}) → 0.

Definition 9 The sequence {Xn} of pseudo-variables converges almost
surely towards X, denoted Xn

a.s.−→ X if we have

P({ω ∈ Ω : Xn(ω) → X(ω)}) = 1,

i.e.
P({ω ∈ Ω : Xn(ω) 9 X(ω)}) = 0.

In the idempotent cases I) and III), we have (see [5]):

Theorem 1 Let Xn and X denote pseudo variables. Then Xn
P→ X implies

Xn
a.s.→ X.

Proof: We use {ω : Xn(ω) 9 X(ω), n → +∞} =
⋃

k>0

lim
m

↓
⋃

n≥m

{ω ∈ Ω :

d(Xn(ω), X(ω)) ≥ 1
k
}. Using the properties of an idempotent measure, we

have

P({ω : Xn(ω) 9 X(ω), n → +∞}) (7)

=
⊕
k>0

P(lim
m
↓

⋃
n≥m

{ω : d(Xn(ω), X(ω)) ≥ 1

k
}) (8)

�
⊕
k>0

lim
m
↓ P(

⋃
n≥m

{ω : d(Xn(ω), X(ω)) ≥ 1

k
}) (9)

=
⊕
k>0

lim
m
↓

⊕
n≥m

P({ω : d(Xn(ω), X(ω)) ≥ 1

k
}). (10)

So, if P({ω : d(Xn(ω), X(ω)) ≥ 1
k
}) → 0, n → +∞, then

5



lim
m
↓

⊕
n≥m

P({ω : d(Xn(ω), X(ω)) ≥ 1
k
}) =

= lim sup
n→+∞

P({ω : d(Xn(ω), X(ω)) ≥ 1
k
}) = 0

and P({ω : Xn(ω) 9 X(ω), n → +∞}) = 0. 2

Remark: The differences encountered with the classical probability theory
were:

-(8) and (10) are equalities instead of inequalities (�) because ⊕ is idem-
potent, i.e. for any sequence of sets A1, A2, A3, . . .: P(A1 ∪ A2) = P((A1 \
A2) ∪ (A1 ∩ A2) ∪ (A2 \ A1)) = P(A1 \ A2) ⊕ P(A1 ∩ A2) ⊕ P(A2 \ A1) =
P(A1 \A2)⊕ (P(A1∩A2)⊕P(A1∩A2))⊕P(A2 \A1) = (P(A1 \A2)⊕P(A1∩
A2))⊕ (P(A1 ∩A2)⊕P(A2 \A1)) = P(A1)⊕P(A2), and hence P(A1 ∪ . . .∪
An) = P(A1)⊕ . . .⊕ P(An), and hence for An = {ω : d(Xn(ω), X(ω)) ≥ 1

k
}

and Bk =
k⋃

n=m

An (where Bk ⊆ Bk+1 so we can use property (c) of pseudo-

probability): P(
∞⋃

n=m

An) = P(
∞⋃

k=m

Bk) = lim
k→∞

P(Bk) = lim
k→∞

P(
k⋃

n=m

An) =

lim
k→∞

k⊕
n=m

P(An) =
∞⊕

n=m

P(An)

-(9) is in general an inequality instead of an equality because of the non
continuity of idempotent measures over nonincreasing sequences.

In the not idempotent case II), we have:

Theorem 2 Let ⊕ be generated by g. Let Xn and X denote pseudo variables.

Then Xn
a.s.→ X implies Xn

P→ X.

Proof:
From P({ω ∈ Ω : Xn(ω) → X(ω)}) = 1, i.e. g−1(p({ω ∈ Ω : Xn(ω) →
X(ω)})) = 1, we obtain p({ω ∈ Ω : Xn(ω) → X(ω)}) = 1, because g(1) = 1.
In metric space (I, d), Xn(ω) → X(ω) is equivalent with (∀δ > 0)(∃n0 ∈
N)(∀n ∈ N)n ≥ n0 ⇒ δ > d(Xn(ω), X(ω)) = |g(Xn(ω))− g(X(ω))|,
i.e. the sequence {g(Xn)} of random variables converges almost surely to-
wards g(X). In usual probability theory, almost surely convergence implies
convergence in the probability, so we have that for all ε > 0 hold:

p({ω ∈ Ω : |g(Xn(ω))− g(X(ω))| ≥ ε}) → 0, n →∞.
Finally, from

P({ω ∈ Ω : d(Xn(ω), X(ω)) ≥ ε}) → 0 ⇔
⇔ 0 = lim

n→∞
d(P({ω ∈ Ω : d(Xn(ω), X(ω)) ≥ ε}),0) =
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= lim
n→∞

|g(P({ω ∈ Ω : d(Xn(ω), X(ω)) ≥ ε}))− g(0)| =
= lim

n→∞
p({ω ∈ Ω : d(Xn(ω), X(ω)) ≥ ε}) =

= lim
n→∞

p({ω ∈ Ω : |g(Xn(ω))− g(X(ω))| ≥ ε})
we obtain that the sequence {Xn} of pseudo-variables converges in the pse-
udo-probability P towards X. 2

3 The law of large numbers

Let g be the continuous strictly monotonic function. Then, we say for

Sn(x1, x2, ..., xn) = g−1( 1
n

n∑
i=1

g(xi)), n ∈ N

that they are ”quasi-arithmetic means”.
In special cases, we have:

1) g(x) = x, Sn(x1, x2, ..., xn) = 1
n

n∑
i=1

xi (arithmetic mean),

2) g(x) = x2, Sn(x1, x2, ..., xn) = [ 1
n

n∑
i=1

x2
i ]

1/2 (quadratic mean),

3) g(x) = xα, Sn(x1, x2, ..., xn) = [ 1
n

n∑
i=1

xα
i ]1/α (root-power mean),

4) g(x) = x−1, Sn(x1, x2, ..., xn) = [ 1
n

n∑
i=1

1
xi

]−1, (harmonic mean),

5) g(x) = log x, Sn(x1, x2, ..., xn) = [
n∏

i=1

xi]
1/n, (geometric mean),

6) g(x) = eαx, Sn(x1, x2, ..., xn) = 1
α

ln[ 1
n

n∑
i=1

eαxi ] (exponential mean).

The following theorem hold (see [6]):

Theorem 3 Let X1, X2, ... be a sequence of independent integrable pseudo-

variables identically distributed, E(Xn) = a, n = 1, 2, ... . Then Sn
P−→ a.

Proof. We prove that the following holds: lim
n→∞

P({d(Sn, a) ≥ ε}) = 0, for

all ε > 0.
d(P({d(Sn, a) ≥ ε}),0) = |g(P({d(Sn, a) ≥ ε}))− g(0)| =
= |p({d(Sn, a) ≥ ε}))− 0| = p({d(Sn, a) ≥ ε})) = p({|g(Sn)− g(a)| ≥ ε}) =

= p({|g(Sn)− g(a)| ≥ ε}) = p({| 1
n

n∑
i=1

g(Xi)− g(a)| ≥ ε}).
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As the variables Yi = g(Xi), i = 1, ..., n satisfy the usual weak law of large

numbers, this statement follows, i.e. p(| 1
n

n∑
i=1

g(Xi)− g(a)| ≥ ε}) → 0. 2
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