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Abstract

Let (I,®,®) be a semiring with a neutral element 0 of the & and
a neutral element 1 of the ®. Let ¥ be a o-algebra of subsets of
nonempty set 2. Pseudo probability is a function P : ¥ — I with the
next properties: (1) P(()) =0 and P(Q2) = 1,

(2)P (U Ai) = @ P(A;) for pairwise disjoint sets {4;};en from 3.
~ N

1= =1
The triple (2,3, P) is called a pseudo probability space. In this
paper will be present some properties of the pseudo probability space
and the pseudo variables.
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1 Preliminaries

We briefly present some notions from the pseudo-analysis (see [2]).
Let the order < be defined on a set I # (), and ) # I* C I.

Definition 1 The pseudo-operation is a binary operation x : I x I — I
which is commutative, associative, positively nondecreasing (x =< y implies
rxu = y*xu, u € I*) and for which there exists a neutral element e.

The element u € I is the null element of the operation * : I? — I if for any
r€l, xxu=ux*xx=u holds.
Pseudo-operation * is idempotent if for any = € I, x *x z = x holds.
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Definition 2 Let ® and ® be two pseudo-operations defined on the ordered
set (I, =), with 0 and 1 as neutral elements, respectively. Let I® = I, for
the first operation, and I® = {x € I : 0 X x}, for the second operation. If ®
18 a distributive operation with respect to pseudo-operation & and 0 is a null
element of the operation ®, we say that the triplet (I,®,®) is a semiring.

The semiring (I, @, ®) will be denoted by I%:°.
Let I be a subinterval of [—o0, +00] (we will take usually closed subintervals).
Then we name the operations & and ® pseudo-addition and pseudo-

multiplication.
In this paper we will consider semirings with the following continuous oper-
ations:

Case I) a) (7) x @y = min(z,y) rOQy=x+y

on the interval (—oo, +00]. We have 0 = 400 and 1 = 0. The idempo-
tent operation min induces a partial (full) order in the following way:
x < y if and only if min(z,y) = y. Hence this order is opposite to
the usual order on the interval (—oo, +00]. We denote this semiring by
(—OO,+OO]min’+.

) r @y = max(z,y) rOQy=x+y
on the interval [—o0,+00). We have 0 = —oo and 1 = 0.
b) (i) r®&y=min(zr,y) zOy=z-y
on the interval (0,4o00]. We have 0 = oo and 1 = 1.

() r@y=max(zr,y) TOY=z-y
on the interval [0, +00). We have 0 =0 and 1 = 1.

Case II) Semirings with pseudo-operations defined by monotone and continuous
generator g (see [4])
r@y=g9"(9(z)+gly) rOy=g"(9(z)g(y))
with the convention 0- (+00) = 0, on the interval [a,b]. We have 0 = a
or 0 = b. This order is defined as * <y < g(x) < g(y).

Case III) a) Let & = max and ® = min on the interval [—oo,+o0]. We have
0 = —o0 and 1 = +o00.

b) Let @ = min and ® = max on the interval [—oo, +oc]. We have
0 = +o00 and 1 = —o0.



We suppose that I is endowed with a metric d compatible with lim sup
and liminf, i.e., limsupx, = x and liminfz,, = z imply lim d(z,,z) = 0,

and which satisfies at least one of the following conditions:
diz @y, v’ &y) <d(z,2') +dy,y) (1)

dz @y, @' &y) < max{d(z,2'), d(y,y")}. (2)
Both conditions (1) and (2) imply that :

d(zp,yn) — 0 implies d(z, @ 2z, y, ® z) — 0.
We suppose further the monotonicity of the metric d, i.e.
r=2z=y = dz,y) > max(d(z, 2),d(y, 2)). (3)
For the case I) a) (i) on the interval (—oo, +0o0] introduce a metric
d(z,y) = le™" —e7Y|. (4)
For the case II) on the interval [a, b] introduce a metric
d(z,y) = |9(x) = g(y)l. ()

For the case III) b) on the interval [—oo, +00] introduce a metric

2
d(z,y) = ;\arctgx — arctgy|. (6)

2 The pseudo-probability

Let (I,®,®) be a semiring. Let €2 be a non-empty set. Let ¥ be a o—algebra
of subsets of €.
In [4], the pseudo-integral of a bounded measurable function (for decom-

posable measure m) f : 2 — I is defined. For the case II), the pseudo-integral
o

reduces on g—integral, i.e.: [ fodn=g*([g(f(z))dz).
Q Q

Definition 3 Let . be o - algebra of subsets of a set (). Pseudo -
probability is a function P : ) — I with the properties
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(a) P(0) =0 and P (Q) =1,
(b) P(AUB)=P(A)@P(B), A BeY, ANB—0,

1—00

(C) AiEZ,iEN, AZ'QAZ'_H,?;EN = llIIlP(AZ):P<UAZ)
i=1
The triple (€2, %, P) is pseudo-probability space.

An equivalent definition of pseudo - probability is obtained if the condi-
tions (b) and (c) are replaced by the condition: P (U Ai> =@P(A4),
i=1 i=1

where {4;},y is a sequence of pairwise disjoint sets from ) ( o — ®— addi-
tivity of function P ). Let as notice that the pseudo-probability is specially
case of decomposable measure.

In the case IT), we have P(A) = ¢g7'(p(A)), where p is usual probability.
Then we say that P is distorted probability (see [1]).

Definition 4 The function X : (2 — I is pseudo-variable if
X H(2)={weQ: X(w)<z}={X<z}eX, foralzel.
We also define the distribution function F' of pseudo-variable X, as
Fx(z)=P{X <z}) =P{H{w e Q: X(w) < z}).

Let o(I) be a minimal o—algebra containing open balls in separable metric
space (I,d). Let m be decomposable measure defined in measurable space

(L, 0(I)).
Definition 5 If there exists a function ¢x that holds
@

Fx(@)= [ ¢x©dP
X=1((2))
then we say that X s continuous pseudo-variable and that ¢ x is the density

function.

Definition 6 A pseudo-variable X is called integrable if there exists

5]

E(X) :/x®¢x®dP.
)
and then E(X) is the pseudo-expectation of the pseudo-variable X.
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In the case T1) is B(X) = ¢! (:fog () - g (x (2)) d:c) .

Definition 7 Continuous pseudo-variables X andY are independent if holds

oxy(T,y) = ox (1) © Py (y).

Definition 8 The sequence {X,} of pseudo-variables converges in the

pseudo-probability P towards X, denoted X, i X, if for all e > 0 we

have
P{weQ:d(X,(w),X(w)) >¢}) — 0.

Definition 9 The sequence {X,} of pseudo-variables converges almost
surely towards X, denoted X,, = X if we have

PlweQ: X, (vw) = X(w)}) =1,
- P{w e Q: Xo(w) - X(w)}) = 0.
In the idempotent cases I) and III), we have (see [5]):

Theorem 1 Let X,, and X denote pseudo variables. Then X, P x implies
X, 5 X.

Proof: We use {w : X, (w) » X(w),n —» +o0} = Jlim | J{w e Q:

k>0 ™ n>m
d(X,(w), X(w)) > £}. Using the properties of an idempotent measure, we
have

P{w: X, (w) » X(w),n — +00}) (7)
— @Pain | |J{w: dXaw), X@) = 1) (8)
m k
k>0 n>m
< @im | (| fw: d(Xo(w), X@) 2 1) 9
k>0 n>m
= @hgln ! @P({w cd(Xp(w), X (w)) > %}) (10)
k>0 n>m

So,if P({w:d(X,(w),X(w))>1}) — 0,n— 400, then
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lim | @ P({w: d(X,(w), X (@) > 1}) =

= 1Lrﬁigopn15?{w (X (w), X(w)) = 3}) =0
and P{w: X,(w) » X(w),n — +00}) = 0. O

Remark: The differences encountered with the classical probability theory
were:

-(8) and (10) are equalities instead of inequalities (=) because @ is idem-
potent, i.e. for any sequence of sets Ay, As, As,...0 P(A; U Ay) = P((A; \
AU (A NA)U A\ A) =P(A\ A) dP(A1NA) & P(A \ 4)) =
P(A\A)® (P(A1NA)DP(A;NA))BP(A\ A1) = (P(A1\ A2) @ P(A1N
Ag)) D (P(Al N AQ) @D P(AQ \ Al)) = P(Al) &) P(AQ), and hence P(Al Uu...uJ
A,) =P(A) @ ... ® P(A,), and hence for 4, = {w : d(X,(w), X (w)) > £}

k
and By, = |J A, (where By, C By,1 so we can use property (c¢) of pseudo-

k

probability): P(fj A,) = P(fj By) = ’}Lm P(By) = lim P( U 4,) =

n=m k=m k—oo n=m
k )
klim @D P(A,) = D P(4,)

-(9) is in general an inequality instead of an equality because of the non
continuity of idempotent measures over nonincreasing sequences.

In the not idempotent case II), we have:

Theorem 2 Let @ be generated by g. Let X,, and X denote pseudo variables.
Then X, “5 X implies X, X,

Proof:
From P({w € Q : X, (w) —» X(w)}) = 1,ie g '(p({w € Q: X,(w) —
X(w)})) =1, we obtain p({w € Q : X, (w) — X(w)}) =1, because g(1) = 1.
In metric space (I,d), X,(w) — X(w) is equivalent with (Vo > 0)(3ng €
N)(¥n € Nyn > ng = 8 > d(X,(w), X (@) = |g(X0(@)) — (X ()],
i.e. the sequence {g(X,)} of random variables converges almost surely to-
wards ¢(X). In usual probability theory, almost surely convergence implies
convergence in the probability, so we have that for all £ > 0 hold:

p({w € Q: [g(Xn(w)) —g(X(w))| = €}) = 0, n — o0
Finally, from

P{w e Q:d(X,(w),X(w)) >¢}) - 0&

0= nhjgo dP{w € Q:d(X,(w),X(w)) >¢}),0) =



= lim [g(P({w € Q: d(X,(w), X()) > €})) — g(0)| =
= lim p({w € Q: d(X,(w), X () 2 £}) =
= lim p({w € 2 [9(Xp(w)) — g(X(w))| = €})

we obtain that the sequence {X,} of pseudo-variables converges in the pse-
udo-probability P towards X. O

3 The law of large numbers

Let g be the continuous strictly monotonic function. Then, we say for
n
Sn(xh'r% wrn) = g_l(% Z g('r”L))? nenN
i=1

that they are ”quasi-arithmetic means”.
In special cases, we have:

1) g(z) =z, Sp(w1, 2, ..., 3,) = £ 3 z; (arithmetic mean),

s
Il
—

6) g(x) = e, S, (1, T2, ..., T,) = = In[ 3 %] (exponential mean).

i=1
The following theorem hold (see [6]):

Theorem 3 Let Xi, X, ... be a sequence of independent integrable pseudo-
variables identically distributed, (X,) =a,n=1,2,... . Then S, P

Proof. We prove that the following holds: lim P({d(S,,a) > €}) = 0, for

n—oo

all e > 0.
d(P({d(5n,a) > €}),0) = [g(P
= [p({d(Sn, a) = €})) = 0] =

=p({lg(Sn) —gla)l =z e}) =p



As the variables Y; = ¢(X;), i = 1,...,n satisfy the usual weak law of large
numbers, this statement follows, i.e. p(|+ 3 g(X;) — g(a)| > }) — 0. O
i=1

[7]
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