THE PSEUDO PROBABILITY

Ljubo M. Nedović, Tatjana Grbić *

Faculty of Engineering, University of Novi Sad Trg D. Obradovića 6, 21000 Novi Sad, Yugoslavia, nljubo@uns.ns.ac.yu tatjana@uns.ns.ac.yu

Abstract

Let (I, \oplus, \odot) be a semiring with a neutral element $\mathbf{0}$ of the \oplus and a neutral element $\mathbf{1}$ of the \odot . Let Σ be a σ -algebra of subsets of nonempty set Ω . Pseudo probability is a function $\mathsf{P}: \Sigma \to I$ with the next properties: (1) $\mathsf{P}(\emptyset) = \mathbf{0}$ and $\mathsf{P}(\Omega) = \mathbf{1}$,

(2) $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \bigoplus_{i=1}^{\infty} P(A_i)$ for pairwise disjoint sets $\{A_i\}_{i \in \mathbb{N}}$ from Σ .

The triple $(\Omega, \Sigma, \mathsf{P})$ is called a pseudo probability space. In this paper will be present some properties of the pseudo probability space and the pseudo variables.

AMS Mathematics Subject Classification (2000): 28B15, 28E05, 60B10 Key words and phrases: g- integral, pseudo-integral, pseudo- operation, semiring, quasi-arithmetic means, pseudo-expectation, pseudo-probability, pseudo- variable, convergence in the pseudo-probability, almost surely convergence, law of large numbers.

1 Preliminaries

We briefly present some notions from the pseudo-analysis (see [2]). Let the order \leq be defined on a set $I \neq \emptyset$, and $\emptyset \neq I^* \subset I$.

Definition 1 The **pseudo-operation** is a binary operation $*: I \times I \to I$ which is commutative, associative, positively nondecreasing $(x \leq y \text{ implies } x * u \leq y * u, u \in I^*)$ and for which there exists a neutral element e.

The element $u \in I$ is the **null element** of the operation $*: I^2 \to I$ if for any $x \in I$, x * u = u * x = u holds.

Pseudo-operation * is **idempotent** if for any $x \in I$, x * x = x holds.

^{*}Research supported by MNTRRS-1866.

Definition 2 Let \oplus and \odot be two pseudo-operations defined on the ordered set (I, \preceq) , with $\mathbf{0}$ and $\mathbf{1}$ as neutral elements, respectively. Let $I^{\oplus} = I$, for the first operation, and $I^{\odot} = \{x \in I : \mathbf{0} \preceq x\}$, for the second operation. If \odot is a distributive operation with respect to pseudo-operation \oplus and $\mathbf{0}$ is a null element of the operation \odot , we say that the triplet (I, \oplus, \odot) is a **semiring**.

The semiring (I, \oplus, \odot) will be denoted by $I^{\oplus, \odot}$.

Let I be a subinterval of $[-\infty, +\infty]$ (we will take usually closed subintervals). Then we name the operations \oplus and \odot **pseudo-addition** and **pseudo-multiplication**.

In this paper we will consider semirings with the following continuous operations:

Case I) a) (i) $x \oplus y = \min(x, y)$ $x \odot y = x + y$ on the interval $(-\infty, +\infty]$. We have $0 = +\infty$ and 1 = 0. T

on the interval $(-\infty, +\infty]$. We have $\mathbf{0} = +\infty$ and $\mathbf{1} = 0$. The idempotent operation min induces a partial (full) order in the following way: $x \leq y$ if and only if $\min(x, y) = y$. Hence this order is opposite to the usual order on the interval $(-\infty, +\infty]$. We denote this semiring by $(-\infty, +\infty]^{\min, +}$.

(ii)
$$x \oplus y = \max(x, y)$$
 $x \odot y = x + y$

on the interval $[-\infty, +\infty)$. We have $\mathbf{0} = -\infty$ and $\mathbf{1} = 0$.

b)
$$(i) x \oplus y = \min(x, y) x \odot y = x \cdot y$$

on the interval $(0, +\infty]$. We have $\mathbf{0} = \infty$ and $\mathbf{1} = 1$.

(ii)
$$x \oplus y = \max(x, y)$$
 $x \odot y = x \cdot y$

on the interval $[0, +\infty)$. We have $\mathbf{0} = 0$ and $\mathbf{1} = 1$.

Case II) Semirings with pseudo-operations defined by monotone and continuous generator g (see [4])

$$x\oplus y=g^{-1}(g(x)+g(y)) \qquad x\odot y=g^{-1}(g(x)g(y))$$

with the convention $0 \cdot (+\infty) = 0$, on the interval [a, b]. We have $\mathbf{0} = a$ or $\mathbf{0} = b$. This order is defined as $x \leq y \Leftrightarrow g(x) \leq g(y)$.

Case III) a) Let $\oplus = \max$ and $\odot = \min$ on the interval $[-\infty, +\infty]$. We have $\mathbf{0} = -\infty$ and $\mathbf{1} = +\infty$.

b) Let $\oplus = \min$ and $\odot = \max$ on the interval $[-\infty, +\infty]$. We have $\mathbf{0} = +\infty$ and $\mathbf{1} = -\infty$.

We suppose that I is endowed with a metric d compatible with $\limsup x_n = x$ and $\liminf x_n = x$ imply $\lim_{n \to \infty} d(x_n, x) = 0$, and which satisfies at least one of the following conditions:

$$d(x \oplus y, \ x' \oplus y') \le d(x, x') + d(y, y') \tag{1}$$

$$d(x \oplus y, \ x' \oplus y') \le \max\{d(x, x'), \ d(y, y')\}. \tag{2}$$

Both conditions (1) and (2) imply that :

$$d(x_n, y_n) \to 0$$
 implies $d(x_n \oplus z, y_n \oplus z) \to 0$.

We suppose further the monotonicity of the metric d, i.e.

$$x \le z \le y \implies d(x,y) \ge \max(d(x,z), d(y,z)). \tag{3}$$

For the case I) a) (i) on the interval $(-\infty, +\infty]$ introduce a metric

$$d(x,y) = |e^{-x} - e^{-y}|. (4)$$

For the case II) on the interval [a, b] introduce a metric

$$d(x,y) = |g(x) - g(y)|. \tag{5}$$

For the case III) b) on the interval $[-\infty, +\infty]$ introduce a metric

$$d(x,y) = \frac{2}{\pi} |\arctan x - \arctan y|.$$
 (6)

2 The pseudo-probability

Let (I, \oplus, \odot) be a semiring. Let Ω be a non-empty set. Let Σ be a σ -algebra of subsets of Ω .

In [4], the pseudo-integral of a bounded measurable function (for decomposable measure m) $f: \Omega \to I$ is defined. For the case II), the pseudo-integral

reduces on
$$g$$
-integral, i.e.:
$$\int\limits_{\Omega}^{\oplus} f \odot dm = g^{-1}(\int\limits_{\Omega} g(f(x))dx).$$

Definition 3 Let \sum be σ - algebra of subsets of a set Ω . **Pseudo - probability** is a function $\mathbf{P}: \sum \to I$ with the properties

- (a) $\mathbf{P}(\emptyset) = \mathbf{0}$ and $\mathbf{P}(\Omega) = \mathbf{1}$,
- (b) $\mathbf{P}(A \cup B) = \mathbf{P}(A) \oplus \mathbf{P}(B)$, $A, B \in \Sigma$, $A \cap B = \emptyset$,

(c)
$$A_i \in \Sigma$$
, $i \in N$, $A_i \subseteq A_{i+1}$, $i \in N \Rightarrow \lim_{i \to \infty} \mathbf{P}(A_i) = \mathbf{P}\left(\bigcup_{i=1}^{\infty} A_i\right)$.

The triple $(\Omega, \Sigma, \mathbf{P})$ is pseudo-probability space.

An equivalent definition of pseudo - probability is obtained if the conditions (b) and (c) are replaced by the condition: $\mathbf{P}\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\bigoplus_{i=1}^{\infty}\mathbf{P}\left(A_{i}\right)$, where $\{A_{i}\}_{i\in\mathbb{N}}$ is a sequence of pairwise disjoint sets from $\sum_{i=1}^{\infty}\left(\sigma_{i}-\oplus_{i}-\right)$ additions. tivity of function \mathbf{P}). Let as notice that the pseudo-probability is specially case of decomposable measure.

In the case II), we have $P(A) = g^{-1}(p(A))$, where p is usual probability. Then we say that \mathbf{P} is distorted probability (see [1]).

Definition 4 The function $X: \Omega \to I$ is pseudo-variable if

$$X^{-1}((\cdot,x)) = \{\omega \in \Omega : X(\omega) \prec x\} = \{X \prec x\} \in \Sigma, \quad \text{for all } x \in I.$$

We also define the distribution function F of pseudo-variable X, as

$$F_X(x) = \mathbf{P}(\{X \prec x\}) = \mathbf{P}(\{\omega \in \Omega : X(\omega) \prec x\}).$$

Let $\sigma(I)$ be a minimal σ -algebra containing open balls in separable metric space (I,d). Let m be decomposable measure defined in measurable space $(I, \sigma(I)).$

Definition 5 If there exists a function
$$\phi_X$$
 that holds
$$F_X(x) = \int_{X^{-1}((\cdot,x))}^{\oplus} \phi_X \odot d\mathbf{P}$$

then we say that X is continuous pseudo-variable and that ϕ_X is the density function.

Definition 6 A pseudo-variable X is called **integrable** if there exists

$$\mathbf{E}(X) = \int_{\Omega}^{\oplus} x \odot \phi_X \odot d\mathbf{P}.$$

and then E(X) is the pseudo-expectation of the pseudo-variable X.

In the case II) is
$$\mathbf{E}(X) = g^{-1} \left(\int_{0}^{\infty} g(x) \cdot g(\phi_X(x)) dx \right)$$
.

Definition 7 Continuous pseudo-variables X and Y are independent if holds $\phi_{X,Y}(x,y) = \phi_X(x) \odot \phi_Y(y)$.

Definition 8 The sequence $\{X_n\}$ of pseudo-variables converges in the pseudo-probability P towards X, denoted $X_n \xrightarrow{\mathbf{P}} X$, if for all $\varepsilon > 0$ we have

$$\mathbf{P}(\{\omega \in \Omega : d(X_n(\omega), X(\omega)) \ge \varepsilon\}) \to \mathbf{0}.$$

Definition 9 The sequence $\{X_n\}$ of pseudo-variables converges almost surely towards X, denoted $X_n \xrightarrow{a.s.} X$ if we have

$$\mathbf{P}(\{\omega \in \Omega : X_n(\omega) \to X(\omega)\}) = \mathbf{1},$$

i.e.

$$\mathbf{P}(\{\omega \in \Omega : X_n(\omega) \nrightarrow X(\omega)\}) = \mathbf{0}.$$

In the idempotent cases I) and III), we have (see [5]):

Theorem 1 Let X_n and X denote pseudo variables. Then $X_n \stackrel{\mathbf{P}}{\to} X$ implies $X_n \stackrel{a.s.}{\to} X$.

Proof: We use $\{\omega: X_n(\omega) \nrightarrow X(\omega), n \to +\infty\} = \bigcup_{k>0} \lim_m \downarrow \bigcup_{n\geq m} \{\omega \in \Omega: d(X_n(\omega), X(\omega)) \geq \frac{1}{k}\}$. Using the properties of an idempotent measure, we have

$$\mathbf{P}(\{\omega: X_n(\omega) \to X(\omega), n \to +\infty\}) \tag{7}$$

$$= \bigoplus_{k>0} \mathbf{P}(\lim_{m} \downarrow \bigcup_{n\geq m} \{\omega : d(X_{n}(\omega), X(\omega)) \geq \frac{1}{k}\})$$
 (8)

$$\leq \bigoplus_{k>0} \lim_{m} \downarrow \mathbf{P}(\bigcup_{n\geq m} \{\omega : d(X_n(\omega), X(\omega)) \geq \frac{1}{k}\})$$
 (9)

$$= \bigoplus_{k>0} \lim_{m} \downarrow \bigoplus_{n\geq m} \mathbf{P}(\{\omega : d(X_n(\omega), X(\omega)) \geq \frac{1}{k}\}).$$
 (10)

So, if $\mathbf{P}(\{\omega: d(X_n(\omega), X(\omega)) \ge \frac{1}{k}\}) \to \mathbf{0}, n \to +\infty$, then

$$\lim_{m} \downarrow \bigoplus_{n \geq m} \mathbf{P}(\{\omega : d(X_n(\omega), X(\omega)) \geq \frac{1}{k}\}) =$$

$$= \lim_{n \to +\infty} \sup_{n \to +\infty} \mathbf{P}(\{\omega : d(X_n(\omega), X(\omega)) \geq \frac{1}{k}\}) = \mathbf{0}$$
and
$$\mathbf{P}(\{\omega : X_n(\omega) \nrightarrow X(\omega), n \to +\infty\}) = \mathbf{0}.$$

Remark: The differences encountered with the classical probability theory were:

-(8) and (10) are equalities instead of inequalities (\leq) because \oplus is idempotent, i.e. for any sequence of sets A_1, A_2, A_3, \ldots : $\mathbf{P}(A_1 \cup A_2) = \mathbf{P}((A_1 \setminus A_2) \cup (A_1 \cap A_2) \cup (A_2 \setminus A_1)) = \mathbf{P}(A_1 \setminus A_2) \oplus \mathbf{P}(A_1 \cap A_2) \oplus \mathbf{P}(A_2 \setminus A_1) = \mathbf{P}(A_1 \setminus A_2) \oplus (\mathbf{P}(A_1 \cap A_2) \oplus \mathbf{P}(A_1 \cap A_2)) \oplus \mathbf{P}(A_2 \setminus A_1) = (\mathbf{P}(A_1 \setminus A_2) \oplus \mathbf{P}(A_1 \cap A_2)) \oplus (\mathbf{P}(A_1 \cap A_2) \oplus \mathbf{P}(A_2 \setminus A_1)) = \mathbf{P}(A_1) \oplus \mathbf{P}(A_2)$, and hence $\mathbf{P}(A_1 \cup \ldots \cup A_n) = \mathbf{P}(A_1) \oplus \ldots \oplus \mathbf{P}(A_n)$, and hence for $A_n = \{\omega : d(X_n(\omega), X(\omega)) \geq \frac{1}{k}\}$ and $B_k = \bigcup_{n=m}^k A_n$ (where $B_k \subseteq B_{k+1}$ so we can use property (c) of pseudo-

probability):
$$\mathbf{P}(\bigcup_{n=m}^{\infty} A_n) = \mathbf{P}(\bigcup_{k=m}^{\infty} B_k) = \lim_{k \to \infty} \mathbf{P}(B_k) = \lim_{k \to \infty} \mathbf{P}(\bigcup_{n=m}^{k} A_n) = \lim_{k \to \infty} \bigoplus_{n=m}^{k} \mathbf{P}(A_n) = \bigoplus_{n=m}^{\infty} \mathbf{P}(A_n)$$

-(9) is in general an inequality instead of an equality because of the non continuity of idempotent measures over nonincreasing sequences.

In the not idempotent case II), we have:

Theorem 2 Let \oplus be generated by g. Let X_n and X denote pseudo variables. Then $X_n \stackrel{a.s.}{\longrightarrow} X$ implies $X_n \stackrel{\mathbf{P}}{\longrightarrow} X$.

Proof:

From $\mathbf{P}(\{\omega \in \Omega : X_n(\omega) \to X(\omega)\}) = \mathbf{1}$, i.e. $g^{-1}(p(\{\omega \in \Omega : X_n(\omega) \to X(\omega)\})) = \mathbf{1}$, we obtain $p(\{\omega \in \Omega : X_n(\omega) \to X(\omega)\}) = 1$, because $g(\mathbf{1}) = 1$. In metric space $(I, d), X_n(\omega) \to X(\omega)$ is equivalent with $(\forall \delta > 0)(\exists n_0 \in N)(\forall n \in N) n \geq n_0 \Rightarrow \delta > d(X_n(\omega), X(\omega)) = |g(X_n(\omega)) - g(X(\omega))|$, i.e. the sequence $\{g(X_n)\}$ of random variables converges almost surely towards g(X). In usual probability theory, almost surely convergence implies convergence in the probability, so we have that for all $\varepsilon > 0$ hold:

$$p(\{\omega \in \Omega : |g(X_n(\omega)) - g(X(\omega))| \ge \varepsilon\}) \to 0, \ n \to \infty.$$
 Finally, from

$$\mathbf{P}(\{\omega \in \Omega : d(X_n(\omega), X(\omega)) \ge \varepsilon\}) \to \mathbf{0} \Leftrightarrow 0 = \lim_{n \to \infty} d(\mathbf{P}(\{\omega \in \Omega : d(X_n(\omega), X(\omega)) \ge \varepsilon\}), \mathbf{0}) =$$

$$= \lim_{n \to \infty} |g(\mathbf{P}(\{\omega \in \Omega : d(X_n(\omega), X(\omega)) \ge \varepsilon\})) - g(\mathbf{0})| =$$

$$= \lim_{n \to \infty} p(\{\omega \in \Omega : d(X_n(\omega), X(\omega)) \ge \varepsilon\}) =$$

$$= \lim_{n \to \infty} p(\{\omega \in \Omega : |g(X_n(\omega)) - g(X(\omega))| \ge \varepsilon\})$$

we obtain that the sequence $\{X_n\}$ of pseudo-variables converges in the pseudo-probability **P** towards X.

3 The law of large numbers

Let g be the continuous strictly monotonic function. Then, we say for

$$S_n(x_1, x_2, ..., x_n) = g^{-1}(\frac{1}{n} \sum_{i=1}^n g(x_i)), \quad n \in \mathbb{N}$$

that they are "quasi-arithmetic means".

In special cases, we have:

1)
$$g(x) = x$$
, $S_n(x_1, x_2, ..., x_n) = \frac{1}{n} \sum_{i=1}^n x_i$ (arithmetic mean),

2)
$$g(x) = x^2$$
, $S_n(x_1, x_2, ..., x_n) = \left[\frac{1}{n} \sum_{i=1}^n x_i^2\right]^{1/2}$ (quadratic mean),

3)
$$g(x) = x^{\alpha}$$
, $S_n(x_1, x_2, ..., x_n) = \left[\frac{1}{n} \sum_{i=1}^n x_i^{\alpha}\right]^{1/\alpha}$ (root-power mean),

4)
$$g(x) = x^{-1}$$
, $S_n(x_1, x_2, ..., x_n) = \left[\frac{1}{n} \sum_{i=1}^n \frac{1}{x_i}\right]^{-1}$, (harmonic mean),

5)
$$g(x) = \log x$$
, $S_n(x_1, x_2, ..., x_n) = \prod_{i=1}^n x_i^{1/n}$, (geometric mean),

6)
$$g(x) = e^{\alpha x}$$
, $S_n(x_1, x_2, ..., x_n) = \frac{1}{\alpha} \ln[\frac{1}{n} \sum_{i=1}^n e^{\alpha x_i}]$ (exponential mean).

The following theorem hold (see [6]):

Theorem 3 Let $X_1, X_2, ...$ be a sequence of independent integrable pseudo-variables identically distributed, $\mathbf{E}(X_n) = a, n = 1, 2, ...$. Then $S_n \stackrel{\mathbf{P}}{\longrightarrow} a$.

Proof. We prove that the following holds: $\lim_{n\to\infty} \mathbf{P}(\{d(S_n, a) \geq \varepsilon\}) = \mathbf{0}$, for all $\varepsilon > 0$.

$$d(\mathbf{P}(\{d(S_n, a) \ge \varepsilon\}), \mathbf{0}) = |g(\mathbf{P}(\{d(S_n, a) \ge \varepsilon\})) - g(\mathbf{0})| = |p(\{d(S_n, a) \ge \varepsilon\})) - 0| = p(\{d(S_n, a) \ge \varepsilon\})) = p(\{|g(S_n) - g(a)| \ge \varepsilon\}) = p(\{|g(S_n) - g(a)| \ge \varepsilon\}) = p(\{|g(S_n) - g(a)| \ge \varepsilon\}) = p(\{|g(S_n) - g(a)| \ge \varepsilon\}).$$

As the variables $Y_i = g(X_i)$, i = 1, ..., n satisfy the usual weak law of large numbers, this statement follows, i.e. $p(|\frac{1}{n}\sum_{i=1}^n g(X_i) - g(a)| \ge \varepsilon\}) \to 0$.

REFERENCES

- [1] CHATEAUNEUF, A.: Decomposable measures, distorted probabilities and concave capacities, (preprint).
- [2] KLEMENT, E. P. MESIAR, R. PAP, E.: Triangular norms, Kluwer Acad. Publ., Dordrecht, 2000.
- [3] MARICHAL, J. L.: On an axiomatization of the quasi-arithmetic means values without the symmetry axiom, (preprint).
- [4] PAP, E.: Null-Additive Set Functions, Kluwer, Dordrecht; Ister Science, Bratislava, 1995.
- [5] RALEVIĆ, N. M.: The pseudo-probability, Zb. rad. Prim '98, pages 111-116.
- [6] RALEVIĆ, N. M. GRBIĆ, T. NEDOVIĆ, LJ.: Law of large numbers in the pseudo-probability spaces, Zb. rad. Prim '98, pages 117-120.
- [7] RALEVIĆ, N. M. NEDOVIĆ, LJ.: The probability defined on semirings, Pannonian Applied Mathematical Meeting, Göd, Hungary, 1999.
- Lj. Nedović is an assistant at the Faculty of Engineering, University of Novi Sad. His supervisor is Professor Endre Pap. He is interested in probability theory.
- T. Grbić (M.Sc.) is an assistant at the Faculty of Engineering, University of Novi Sad. Her supervisor is Professor Endre Pap. She is interested in probability theory.