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Abstract—This paper is based on the concept and results
from the pseudo-probability theory. Since the classical probability
is the mapping from some σ-algebra into the (R+

0 , +, ·), the
pseudo-probability space is obtained by substituting (R+

0 , +, ·)
with more general structure (I,⊕,�) called semiring. Set I
is usually some subinterval of [−∞,∞], while operations ⊕
and � are generalizations of the classical operations, known
as pseudo-addition and pseudo-multiplication, respectively. In
this paper some properties of the pseudo-probability measures
and corresponding integrals constructed in the given setting are
investigated.

I. INTRODUCTION

Results presented in this paper belong to the area of pseudo-
measures, pseudo-integrals and pseudo-probability. Pseudo-
probability is considered to be a generalization of usual proba-
bility (see [1]). In this article we presented basic properties of
pseudo-probability space, and some properties of sup-measure
and inf-measure and corresponding integrals.

Preliminary notions of pseudo-analysis (such as pseudo-
operations, semiring, pseudo-integral) are given in Section II
([3], [4], [5], [9], [10]). The Section III contains definitions of
pseudo-probability, pseudo-random variable and their distri-
bution function. Convergence of sequence of pseudo-random
variables (convergence in the pseudo-probability and almost
surely convergence) is also presented in this section ([7], [12],
[13], [14]). In Section IV we study some properties of sup-
integral ([8]) and inf-integral.

II. PRELIMINARIES

In this section, we shall briefly present some notions from
the pseudo-analysis, see [4], [5], [9], [10].

Let � be an order defined on a nonempty set I , and let
∅ �= I∗ ⊂ I .

Definition 1: The pseudo-operation on the set I is a binary
operation ∗ : I × I → I which is commutative, associative,
”positively non-decreasing” - in the sense that for all u ∈ I∗,
x � y implies x ∗ u � y ∗ u, and for which there exists a
neutral element e ∈ I .

The element u ∈ I is a null element of the operation ∗ :
I2 → I if for any x ∈ I , x ∗ u = u ∗ x = u holds.

Definition 2: Let ⊕ and 	 be two pseudo-operations de-
fined on the ordered set (I,�), with 0 and 1 as neutral
elements, respectively. Let I⊕ = I , for the first operation,
and I� = {x ∈ I | 0 � x}, for the second operation. If 	
is a distributive operation with respect to pseudo-operation ⊕
and 0 is a null element of the operation 	, than the triplet
(I,⊕,	) is called a semiring.
The semiring (I,⊕,	) will be denoted by I⊕,�.

Let I be a subinterval of [−∞,∞] (we will usually take
closed subinterval, but in some cases semiclosed subinterval
are taken). Then the operations ⊕ and 	 are called pseudo-
addition and pseudo-multiplication.

Pseudo-operation ∗ is idempotent if for any x ∈ I , x∗x = x
holds.

There are three important types of real semirings ([10]).
(I) The ⊕ is idempotent operation (⊕ = sup or ⊕ = inf),

and 	 is not idempotent operation.
Example 1:

1) x ⊕ y = min(x, y), x 	 y = x + y,
on the interval (−∞,∞] ordered by ≥, with neutral
elements 0 = ∞ and 1 = 0. We denote this
semiring by (−∞,∞]min,+.

2) x ⊕ y = max(x, y), x 	 y = x + y,
on the interval [−∞,∞) ordered by ≤, with neutral
elements 0 = −∞ and 1 = 0.

3) x ⊕ y = min(x, y), x 	 y = x · y,
on the interval (0,∞] ordered by ≥, with neutral
elements 0 = ∞ and 1 = 1.

4) x ⊕ y = max(x, y), x 	 y = x · y,
on the interval [0,∞) ordered by ≤, with neutral
elements 0 = 0 and 1 = 1.

(II) Both of operations ⊕ and 	 are generated by strictly
monotone and continuous function g : [a, b] → [0,∞] in
the following sense:
x ⊕ y = g−1(g(x) + g(y)),
x 	 y = g−1(g(x) · g(y)),
with the convention 0 · (+∞) = 0 (see [10]). In this
case, for neutral elements we have that g(0) = 0 and
g(1) = 1, i.e. 0 = a or 0 = b. The order is defined as
x � y ⇔ g(x) ≤ g(y).



(III) Both of ⊕ and 	 are idempotent, i.e.
([a, b],⊕,	) = ([a, b], sup, inf), or
([a, b],⊕,	) = ([a, b], inf, sup).
Example 2:

1) ([a, b],⊕,	) = ([−∞,∞],max,min), with 0 =
−∞ and 1 = ∞.

2) ([a, b],⊕,	) = ([−∞,∞],min,max), with 0 = ∞
and 1 = −∞.

With purpose of defining various types of convergence in
semiring I⊕,�, we have to introduce a metric d (see [10])
compatible with pseudo-operations ⊕ and 	, in the sense that
lim sup

n→∞
xn = x and lim inf

n→∞ xn = x imply lim
n→∞ d(xn, x) = 0,

and which satisfies at least one of the following conditions:

d(x ⊕ y, x′ ⊕ y′) ≤ d(x, x′) + d(y, y′) (1)

d(x ⊕ y, x′ ⊕ y′) ≤ max{d(x, x′), d(y, y′)}. (2)

Both conditions (1) and (2) implies that

lim
n→∞ d(xn, yn) = 0 ⇒ lim

n→∞ d(xn ⊕ z, yn ⊕ z) = 0.

We suppose further the monotonicity of the metric d, i.e. that

x � z � y ⇒ d(x, y) ≥ max(d(x, z), d(y, z)). (3)

Example 3:

1) For the semiring ((−∞,+∞],min,+) in example 1
(type (I)) we can consider a metric

d(x, y) = |e−x − e−y|. (4)

2) For the semiring of type (II) on the interval [a, b] we
consider a metric

d(x, y) = |g(x) − g(y)|. (5)

3) For the ([−∞,+∞],min,max) in example 2 (type (III))
we consider a metric

d(x, y) =
2
π
|arctg x − arctg y|. (6)

Let ([a, b],⊕,	) be a semiring. For σ-algebra Σ on Ω,
function m : Σ → [a, b] is a σ-⊕-decomposable measure
on (Ω,Σ) if (see [10]):

(a) m(∅) = 0,
(b) m(

⋃
i∈N

Ai) =
⊕
i∈N

m(Ai) for any collection of (pairwise

disjoint if ⊕ is not idempotent) sets Ai ∈ Σ, i ∈ N.
Pseudo-probability P is a σ-⊕-decomposable measure on

(Ω,Σ) with the additional property P (Ω) = 1. The triple
(Ω,Σ,P) is pseudo-probability space.

For the sake of the completeness, some properties of σ-
⊕-measures and appropriate integrals necessary for further
consideration will be given (see [10], Chapters 2 and 8, and
[9]). Let m be an σ-⊕-measure on Ω with values in the
semiring ([0,∞],⊕,	), such that m(Ω) < ∞. We adopt the
convention ∞ · 0 = 0. Let χA : Ω → [0,∞] denotes pseudo-
characteristic function of a set A ⊂ Ω, i.e.

χA(x) =
{

0 , x �∈ A
1 , x ∈ A

.

The pseudo-integral (see [10]) of a elementary function

e =
∞⊕

i=1

ai 	 χAi
for ai ∈ [0,∞) and sets Ai (disjoint for

nonidempotent ⊕), is defined by
⊕∫

Ω

e 	 dm =
∞⊕

i=1

ai 	 m(Ai).

The pseudo-integral of a bounded measurable (from below
for idempotent ⊕) function f : Ω → [0,∞), for which, if ⊕ is
not idempotent for each ε > 0, there exists a monotone ε-net
in f(Ω), is defined by (see [10])

⊕∫
Ω

f 	 dm = lim
n→∞

⊕∫
Ω

ϕn(x) 	 dm,

where ϕn, n ∈ N is the sequence of elementary functions.
Sequence ϕn, n ∈ N exists, and the definition of pseudo-
integral is independent of choice of ϕn, n ∈ N (see Theorems
8.1 and 8.2 in [10]).

Remark 1: Function f is measurable from below if for any
c ∈ [0,∞] the sets {x | f(x) ≤ c} and {x | f(x) < c} are
measurable.

Remark 2: For the case (II), the pseudo-integral is the
g−integral (see [9], [10]), i.e.

⊕∫
[c,d]

f 	 dm = g−1(
∫

[c,d]

g ◦ fd(g ◦ m)),

and for pseudo-probability P we have that P(A) = g−1(p(A)),
where p is usual probability. Function P is called a distorted
probability (see [2]).

The following theorem is proved in [10].
Theorem 1: Let m be a σ-⊕-decomposable measure. For

any c ∈ [0,∞], any measurable A ⊆ Ω, and any bounded
measurable, or measurable from below for idempotent ⊕,
functions f : Ω → [0,∞) and g : Ω → [0,∞) holds

1) m(A) =

⊕∫
Ω

χA(x) 	 dm,

2)

⊕∫
Ω

(c 	 f) 	 dm = c 	
⊕∫

Ω

f 	 dm,

3)

⊕∫
Ω

(f ⊕ g) 	 dm =

⊕∫
Ω

f 	 dm ⊕
⊕∫

Ω

g 	 dm,

4) f � g ⇒
⊕∫

Ω

f 	 dm �
⊕∫

Ω

g 	 dm.

III. CONVERGENCE OF SEQUENCE OF PSEUDO-RANDOM

VARIABLES

Results presented in this section can be found in [7], [12],
[13], [14].



Let (Ω,Σ,P) be a pseudo-probability space based od semir-
ing (I,⊕,	).

Definition 3: The function X : Ω → I is a pseudo-random
variable if

X−1((·, x)) = {ω ∈ Ω | X(ω) ≺ x} = {X ≺ x} ∈ Σ
for all x ∈ I .
We also define the distribution function F of pseudo-

random variable X , as
FX(x) = P({X ≺ x}).

Let σ(I) be a minimal σ−algebra containing open balls in
separable metric space (I, d) (with metric d compatible with
⊕ and 	). Let m be a decomposable measure defined in the
measurable space (I, σ(I)).

If there exists a function φ satisfying

FX(x) =

⊕∫
X−1((·,x))

φX 	 dm

then φ is called a density function.
Various types of convergence of sequence of pseudo-random

variables based on semiring can be introduced. In [12] we
introduce ”convergence in the pseudo-probability” and ”almost
surely convergence”. The following relations between them are
also stated in [12] (theorems 2 and 3).

Definition 4: The sequence {Xn}n∈N of pseudo-random
variables converges in the pseudo-probability P towards X ,
noted by Xn

P→ X , if for all ε > 0 we have

lim
n→∞P({ω ∈ Ω | d(Xn(ω),X(ω)) ≥ ε}) = 0.

Definition 5: The sequence {Xn}n∈N of pseudo-random
variables converges almost surely towards X , noted by
Xn

a.s.→ X , if we have

P({ω ∈ Ω | Xn(ω) → X(ω)}) = 1,

i.e.
P({ω ∈ Ω | Xn(ω) � X(ω)}) = 0.

In the idempotent cases I) and III), we have (see [13]):

Theorem 2: Let Xn and X denote pseudo variables. Then
Xn

P→ X implies Xn
a.s.→ X .

In the case of not idempotent type (II) of semiring, we have

Theorem 3: Let Xn and X denote pseudo variables. Then
Xn

a.s.→ X implies Xn
P→ X .

In this section we also present the concept of ”mean” value
of pseudo-random variables. For sequence of independent,
identically distributed pseudo-random variables Xn, n ∈ N,
Theorem 4 (see [13]) claim that, like in usual probability
theory, quasi-arithmetic means of pseudo-random variables Xn

converge ”in probability”. For more details see [13], [14],
[12]).

The pseudo-expectation of the pseudo-random variable X
is defined with

E(X) =

⊕∫
Ω

x 	 φX(x) 	 dm.

Example 4: In the case of pseudo-probability based on
semiring ((−∞,∞],min,+) from Example 1 (type (I)), the
pseudo-expectation is

E(X) = inf
x∈(−∞,∞]

{x + φX (x)} .

Definition 6: The pseudo-random variables X and Y , with
densities φX and φY respectively, are independent if it holds

φX,Y (x, y) = φX(x) 	 φY (y).

Let g be a continuous, strictly monotonic function. Then

Sn(x1, x2, ..., xn) = g−1(
1
n

n∑
i=1

g(xi)), n ∈ N

is called a quasi-arithmetic mean.
In some special cases, we have the table (see [12])

g(x) Sn(x1, x2, ..., xn) means

x
1
n

n∑
i=1

xi arithmetic

x2 [
1
n

n∑
i=1

x2
i ]

1/2 quadratic

xα [
1
n

n∑
i=1

xα
i ]1/α root-power

x−1 [
1
n

n∑
i=1

1
xi

]−1 harmonic

log x [
n∏

i=1

xi]1/n geometric

eαx 1
α

ln[
1
n

n∑
i=1

eαxi ] exponential

We consider the semiring of type (II), in which the metric is
defined with d(x, y) = |g(x) − g(y)|. The following theorem
holds (see [13]):

Theorem 4: Let X1,X2, ... be a sequence of independent
pseudo-variables, identically distributed, with equal E(Xn) =
a, n ∈ N. Then

Sn
P→ a.

IV. SOME ADDITIONAL PROPERTIES OF PSEUDO-MEASURE

AND RELATED INTEGRALS

In this section we will be considered pseudo-measures and
pseudo-integrals with values in semirings ([0,∞],min,	) and
([0,∞],max,	), where 	 is continuous operation.



Example 5: Let Ω = N, and let P : P(N) → [0,∞] be a
function defined by

P(∅) = 0, P(A) = 1 − 1
supA

, ∅ �= A ⊆ N.

Function P is a pseudo-probability on N, with values in
semiring ([0,∞],max,	).

Semiring ([0,∞],min,	) with continuous 	 is a semiring
of the type (I). It is known that inf-measure m is given by
some function ϕ : Ω → [0,∞] in the following way:

m(A) = inf
x∈A

ϕ(x), A ⊆ Ω.

Analogously, sup-measure m (with value in semiring
([0,∞],max,	)) is given by some function ϕ : Ω → [0,∞]
in the following way:

m(A) = sup
x∈A

ϕ(x), A ⊆ Ω.

Function ϕ is called density-function of pseudo-measure m.

Therefore, pseudo-integrals based on min and max
measures m respectively, i.e. with values in semirings
([0,∞],min,	) and ([0,∞],max,	) (with continuous oper-
ation 	), can be represented in the form

inf∫
A

f 	 dm = inf
ω∈A

{f(ω) 	 ϕ(ω)} ,

respectively
sup∫
A

f 	 dm = sup
ω∈A

{f(ω) 	 ϕ(ω)} ,

where A ⊆ Ω, ϕ is density-function of pseudo-measure m,
and f : A → [0,∞] is measurable function.

In [8] the following theorem was proved.

Theorem 5: Let 	 be a continuous pseudo-multiplication.
For the sup-measure m and a family of functions fj : Ω →
[0,∞), j ∈ J , it holds

sup∫
Ω

(sup
j∈J

fj) 	 dm = sup
j∈J

sup∫
Ω

fj 	 dm.

Let us consider now the semiring ([0,∞],min,	) with
continuous operation 	 (type (I), see Example 1). Let ϕ be a
density-function of inf-measure m.

In this case we obtain the following result.

Theorem 6: For the inf-decomposable measure m and a
family of functions fj : Ω → (0,∞], j ∈ J , it holds

inf∫
Ω

( inf
j∈J

fj) 	 dm = inf
j∈J

inf∫
Ω

fj 	 dm.

Proof: We have
inf∫
Ω

( inf
j∈J

fj) 	 dm = inf
ω∈Ω

{
( inf
j∈J

fj)(ω) 	 ϕ(ω)
}

= inf
ω∈Ω

{
( inf
j∈J

fj(ω)) 	 ϕ(ω)
}

[∗]
= inf

ω∈Ω
inf
j∈J

{fj(ω) 	 ϕ(ω)}

= inf
j∈J

inf
ω∈Ω

{fj(ω) 	 ϕ(ω)} = inf
j∈J

inf∫
Ω

fj 	 dm.

[∗] Using continuity of 	. �

Considering various properties of the pseudo-integrals (see
Theorem 1), we analyze some additional relations, i.e. we
analyze under which conditions these relations hold.

Precisely, in this paper, we will analyze some consequences
of the following property of continuous pseudo-multiplication
	 generated by g (i.e. x 	 y = g−1(g(x) · g(y))), as second
operation of semiring I = ([0,∞],max,	) (semiring of the
type (I)):

∀a, b, c ∈ [0,∞], (a + b) 	 c ≤ a 	 c + b 	 c, [�]

which is satisfied for a wide class of pseudo-operations 	.

Let m be a sup-decomposable measure determined by
density-function ϕ : Ω → [0,∞], and let I = ([0,∞],max,	)
be a semiring, where the pseudo-multiplication 	 is generated
by strictly monotone and continuous function g : [a, b] →
[0,∞] (i.e. x 	 y = g−1(g(x) · g(y))).

Proposition 1: If the pseudo-multiplication 	 has the prop-
erty [�], then for f : Ω → [0,∞] and h : Ω → [0,∞] holds

sup∫
Ω

(f + h) 	 dm ≤
sup∫
Ω

f 	 dm +

sup∫
Ω

h 	 dm (7)

Proof:
sup∫
Ω

(f + h) 	 dm = sup
ω∈Ω

{(f + h)(ω) 	 ϕ(ω)}

= sup
ω∈Ω

{(f(ω) + h(ω)) 	 ϕ(ω)}
[�]

≤ sup
ω∈Ω

{f(ω) 	 ϕ(ω) + h(ω) 	 ϕ(ω)}
≤ sup

ω∈Ω
{f(ω) 	 ϕ(ω)} + sup

ω∈Ω
{h(ω) 	 ϕ(ω)}

=

sup∫
Ω

f 	 dm +

sup∫
Ω

h 	 dm. �

Proposition 2: If the pseudo-multiplication 	 has the prop-
erty [�], then for f : Ω → [0,∞] and h : Ω → [0,∞] holds

∣∣∣∣∣∣∣
sup∫

[0,∞]

f 	 dm −
sup∫

[0,∞]

h 	 dm

∣∣∣∣∣∣∣
≤

sup∫
[0,∞]

|f − h| 	 dm. (8)

Proof: Suppose that

sup∫
Ω

f 	 dm ≥
sup∫
Ω

h 	 dm, i.e.

∣∣∣∣∣∣∣
sup∫

[0,∞]

f 	 dm −
sup∫

[0,∞]

h 	 dm

∣∣∣∣∣∣∣
=

sup∫
[0,∞]

f 	dm−
sup∫

[0,∞]

h	dm



(the opposite case is analogous). Positive functions f and h
satisfies f(ω) ≤ |f −h|(ω)+h(ω). Density-function ϕ is also
positive, so that f(ω)	ϕ(ω) ≤ (|f − h|(ω) + h(ω))	ϕ(ω).
Hence, using Proposition 1, we obtain
sup∫
Ω

f 	 dm = sup
ω∈Ω

{f(ω) 	 ϕ(ω)}

≤ sup
ω∈Ω

{(|f − h|(ω) + h(ω)) 	 ϕ(ω)}

=

sup∫
Ω

(|f − h| + h) 	 dm

≤
sup∫
Ω

|f − h| 	 dm +

sup∫
Ω

h 	 dm,

so that∣∣∣∣∣∣∣
sup∫

[0,∞]

f 	 dm −
sup∫

[0,∞]

h 	 dm

∣∣∣∣∣∣∣
=

sup∫
[0,∞]

f 	 dm −
sup∫

[0,∞]

h 	 dm

≤
sup∫

[0,∞]

|f − h| 	 dm. �

V. CONCLUSION

Results given in this paper present one more contribution
in the field of non-additive measures, pseudo-integrals and
pseudo-probabilities. We will use these results for further
research in these areas, to obtain more significant properties
of pseudo-integrals. Our investigation will be focused on an-
alyzing thoose properties of pseudo-operations which provide
the claims of Propositoins 1 and 2, and other useful results.
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pseudo-probability spaces, Zb. rad. Prim ’98, pages 117-120.


