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Abstract: The large deviation theory is a tool for asymptotic computation of very

small probabilities. It is used for study of the convergence of ”very small” probabili-

ties. We shall give an short overwiev of some approaches of large deviation theory,

and we shall consider the large deviation convergence of a sequence of generated

pseudo-measures to sup-decomposable measure.
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1 Introduction

Much of the credit for the modern theory of large deviations and its various
applications goes to S.R.S. Varadhan, Donsker, Freidlin i Wentzell (see [1]
and [2]). This theory has found many applications in information theory,
coding theory, image processing, statistical mechanics, finite state Markov
chains, etc. (see [1], [2], [9]). The basic approach is based on the probability
theory. The purpose of large deviation theory is characterization of the limit
behavior of family of probability measures {µε}ε>0 as ε → 0.

Let X be a topological space (for example, Polish space), let BX be a
completed Borel σ-algebra on X , and let {Pε}ε>0 be a family of probabil-
ity measures on (X ,BX ). The family {Pε}ε>0 satisfies the large deviation
principle (LDP for short) with a rate function I : X → [0,∞] (i.e. lower
semicontinuous function I) if for all A ∈ BX

− inf
x∈

◦
A

I(x) ≤ lim inf
ε→0+

ε lnPε(A) ≤ lim sup
ε→0+

ε lnPε(A) ≤ − inf
x∈A

I(x), (1)

where
◦
A and A are interior and closure of A respectively. If the rate function

exists, it is uniquely determined. Main tasks are:



1. establishing necessary and/or sufficient conditions for convergence, i.e.
for existence of rate function,

2. developing technics for computing the rate function.

Theorems of Sanov, Cramér, Gärtner-Ellis, etc. present the basic results in
the theory of LDP (see [1] and [2]). In the section 2 we repeat, for the sake
of completeness, the basic definition of the large deviation convergence for
the family of usual probabilities and idempotent probability as the limit, and
the theorem of Portmanteau. In the section 3 we present the convergence
results from [4] and three theorems on sup-integral related to the results of
[7]. In the section 4 we introduce a large deviation principle for the sequence
of ⊕-measures; also, we give one characterization of this large deviation con-
vergence.

2 Preliminaries

The theory of non-additive measures (see [3], [6], [7]) also take a part in
the investigation of the large deviation convergence. One of the approaches
is studying the convergence of the family of usual probability measures to
idempotent sup-measure as it is described bellow (see [7]). Let X be a Tihonov
topological space with Borel σ-algebra BX . Let we denote R+ = [0,∞), let
F be a collection of closed subsets of X , and let C+

b (X ), C
+

b (X ) and C+
b (X )

denote the respective sets of continuous, bounded R+-valued functions on
X , upper semi-continuous, bounded R+-valued functions on X , and lower
semi-continuous, bounded R+-valued functions on X ,

Let Φ be a directed set, let Pφ, φ ∈ Φ be a net (i.e. generalized sequence) of
probability measures on (X ,BX ), let rφ, φ ∈ Φ be a net of real numbers with
properties rφ > 1, φ ∈ Φ and lim

φ∈Φ
rφ = ∞. Finally, let Π be an F-idempotent

probability measure on X . Denote ‖f‖φ =

∫
X

frφdPφ

1/rφ

.

Definition 1 The net Pφ, φ ∈ Φ large deviation converge at rate rφ, φ ∈ Φ
to Π (LD converge, for short) if for all f ∈ C+

b (X )
lim
φ∈Φ

‖f‖φ =
∨
X

fdΠ.

If the limit value exists, it is uniquely determined. The theorem of Portman-
teau (see [7]) establishes some equivalent statements for LD convergence.

Theorem 1 (Portmanteau) The following conditions are equivalent:

(1) Pφ, φ ∈ Φ LD converge at rate rφ, φ ∈ Φ to Π.

(2) (2.a) ∀g ∈ C+
b (X ), lim inf

φ∈Φ
‖g‖φ ≥

∨
X

gdΠ,



(2.b) ∀f ∈ C
+

b (X ), lim sup
φ∈Φ

‖f‖φ ≤
∨
X

fdΠ.

(3) (3.a) for any open set G ⊆ X is satisfied

lim inf
φ∈Φ

P
1/rφ

φ (G) ≥ Π(G),

(3.b) for any closed set F ⊆ X is satisfied

lim sup
φ∈Φ

P
1/rφ

φ (F ) ≤ Π(F ).

3 Pseudo-operations and convergence of gene-
rated measures and integrals

In this section we shall present some pseudo-analysis notions and results (see
[3], [6] and [4]). Let [a, b] ⊆ [−∞,∞] (in some cases semiclosed subintervals
are taken), ⊕ and � binary operations on [a, b], and let � be a total order on
[a, b].

Definition 2 The triple ([a, b],⊕,�) is called semiring if

(a) ⊕ (pseudo-addition) is associative, commutative, nondecreasing w.r.t.
� operation with neutral (zero) element 0 (usually, 0 is either a or b),

(b) � (pseudo-multiplication) is associative, commutative, positively non-
decreasing w.r.t. � operation (∀x, y, z ∈ [a, b], (x � y ∧ 0 � z) ⇒
x� z � y � z) with neutral (unit) element 1,

(c) (c.1) ∀x ∈ [a, b],0� x = 0,

(c.2) � is distributive w.r.t. ⊕.

There are three important types of semirings.

(I) The ⊕ is idempotent operation (⊕ = sup or ⊕ = inf), and � is not,

(II) both of ⊕ and � are generated by strictly monotone and continuous
function g : [a, b] → [0,∞] in the following sense:

x⊕ y = g−1(g(x) + g(y)), x� y = g−1(g(x) · g(y)),

(in this case we have g(0) = 0 and g(1) = 1)

(III) both of ⊕ and � are idempotent (([a, b],⊕,�) = ([a, b], sup, inf) or
([a, b],⊕,�) = ([a, b], inf, sup)).

In the case II, by Aczél’s representation theorem, for each strictly in-
creasing ⊕ there exists a strictly monotone surjective function (generator)
g : [a, b] → [0,∞] for ⊕ such that x⊕ y = g−1(g(x) + g(y)) and g(0) = 0. If
0 = a, then g is increasing generator and g(a) = 0, g(b) = ∞, and g is an
isomorphism between ([a, b],⊕) and ([0,∞],+). For 0 = b, the situation is



opposite. Then, pseudo-multiplication defined by x� y = g−1(g(x) · g(y)) is
only one such that ([a, b],⊕,�) is semiring (convention ∞ · 0 = 0 is used).

More about notions of measures with values in semiring ([a, b],⊕,�) (⊕-
decomposable measures) and construction of corresponding pseudo-integral
can be found in [3] and [6].

Let ([a, b],⊕,�) be a semiring of type II with generator g : [a, b] → [0,∞].
As it is shown in [4], for λ ∈ (0,∞) function gλ is generator for the semiring
([a, b],⊕λ,�λ) with x⊕λy = (gλ)−1(gλ(x)+gλ(y)) and x�λy = (gλ)−1(gλ(x)·
gλ(y)) = x � y. Hence ([a, b],⊕λ,�λ) = ([a, b],⊕λ,�). The following three
theorems proved in [4] show that: (1) the semiring of type I can be obtained
as a limit of family of gλ-generated semirings ([a, b],⊕λ,�λ) (where �λ = �),
(2) decomposable measure based on idempotent pseudo-addition with a con-
tinuous density can be obtained as a limit of family of decomposable mea-
sures mλ based on generated pseudo-additions, (3) the pseudo-integral based
on semiring ([a, b], sup,�) with � generated by g and on sup-decomposable
measure with a continuous density is a limit of family of g-integrals.

Theorem 2 Let g : [a, b] → [0,∞] be a strictly decreasing generator of the
semiring ([a, b],⊕,�) of the type II and gλ the function g on the power λ ∈
(0,∞). Then gλ is a generator of the semiring ([a, b],⊕λ,�) and for every
ε > 0 and every (x, y) ∈ [a, b]2 there exists λ0 such that |x⊕λ y− inf(x, y)| < ε
for all λ ≥ λ0. For g increasing, the same result holds for sup.

Denote by B[0,∞] the σ-algebra of Borel subsets of the interval [0,∞], and
denote by µ the usual Lebesgue measure on R.

Remark 1 If m is a ⊕-decomposable measure, where ⊕ is generated by g,
then µ = g ◦m is a σ-additive measure, and m = g−1 ◦ µ holds.

Theorem 3 Let m be a sup-decomposable measure on ([0,∞],B[0,∞]), where
m(A) = esssup

µ
{ϕ(x) | x ∈ A}, where ϕ : [0,∞] → [0,∞] is a continuous den-

sity. Then for any generator g there exists a family {mλ} of ⊕λ-decomposable
measures on ([0,∞],B[0,∞]), where ⊕λ is generated by gλ, λ ∈ (0,∞), such
that lim

λ→∞
mλ = m (i.e. lim

λ→∞
mλ(A) = m(A), for all A ∈ B[0,∞]).

Theorem 4 Let ([0,∞], sup,�) be a semiring with � generated by generator
g. Let m be the same as in the theorem 3. Then there exists a family {mλ}
of ⊕λ-decomposable measures, where ⊕λ is generated by gλ, λ ∈ (0,∞), such
that for every continuous function f : [0,∞] → [0,∞]

sup∫
f � dm = lim

λ→∞

⊕λ∫
f � dmλ = lim

λ→∞

(
g−1

)λ
(∫

(gλ ◦ f)� dx

)
.

For the sake of completeness, some properties of σ-⊕-measures and ap-
propriate integrals necessary for further consideration will be given (see [6],
chapters 2 and 8). Let m be an σ-⊕-measure on Ω with values in the semiring



([0,∞],⊕,�), such that m(Ω) < ∞. We adopt the convention ∞· 0 = 0. Let
χA : Ω → [0,∞] denotes pseudo-characteristic function of a set A ⊂ Ω, i.e.

χA(x) =
{

0 , x 6∈ A
1 , x ∈ A

.

Theorem 5 Let m be a σ-⊕-decomposable measure. For any c ∈ [0,∞], any
measurable A ⊆ Ω, and any bounded measurable functions f : Ω → [0,∞)
and g : Ω → [0,∞) is satisfied

1. m(A) =

⊕∫
Ω

χA(x)� dm,

2.

⊕∫
Ω

(c� f)� dm = c�
⊕∫

Ω

f � dm,

3.

⊕∫
Ω

(f ⊕ g)� dm =

⊕∫
Ω

f � dm⊕
⊕∫

Ω

g � dm,

4. f ≤ g ⇒
⊕∫

Ω

f � dm ≤
⊕∫

Ω

g � dm.

Theorem 6 For the sup-measure m and a family of functions fj : Ω →
[0,∞), j ∈ J holds

sup∫
Ω

(sup
j∈J

fj)� dm = sup
j∈J

sup∫
Ω

fj � dm.

Let F be a collection of all closed subsets of [0,∞]. Analogously as in theorem
1.7.7. in [7], for the sup-integral based on semiring ([0,∞], sup,�) with �
generated by continuous function g, the following theorem holds.

Theorem 7 Let m be a [0,∞]-valued, completely maxitive, F-smooth sup-
measure on [0,∞], i.e. m(∅) = 0, m(

⋃
j∈J

Aj) = sup
j∈J

m(Aj) for every family

Aj, j ∈ J of measurable sets Aj, and m(
⋂
n∈N

Fn) = inf
n∈N

m(Fn) for every

decreasing sequence Fn, n ∈ N of elements of F . Then, for every family of
functions fj : [0,∞] → [0,∞), j ∈ J closed under formation of minimums is
satisfied

sup∫
Ω

( inf
j∈J

fj)� dm = inf
j∈J

sup∫
Ω

fj � dm,

where is � generated by continuous function g.



4 Large deviation convergence of σ-⊕-measu-
res at rate g − rn

Motivated by theorems 3 and 4, we shall now consider the convergence of
σ-⊕rn

-decomposable measures mn on [0,∞] with property mn([0,∞]) = 1 to
the sup-decomposable measure m on [0,∞] with property m([0,∞]) = 1, in
the sense of large deviation principle (see [5], [3] and [6]).

Denote by B[0,∞] the Borel σ-algebra of subsets of [0,∞] (with usual topol-
ogy on [0,∞]). Let O and F denote families of open and closed sets in [0,∞]
respectively.

Let I = ([0,∞],⊕,�) be a semiring of type II with ⊕ and � generated by
continuous, strictly increasing function g : [0,∞] → [0,∞], so that g(0) = 0
and g(1) = 1, where 0 and 1 are neutral elements for ⊕ and � respectively.

Let S = ([0,∞], sup,�) be a semiring with same operation � as in semir-
ing I (and 0 is also the neutral element for sup). Let m : B[0,∞] → [0,∞] be a
completely maxitive, F-smooth sup-measure on [0,∞] (see theorem 7) with
property m([0,∞]) = 1. Let rn, n ∈ N be a sequence of real numbers greater
than 1 satisfying lim

n→∞
rn = ∞. According the section 3, grn is a generator of

the semiring ([0,∞],⊕rn ,�).
Let mn, n ∈ N be a sequence of σ-⊕rn

-decomposable measures on the
measure space ([0,∞],B[0,∞]) with property mn([0,∞]) = 1, i.e.

mn(∅) = 0,
mn([0,∞]) = 1,
mn(

⋃
i∈N

Ai) =
⊕

rn

i∈N
mn(Ai) for any collection of pairwise disjoint sets

Ai ∈ B[0,∞], i ∈ N.

Definition 3 The sequence mn, n ∈ N large deviation converge at rate g−rn

to m (LD converge, for short) if for all f ∈ C+
b (R+) is satisfied

lim
n→∞

⊕rn∫
[0,∞]

f � dmn =

sup∫
[0,∞]

f � dm. (2)

Large deviation convergence will be denoted as mn
ld→

g−rn

m, or mn
ld→m shortly

in the case when there is no confusion about the rate of convergence. The
phrase ”large deviation” will be shortly denoted as LD.

Remark 2 If the limit value (2) exists, it is uniquely determined.

We adopt the notation: ‖f‖g−⊕rn
=

⊕rn∫
[0,∞]

f � dmn.

Theorem 8 If the sequence mn, n ∈ N of ⊕rn-decomposable measures LD
converge at rate g − rn to sup-decomposable measure m, then:



(a) for arbitrary open set O ⊆ [0,∞] holds

lim inf
n→∞

mn(O) ≥ m(O), (3)

(b) for arbitrary closed set F ⊆ [0,∞] holds

lim sup
n→∞

mn(F ) ≤ m(F ). (4)

Considering theorem 1, some questions are imposed.

Problem 1 Is the converse of theorem 8 true?

Problem 2 Is it true that inequalities (3) and (4) implies

(A) for arbitrary h ∈ C+
b ([0,∞]) holds

lim inf
n→∞

‖h‖g−rn
≥

sup∫
[0,∞]

h� dm,

(B) for arbitrary f ∈ C
+

b ([0,∞]) holds

lim inf
n→∞

‖f‖g−rn
≤

sup∫
[0,∞]

f � dm,

or under which additional conditions is it satisfied, and is the converse true?
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