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Abstract

We are using the conception and the theorems of the theory pseudo-
probability.

We consider the sequence of independent variables in the pseudo-
probability spaces and we give the law of large numbers on correspond-
ing semirings (I,⊕,�).
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1. The Preliminaries

Let is (I,⊕,�) a semiring.
Let Ω be a non-empty set. Let Σ be a σ−algebra of subsets of Ω.

In [3], the pseudo-integral of a bounded measurable function (for decom-
posable measure m) f : Ω → I is defined. For the case II), the pseudo-
integral reduces on g−integral, i.e.,∫ ⊕

f � dm = g−1(
∫
R

g(f(x))dx).

Pseudo - probability is a function P :
∑

→ I with the properties
P (∅) = 0, P (Ω) = 1 and

P

( ∞⋃
i=1

Ai

)
=

∞⊕
i=1

P (Ai) ,

where {Ai}i∈N is a sequence of pairwise disjoint sets from
∑

.
The triple (Ω,Σ,P) is pseudo-probability space.

In the case II), we have P(A) = g−1(p(A)), where p is usual probability.
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The function X : Ω → I is pseudo-variable if {ω ∈ Ω : X(ω) ≺ x} ∈ Σ
for all x ∈ I.

We also define the distribution function F of pseudo-variable X, as
FX(x) = P(X ≺ x).

If there exists a function φ that holds FX(x) =
⊕∫

X−1((.,x))

φX � dP, then

we say that φX is density function.

The pseudo-expectation of the pseudo-variable X we define with

E(X) =
⊕∫

x� φX � dP.

In the case II) is E(X) = g−1

(
∞∫
0

g (x) · g (φX (x)) dx

)
.

The pseudo-variable X and Y are independent if holds φX,Y (x, y) =
φX(x)� φY (y).

The sequence {Xn} of pseudo-variables converges in the pseudo-probability
P, towards X, denoted Xn

P−→ X, if for all ε > 0 we have lim
n→∞

P({ω ∈ Ω :
d(Xn(ω), X(ω)) ≥ ε}) = 0.

More details on convergences is given in [6].

2. The law of large numbers

Let g be the continuous strictly monotonic function. Then, we say for

Sn(x1, x2, ..., xn) = g−1(
1
n

n∑
i=1

g(xi)), n ∈ N

that they are ”quasi-arithmetic means”.
In special cases, we have the table
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f(x) Sn(x1, x2, ..., xn) means

x 1
n

n∑
i=1

xi arithmetic

x2 [ 1
n

n∑
i=1

x2
i ]

1/2 quadratic

xα [ 1
n

n∑
i=1

xα
i ]1/α root-power

x−1 [ 1
n

n∑
i=1

1
xi

]−1 harmonic

log x [
n∏

i=1
xi]1/n geometric

eαx 1
α ln[ 1

n

n∑
i=1

eαxi ] exponential

We consider the semiring II), in which the metric is defined with d(x, y) =
|g(x)− g(y)|.

Theorem 1 Let X1, X2, ... be a sequence of independent pseudo-variables
identically distributed, E(Xn) = a, n = 1, 2, ... . Then Sn

P−→ a.

Proof. We prove that the following holds: lim
n→∞

P({d(Sn, a) ≥ ε}) = 0,

for all ε > 0.

d(P({d(Sn, a) ≥ ε}),0)
= |g(P({d(Sn, a) ≥ ε}))− g(0)|
= |p({d(Sn, a) ≥ ε}))− 0|
= p({d(Sn, a) ≥ ε}))
= p({|g(Sn)− g(a)| ≥ ε})
= p({|g(Sn)− g(a)| ≥ ε})

= p({| 1
n

n∑
i=1

g(Xi)− g(a)| ≥ ε}).

As the variables Yi = g(Xi), i = 1, ..., n satisfy the usual weak law of

large numbers, this statement follows, i.e. p(| 1n
n∑

i=1
g(Xi)− g(a)| ≥ ε}) → 0.
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