The probability defined on semirings

Nebojša M. Ralević, Ljubo M. Nedović

Faculty of Technical Sciences, University of Novi Sad Trg D. Obradovića 6, 21000 Novi Sad, Yugoslavia

Abstract

A classical probability is the mapping from σ -algebra into the $(\mathbf{R}_0^+, +, \cdot)$. We replace $(\mathbf{R}_0^+, +, \cdot)$ by a semiring (I, \oplus, \odot) , and introduce the notion of pseudo-probability space. We state the corresponding convergence theorems, and give the law of large numbers on (I, \oplus, \odot) .

AMS Mathematics Subject Classification (1991): 28E10, 60B10 Key words and phrases: g— integral, pseudo-integral, pseudo - operation, quasi-arithmetic means, pseudo-expectation, pseudo-probability, pseudo - variable, convergence in the pseudo-probability, almost surely convergence, law of large numbers.

1. Preliminaries

We briefly present some notions from the pseudo-analysis (see [3], [7]). Let the order \leq be defined on a set $I \neq \emptyset$, and $\emptyset \neq I^* \subset I$.

Definition 1 The **pseudo-operation** is a binary operation $*: I \times I \to I$ which is commutative, associative, positively nondecreasing $(x \leq y \text{ implies } x * u \leq y * u, u \in I^*)$ and for which there exists a neutral element e.

The element $u \in I$ is the **null element** of the operation $*: I^2 \to I$ if for any $x \in I$, x * u = u * x = u holds.

Definition 2 Let \oplus and \odot be two pseudo-operations defined on the ordered set (I, \preceq) , with $\mathbf{0}$ and $\mathbf{1}$ as neutral elements, respectively. Let $I^{\oplus} = I$, for the first operation, and $I^{\odot} = \{x \in I : \mathbf{0} \preceq x\}$, for the second operation. If \odot is a distributive operation with respect to pseudo-operation \oplus and $\mathbf{0}$ is a null element of the operation \odot , we say that the triplet (I, \oplus, \odot) is a semiring.

The semiring (I, \oplus, \odot) will be denoted by $I^{\oplus, \odot}$.

Let I be a subinterval of $[-\infty, +\infty]$ (we will take usually closed subintervals). Then we name the operations \oplus and \odot **pseudo-addition** and **pseudo-multiplication**.

Pseudo-operation * is **idempotent** if for any $x \in I$, x * x = x. holds.

In this paper we will consider semirings with the following continuous operations:

(i)
$$x \oplus y = \min(x, y)$$
, $x \odot y = x + y$,

on the interval $(-\infty, +\infty]$. We have $\mathbf{0} = +\infty$ and $\mathbf{1} = 0$. The idempotent operation min induces a partial (full) order in the following way: $x \leq y$ if and only if $\min(x, y) = y$. Hence this order is opposite to the usual order on the interval $(-\infty, +\infty]$. We denote this semiring by $(-\infty, +\infty]^{\min, +}$.

(ii)
$$x \oplus y = \max(x, y), \quad x \odot y = x + y,$$

on the interval $[-\infty, +\infty)$. We have $\mathbf{0} = -\infty$ and $\mathbf{1} = 0$.

(i)
$$x \oplus y = \min(x, y), \quad x \odot y = x \cdot y,$$

on the interval $(0, +\infty]$. We have $\mathbf{0} = \infty$ and $\mathbf{1} = 1$.

(ii)
$$x \oplus y = \max(x, y), \quad x \odot y = x \cdot y,$$

on the interval $[0, +\infty)$. We have $\mathbf{0} = 0$ and $\mathbf{1} = 1$.

Case II) Semirings with pseudo-operations defined by monotone and continuous generator g (see [3])

$$x \oplus y = g^{-1}(g(x) + g(y)), \quad x \odot y = g^{-1}(g(x)g(y)),$$

with the convention $0 \cdot (+\infty) = 0$, on the interval [a, b]. We have $\mathbf{0} = a$ or $\mathbf{0} = b$. This order is defined as $x \leq y \Leftrightarrow g(x) \leq g(y)$.

Case III) a) Let $\oplus = \max$ and $\odot = \min$ on the interval $[-\infty, +\infty]$. We have $\mathbf{0} = -\infty$ and $\mathbf{1} = +\infty$.

b) Let $\oplus = \min$ and $\odot = \max$ on the interval $[-\infty, +\infty]$. We have $\mathbf{0} = +\infty$ and $\mathbf{1} = -\infty$.

For the case I) a) (i) on the interval $(-\infty, +\infty]$ we introduce a metric

$$d(x,y) = |e^{-x} - e^{-y}|. (1)$$

For the case II) on the interval [a, b] we introduce a metric

$$d(x,y) = |g(x) - g(y)|. (2)$$

For the case III) b) on the interval $[-\infty, +\infty]$ we introduce a metric

$$d(x,y) = \frac{2}{\pi} |\arctan x - \arctan y|.$$
 (3)

2. The pseudo-probability

Let (I, \oplus, \odot) be a semiring.

Let Ω be a non-empty set. Let Σ be a σ -algebra of subsets of Ω .

In [3], the pseudo-integral of a bounded measurable function (for decomposable measure m) $f: \Omega \to I$ is defined. For the case II), the pseudo-integral reduces to g-integral, i.e.,

$$\int_{\Omega}^{\oplus} f \odot dm = g^{-1} (\int_{\Omega} g(f(x)) dx).$$

Definition 3 Let \sum be σ - algebra of subsets of a set Ω . **Pseudo - probability** is a function $\mathbf{P}: \sum \to I$ with the properties

- (a) $\mathbf{P}(\emptyset) = \mathbf{0}$ and $\mathbf{P}(\Omega) = \mathbf{1}$,
- (b) $\mathbf{P}(A \cup B) = \mathbf{P}(A) \oplus \mathbf{P}(B)$, $A, B \in \Sigma$, $A \cap B = \emptyset$,

(c)
$$A_i \in \Sigma$$
, $i \in N$, $A_i \subseteq A_{i+1}$, $i \in N \Rightarrow \lim_{i \to \infty} \mathbf{P}(A_i) = \mathbf{P}\left(\bigcup_{i=1}^{\infty} A_i\right)$.

The triple $(\Omega, \Sigma, \mathbf{P})$ is a pseudo-probability space.

An equivalent definition of pseudo - probability is obtained if the conditions (b) and (c) are replaced by the condition

$$\mathbf{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \bigoplus_{i=1}^{\infty} \mathbf{P}\left(A_i\right),\,$$

where $\{A_i\}_{i\in N}$ is a sequence of pairwise disjoint sets from $\sum (\sigma - \oplus - \text{ additivity of function } \mathbf{P})$.

Let us notice that the pseudo-probability is a special case of decomposable measure.

In the case II), we have $\mathbf{P}(A) = g^{-1}(p(A))$, where p is the usual probability. Then we say that \mathbf{P} is the distorted probability (see [1]).

The function $X: \Omega \to I$ is a **pseudo-variable** if $X^{-1}((\cdot, x)) = \{\omega \in \Omega: X(\omega) \prec x\} = \{X \prec x\} \in \Sigma$ for all $x \in I$.

We also define the **distribution function** F of pseudo-variable X, as $F_X(x) = \mathbf{P}(\{X \prec x\})$.

Let $\sigma(I)$ be a minimal σ -algebra containing open balls in separable metric space (I, d). Let m be a decomposable measure defined in the measurable space $(I, \sigma(I))$.

If there exists a function ϕ that holds $F_X(x) = \int_I^{\oplus} \phi_X dm$ then we say that ϕ is the density function.

Definition 4 The sequence $\{X_n\}$ of pseudo-variables converges in the pseudo-probability \mathbf{P} , towards X, denoted $X_n \xrightarrow{\mathbf{P}} X$, if for all $\varepsilon > 0$ we have

$$\mathbf{P}(\{\omega \in \Omega : d(X_n(\omega), X(\omega)) \ge \varepsilon\}) \to \mathbf{0}.$$

Definition 5 The sequence $\{X_n\}$ of pseudo-variables converges almost surely towards X, denoted $X_n \xrightarrow{a.s.} X$ if we have

$$\mathbf{P}(\{\omega \in \Omega : X_n(\omega) \to X(\omega)\}) = \mathbf{1},$$

i.e.

$$\mathbf{P}(\{\omega \in \Omega : X_n(\omega) \to X(\omega)\}) = \mathbf{0}.$$

In the idempotent cases I) and III), we have (see [6]):

Theorem 1 Let X_n and X denote pseudo variables. Then $X_n \stackrel{\mathbf{P}}{\to} X$ implies $X_n \stackrel{a.s.}{\to} X$.

In the not idempotent case II), we have

Theorem 2 Let X_n and X denote pseudo variables. Then $X_n \stackrel{a.s.}{\to} X$ implies $X_n \stackrel{\mathbf{P}}{\to} X$.

Proof. From $\mathbf{P}(\{\omega \in \Omega : X_n(\omega) \to X(\omega)\}) = \mathbf{1}$, i.e. $g^{-1}(p(\{\omega \in \Omega : X_n(\omega) \to X(\omega)\})) = \mathbf{1}$, we obtain $p(\{\omega \in \Omega : X_n(\omega) \to X(\omega)\}) = 1$, because $g(\mathbf{1}) = 1$. In metric space (I, d), $X_n(\omega) \to X(\omega)$ is equivalent with $(\forall \delta > 0)(\exists n_0 \in N)(\forall n \in N) n \geq n_0 \Rightarrow \delta > d(X_n(\omega), X(\omega)) = |g(X_n(\omega)) - g(X(\omega))|$, i.e. the sequence $\{g(X_n)\}$ of random variables converges almost surely towards g(X). In the usual probability theory, almost surely the convergence implies the convergence in the probability, so we have that for all $\varepsilon > 0$ holds:

$$p(\{\omega \in \Omega : |g(X_n(\omega)) - g(X(\omega))| \ge \varepsilon\}) \to 0, \ n \to \infty.$$

Finally, from

$$\begin{aligned} &\mathbf{P}(\{\omega \in \Omega : d(X_n(\omega), X(\omega)) \geq \varepsilon\}) \to \mathbf{0} \\ \Leftrightarrow &0 = \lim_{n \to \infty} d(\mathbf{P}(\{\omega \in \Omega : d(X_n(\omega), X(\omega)) \geq \varepsilon\}), \mathbf{0}) \\ &= \lim_{n \to \infty} |g(\mathbf{P}(\{\omega \in \Omega : d(X_n(\omega), X(\omega)) \geq \varepsilon\})) - g(\mathbf{0})| \\ &= \lim_{n \to \infty} p(\{\omega \in \Omega : d(X_n(\omega), X(\omega)) \geq \varepsilon\}) \\ &= \lim_{n \to \infty} p(\{\omega \in \Omega : |g(X_n(\omega)) - g(X(\omega))| \geq \varepsilon\}), \text{ we obtain that the sequence } \{X_n\} \text{ of pseudovariables converges in the pseudo-probability } \mathbf{P} \text{ towards } X. \end{aligned}$$

The **pseudo-expectation** of the pseudo-variable X we define with

$$\mathbf{E}(X) = \int_{I}^{\oplus} x \odot \phi_{X}(x) \odot dm.$$

In the case II) we have $\mathbf{E}(X) = g^{-1} \left(\int_{I} g(x) \cdot g(\phi_{X}(x)) dx \right)$, where $dx = d(g \circ m)$ is the Lebesgue measure.

The pseudo-variable X and Y are **independent** if it holds $\phi_{X,Y}(x,y) = \phi_X(x) \odot \phi_Y(y)$.

3. The law of large numbers

Let g be the continuous strictly monotonic function. Then, we say for

$$S_n(x_1, x_2, ..., x_n) = g^{-1}(\frac{1}{n} \sum_{i=1}^n g(x_i)), \quad n \in \mathbb{N}$$

that they are the "quasi-arithmetic means".

In the special cases, we have the table

f(x)	$S_n(x_1, x_2,, x_n)$	means
x	$\frac{1}{n}\sum_{i=1}^{n}x_{i}$	arithmetic
x^2	$[\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}]^{1/2}$	quadratic
x^{α}	$\left[\frac{1}{n}\sum_{i=1}^{n}x_{i}^{\alpha}\right]^{1/\alpha}$	root-power
x^{-1}	$\left[\frac{1}{n}\sum_{i=1}^{n}\frac{1}{x_i}\right]^{-1}$	harmonic
$\log x$	$[\prod_{i=1}^n x_i]^{1/n}$	geometric
$e^{\alpha x}$	$\frac{1}{\alpha} \ln \left[\frac{1}{n} \sum_{i=1}^{n} e^{\alpha x_i} \right]$	exponential

The following theorem holds (see [8]):

Theorem 3 Let $X_1, X_2, ...$ be a sequence of independent pseudo-variables identically distributed, $\mathbf{E}(X_n) = a, n = 1, 2, ...$ Then $S_n \xrightarrow{\mathbf{P}} a$.

References

- [1] A. Chateauneuf, Decomposable measures, distorted probabilities and concave capacities, (to appear),
- [2] J. L. Marichal, On an axiomatization of the quasi-arithmetic means values without the symmetry axiom, (to appear).
- [3] E. Pap, Null-Additive Set Functions, Kluwer, Dordrecht; Ister Science, Bratislava, (1995).
- [4] E. Pap, N. Ralević, Pseudo operations on finite intervals, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. (too appear).
- [5] N. M. Ralević, The Pseudo-Probabilistic Spaces, (too appear).
- [6] N. M. Ralević, The pseudo-probability, Zb. rad. Prim'98 (to appear).
- [7] N. M. Ralević, Pseudo-analysis and applications on solution nonlinear equations, Ph. D. Thesis, PMF Novi Sad (1997).
- [8] N. M. Ralević, T. Grbić, Lj. M. Nedović, Law of large numbers in the pseudo-probability spaces, Zb. rad. Prim'98 (to appear).
- [9] B. Schweizer, A. Sklar, *Probabilistic Metric Spaces*, Elsevier-North Holland, New York, (1983).