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Foreword

The intention of this report is to list and analyze some of the published results related
to different approaches of applying fuzzy set theory to fuzzy shape analysis. These results
provide a good background for further development of fuzzy shape analysis methods, which
is our main goal.

It should be noted that only fuzzy shape analysis techniques are considered, and not
other approaches to use fuzzy set theory in (crisp) shape analysis (like, e.g., fuzzy reason-
ing). Even the methods referring to grey-level images are studied only if their adjustment
to fuzzy sets is straightforward, by simple normalization of grey levels to the interval [0, 1].
The focus is, thus, on the shapes obtained by segmentation techniques which assign to the
image pixels application-dependent membership values to the fuzzy object (shape).

The overall organization of the paper is as follows: At the beginning (Section 1) a
brief introduction is given. It refers to the classification and evaluation of existing crisp
shape analysis methods, as well as to the general approaches when introducing fuzziness
into the binary concepts. Section 2 introduces some basic fuzzy shape definitions. In
Sections 3 and 4, we report on a class of shape analysis methods which produce a numer-
ical shape descriptor, such as extent, diameter, area, perimeter, shape signature, Fourier
transform based motion descriptor, and moments. Sections 5 is related to shape descrip-
tors which produce an image (non-numerical result) as an output; we report on convexity,
symmetry, distance transform, medial axis transform, and mathematical morphology, in
fuzzy settings. Section 6 contains some comments on the reported results. The reporting
style balances between “easy to follow” and “get the information” concept; we would be
very glad if both, rather than none, is achieved.
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1 Introduction

1.1 Shape analysis for binary images

The shape of an object is an image representing the extent of an object; it can be thought
of as a silhouette of the object. It is often referred to as a region. There are many imaging
applications where image analysis can be reduced to the analysis of shapes, in contrast to
texture analysis. Examples are images of, e.g., organs, cells, machine parts, characters,
etc.

There exist different classifications of shape analysis techniques, see, e.g., [21] for an
overview. Depending on if only the shape boundary points are used for the description, or
alternatively, the whole interior of a shape is used, the two resulting classes of algorithms
are known as boundary-based (external) and region-based (internal), respectively. Exam-
ples of the former class are the algorithms which parse the shape boundary and various
Fourier transforms of the boundary. They are used when the primary focus is on the shape
characteristics. The internal representations are selected when the primary focus is on the
regional properties, and region-based methods include,for example, the medial (symmet-
ric) axis transform, moment-based approaches, and methods of shape decomposition into
the primitive parts.

A description of a shape is data representing it in a way which is suitable for further
computer processing. Such data can be low-dimensional, like, e.g., perimeter, or moments,
or high-dimensional, such as, e.g., medial axis or primitive parts. The first type of data is
suitable for, e.g., shape classification, while the second, often called shape representation,
provides, e.g., good visual interpretation and compression.

A resulting classification scheme for the shape analysis methods may look as follows:
Boundary based numeric methods result in a numerical description based on shape

boundary points. Examples of this approach are chain-code and perimeter, but also one-
dimensional functions constructed from the two-dimensional shape boundary, called shape
signatures. In that case, the shape is described indirectly by means of a one-dimensional
characteristic function of the boundary, instead of the two dimensional boundary itself.
The Fourier transform is often applied to the signature functions, and used as a shape
descriptor.

Boundary based non-scalar methods take shape boundary as input and produce
the result in pictorial or graph form. Examples are boundary approximations by polygons
and splines, and boundary decomposition.

Region-based numeric methods compute scalar result(s) based on the global shape.
Moment-based methods are popular example from this group. Area and compactness
measures are also often used, although not information-preserving.

Region-based non-numeric methods result in a spatial representation of a shape,
based on the whole shape’s interior. The most popular methods in this group are medial
axis transform and shape decomposition. Mathematical morphology, suitable for shape-
related processing since morphological operations are directly related to object shape, is

3



in this group of approaches as well.

The goal of a shape description is to uniquely characterize the shape. The required
properties of a shape description scheme are invariance to translation, scale, and rotation;
these three transformations, by definition, do not change the shape of an object, and
consequently should not change its descriptor. However, it should be noted that in the
discrete case such invariance exists only up to discretization effects.

Additional desired properties of a good shape description method are

• accessibility – How easy is it to compute a descriptor in terms of memory require-
ments and computational time; are the operations local, or global?

• scope – How wide is the class of shapes that can be described by the method?

• uniqueness – Is there a one-to-one mapping between the set of shapes and the set of
shape descriptors?

• stability and sensitivity – How sensitive is a shape descriptor to small changes of a
shape?

1.2 Membership functions and fuzzification principles

Fuzzy membership of a point reflects the level to which that point fulfills certain criteria
to be a member of a set. A specific fuzzy membership function defining the observed
fuzzy set depends on a specific problem to be solved. The only theoretical requirement
for a membership function is to be a function into [0, 1], but in practice, the underlying
interpretation plays an important role when designing a function. Values 0 and 1 have a
special role, expressing certainty, while the importance of 0.5 membership value is related
to its common use as a decision threshold.

Even though the segmentation results obtained by binarization (defuzzification) of
a fuzzy segmented image are improved compared to those obtained by classical binary
segmentation methods (see, e.g., [45]), and thus provide a good start for any further
classical image analysis procedure, it has become clear that the segmentation should not be
the only step in the image analysis process where inaccuracy of the data is to be considered;
information-rich inherent fuzziness of the image, which is lost after the defuzzification,
should instead be exploited further in the process. Shape analysis is often the next step
in the image analysis process, so naturally it is the next step to carry the fuzziness to.

There are three main representations of a fuzzy set F defined on a reference set X,
[16]:

• membership function µF : X → [0, 1] which assigns to each x ∈ X its membership
grade µF (x) to the fuzzy set F ;

• set of α-cuts C(F ) = {Fα | α ∈ [0, 1]} of the set F , where Fα = {x | µF ≥ α};
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• convex combination of sets, i.e., a pair (F,m), where a positive weight m, is attached
to each element A of F , and

∑

A∈F

m(A) = 1.

The weights m are called basic probability assignment, and A ∈ F a focal subset.
(F,m) can be called a random set, and m(A) is the probability that A is the “true”
representative of (F,m).

There exists a correspondence between different interpretations of a fuzzy set. The
fuzzification principle, based on understanding of a fuzzy set as a stack of its α-cuts, uses
one of the following equations

F (µ) =

∫ 1

0
F̂ (µα)dα, (1)

F (µ) = sup
α∈(0,1]

[αF̂ (µα)] (2)

to fuzzify a binary function F̂ . Note that various properties defined for binary sets in the
stack can be generalized and derived for a fuzzy set, including the membership function,
itself (from the characteristic function of the α-cuts).

A membership function µF can be obtained from a convex combination of characteristic
functions µA of sets A in F as:

µF (x) =
∑

A⊆X

m(A)µA(x) =
∑

A∈F,x∈A

m(A). (3)

In order to provide a unique correspondence between the random set and the mem-
bership function, only the nested family F of sets {A1 ⊆ A2 ⊆ . . . ⊆ An} is observed.
Let M(F ) = {α1 > α2 > . . . > αn} be the set of positive membership grades for F . The
random set such that (3) holds is defined by

F = {Fα1
⊆ Fα2

⊆ . . . ⊆ Fαn}

and for each A

m(A) =

{

αi − αi+1, if A = Fαi

0, otherwise
,

with the convention αm+1 = 0.
In other words, the focal sets are the α-cuts, and for x ∈ Fαi

such that x 6∈ Fαi−1

µF (x) =
∑

j=i,n

m(Fαj
).

The described representations and connection between them provide one way to extend
binary concepts to the case of fuzzy sets. The other approach to derive fuzzy definitions
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from the crisp ones is to translate binary set theoretical and logical operations and relations
into their fuzzy equivalents. After replacing a set by a membership function, negation
(set complement), conjunction (set intersection), and implication (set inclusion) can be
fuzzified by using operators called, respectively, negator, conjunctor, and implicator [23]:

Negator is a unary operator on the interval [0, 1], which coincides with the Boolean
negation on {0, 1}, and is a decreasing and involutive mapping; the standard one is
defined by N (x) = 1 − x;

Conjunctor is a binary operator on the interval [0, 1], which coincides with the Boolean
conjunction on {0, 1}2, and is an increasing mapping in each variable; in addition,
for each x ∈ [0, 1] it holds that C(1, x) = C(x, 1) = x, and is commutative and
associative. An operator with these properties is called t-norm; the standard ones
are defined by C(x, y) = min{x, y} or C(x, y) = x · y.

Implicator is a binary operator on the interval [0, 1], which coincides with the Boolean
implication on {0, 1}2, and is a decreasing mapping in first, and an increasing map-
ping in second variable; in addition, for each x ∈ [0, 1] it holds that T (1, x) = x. The
standard ones are defined by T (x, y) = min{1, 1−x+y}, or T (x, y) = max{1−x, y}.

Other set theoretic operations are easily derived from the ones listed above.

1.3 Fuzzy segmentation

The process of converting the input image into a fuzzy set by indicating, for each pixel,
the degree of membership to the object, is referred to as “fuzzy segmentation”. For a brief
overview of fuzzy segmentation methods, see [40].

In the same way as it is convenient to model binary images as crisp sets, it is possible
to model grey-level images directly as fuzzy sets. If the grey-level values of an image are
scaled to be between 0 and 1, the grey-level of a pixel can be seen as its membership to
the set of high-valued (bright) pixels. Some examples are shown in Figures 1 and 2. The
objects presented in Figure 1 are generated by defining a membership function representing
the area coverage of pixels by an ideal disk (square), positioned in the integer grid. For
comparison, crisp counterparts are also presented. The fuzzy objects in Figure 2 are
obtained by two different imaging techniques. To the left, an image of a hole in a piece of
dark paper is obtained by an ordinary scanner set. The resulting circular object is very
similar to the synthetic disk (Figure 1). Grey levels in the image reflect the area coverage
of a pixel by the object, and can be naturally used as membership values (after scaling
to [0, 1]). To the right, an MRA image of a cross-section of the aorta is presented; in
this case grey-levels do not correspond equally well with the physical interpretation of the
“membership of a pixel to the aorta”, and a more advanced segmentation method may be
preferable.
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Figure 1: Examples of digitized objects with crisp (top) and fuzzy border (bottom)

One approach to get a more reliable information/representation is to integrate various
features of the image into the fuzzy segmentation method. Another approach, based on the
different interpretation of membership grades in a fuzzy region, is to retrieve information
about the contour imprecision by comparing and merging several crisp representations
of a region. The memberships are obtained by pooling the shapes derived from parallel
application of several classical segmentation methods.

1.4 First and second twenty years

Almost forty years ago (1965), fuzzy sets were introduced by Zadeh, [50]. Twentyfive years
ago (1979), Rosenfeld introduced fuzzy sets into image analysis [33]. The results obtained
in the first five year period (1979-1984), are reported in [35]; various definitions, methods
for measuring geometrical and other properties and relationships related to the regions in
an image defined as fuzzy sets are summarized.

Today, the concepts suggested in [35] are still used as guide-lines in research on fuzzy
image subsets, their geometry, and basic properties.

The fuzzy shape analysis techniques addressed in [35] are:

• Connectedness and surroundedness;

• Adjacency;

• Convexity and starshapedness;

• Area, perimeter, and compactness;
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Figure 2: Left: A hole in a piece of dark paper, obtained by a scanner. Right: MRA image
of a cross-section of the aorta.

• Extent and diameter;

• Shrinking and expanding, medial axes, elongatedness, and thinning;

• Grey-level-dependent properties; splitting and merging.

The results related to the first two topics are already exploited, and further developed
in various fuzzy segmentation techniques; the topology of fuzzy image subsets still provides
many challenges to deal with, and the first two items from the list above will certainly be
further considered in that work.

Being interested in properties of fuzzy shape, we focus on the remaining topics from the
list, as well as others related to shape analysis, developed later, and not mentioned above.
However, the fact that [35] is, during the last twenty years, still one of the main references in
most of the papers dealing with fuzzy shapes, indicates not only its outstanding significance
and quality, but also the lack of research and results in the field since then.

2 Shape definitions

In [14], basic fuzzy geometric shapes, like point, line, circle, ellipse, and polygon, are
defined on continuous 2D support space. The definitions are based on the α-cuts (in [14]
called level sets) of a fuzzy set. It is assumed that the fuzzy set, given as a mapping
µ : R2 → [0, 1], has a bounded support, is piecewise constant, and has a finite number n
of distinct membership values.

Definition 1 A fuzzy point is a fuzzy set with nonzero membership only at one point of
the support space.
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Definition 2 A fuzzy straight (curved) line is a fuzzy set for which any α-cut, α ∈ (0, 1],
is either empty, or a straight (curved) line in a support space.

A fuzzy line is a connected fuzzy set. A fuzzy straight line is a convex fuzzy set. Two
fuzzy lines intersect at a fuzzy point if, for a non-zero value of α, their α-cuts intersect at
a point.

Translation, rotation and dilation of a fuzzy set are defined. These transformations
generate equivalent classes of fuzzy shapes. By using these transformations, a fuzzy line
parallel, and perpendicular, to a given fuzzy line are defined; the first one is defined as a
line obtained from a given one by translation, while the other one is a result of a translation
and rotation of 90◦.

In a similar manner, some basic fuzzy shapes are defined.

Definition 3 A fuzzy circle is a fuzzy set whose α-cuts, for α ∈ (0, 1], are all concentric
circles.

Consider the definition of a fuzzy disk given in [35], where a membership of a point
to a fuzzy disk depends only on the distance of the point to the centre of the disk. A
fuzzy circle, according to 3, is a special case of a fuzzy disk, i.e., a fuzzy circle is a fuzzy
convex fuzzy disk. It should be noted, however, that the terminology used in 3, does not
correspond to the well accepted one for the crisp case, where a circle is a boundary of a
disk.

Definition 4 A fuzzy ellipse is a fuzzy set whose α-cuts, for α ∈ (0, 1], are ellipses with
the same center, orientation, and eccentricity.

In a similar way, by using α-cuts, a fuzzy polygon is defined.
For the fuzzy geometric objects, the membership is non-increasing away from the

interior of the object. It seems natural to define complementary shapes by the membership
which is non-decreasing away from the interior. In such way, fuzzy circular hole, fuzzy
elliptic, and polygonal hole, are defined. A complementary α-cut is defined as

µα = {p ∈ R2 | µ(p) ≤ α},

and the definitions of fuzzy shapes can be adjusted to use complementary α-cuts and
define complementary shapes, i.e., holes.

Examples of a discrete fuzzy disk, ellipse, and rectangle, as well as a fuzzy disk with a
circular fuzzy hole, are presented in Figure 3. The area coverage principle is used to define
the membership of a pixel to a shape. It should be noted, however, that the obtained
discrete objects are not discrete fuzzy shapes in the sense of shape definitions given in this
Section. The area coverage fuzzification principle does not guarantee that every α-cut of
a discrete object is an object of the same shape, even though the principle is based on
discretization of such (α-cuts of a) continuous fuzzy shape. It is obvious that discretization
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Figure 3: Examples of discrete fuzzy shapes.

affects significantly the properties of the (fuzzy) continuous objects. The transition from
continuous to discrete fuzzy shape analysis is often not straightforward.

Definitions of a fuzzy point and a fuzzy line are studied in [11], as well. Those suggested
there are more general. A fuzzy point (a, b) is defined by a membership function which has
a value 1 for the real point (a, b), and all the α-cuts which are compact, convex subsets of
R2. Various definitions of a fuzzy line are given; they are mostly based on incorporating
fuzzy numbers in the different forms of the standard equation of a crisp straight line.

The results are further studied in [49], where a general approach for deriving fuzzy
concepts in plane geometry is presented.

3 Scalar descriptors

3.1 Definitions

The definitions listed below are given by Rosenfeld, [34] and [36]. All of them refer to
fuzzy shapes with a continuous support.

The area of a fuzzy set S ⊆ X, given by its membership function µS , is defined as

A(µS) =

∫

X
µS(x) dx,

which is a generalization of the definition of the area of a crisp set.
The perimeter of a fuzzy set S given by a piecewise constant membership function
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(also called fuzzy step set) µS , is defined as

P (µS) =
∑

i,j,k
i<j

|µSi
− µSj

| · |Aijk|,

where Aijk is the kth arc along which bounded regions Si and Sj , defined by (constant-
valued) membership functions µSi

and µSj
, meet. This definition is a generalization of the

perimeter of a crisp set. For a more general case, where a fuzzy set is given by a smooth
membership function, its perimeter is obtained by an integration of the magnitude of the
gradient of the membership function.

The height of a set S, given by µS , is defined as the integral of its projection on a
vertical line:

h(µS) =

∫

max
x

µS(x, y) dy,

and similarly, the width of S is

w(µS) =

∫

max
y
µS(x, y) dx.

The extrinsic diameter of µS is defined as the supremum of the integrals of its projec-
tions:

e(µS) = max
u

∫

[

max
v
µS(u, v)

]

du,

where u and v are any pair of orthogonal directions.
For a connected fuzzy set (note: a fuzzy set is connected iff all its α-cuts are connected),

the intrinsic diameter is defined as

i(µS) = max
P,Q

[

min
%PQ

∫

%PQ

µS(u, v)

]

,

where the maximum is taken over all pairs of points P,Q in the plane, and the minimum
is taken over all paths %PQ between P and Q such that, for any point R on %PQ it holds

µ(R) ≥ min[µ(P ), µ(Q)].

Such paths always exist, since µS is connected. When the set is crisp, i(µS) reduces to
the standard definition of intrinsic diameter (the greatest possible distance between two
points in µS , where only paths lying in µS are allowed).

One way to define a measure of compactness of a fuzzy set µS is to calculate

P 2(µS)

4πA(µS)
, (4)

(or its inverse), which is the well-known P 2A-compactness measure.
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3.2 Inter-relations

All the definitions listed above reduce to the corresponding customary definitions for crisp
sets. However, some inter-relations which these notions satisfy in the crisp case, do not
hold for the generalized (fuzzified) definitions, as given above.

For a crisp (continuous) set S, the inequality

A(µS) ≤ h(µS) · w(µS)

holds. However, for a fuzzy set, with area, height and width defined as in Section 3.1, it
holds that

A(µ2
S) ≤ h(µS) · w(µS),

and µ2
S in this inequality cannot be replaced by µS . Even though for a crisp set µ2

S = µS,
and the above definitions provide, formally, the analogy with the result holding for a crisp
case, the difference is essential.

Moreover, if the set is crisp and connected,

e(µS) ≤ i(µS); (5)

if the set is crisp and convex, the equality holds. In the fuzzy case, however, it is possible
to have e(µS) > i(µS), even for a convex fuzzy disk. As an example, take a fuzzy disk D,
with a membership function

µD(x, y) =











1, x2 + y2 ≤ 0.52

0.5, 0.52 < x2 + y2 < 1.52

0, otherwise
.

For this set
e(µD) = 1 · 0.5 + 1 · 1 + 1 · 0.5 = 2,

while
i(µD) = 1 · 0.5 + 0.5 × 0.5 · π + 1 · 0.5 = 1 +

π

4
< 2.

For a crisp set, it holds that i(µS) ≤ 1
2 p(µS). In [34] it is shown that the same

inequality holds for a fuzzy set only if it is convex.

Based on the isoperimetric inequality,

4πA(µ) ≤ P 2(µ), (6)

the P 2A measure (4) is lowest for the crisp disc, compared to any other crisp set. In other
words, the P 2A measure is the lowest for the most compact shape, and in that case is
equal to 1. However, for fuzzy sets and definitions given in Section 3.1, the isoperimetric
inequality does not hold in general. Moreover, for fuzzy disks, defined in a way that the
membership function decreases (only) with respect to the distance from some point, taken
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as an origin, the inverse inequality takes place. It can be shown that the compactness
measure (4) decreases, i.e., that the compactness increases with the increase of fuzziness.
This result is rather unintuitive.

In [8] the definitions given in Section 3.1 are modified in a way that they still reduce
to their customary crisp counterparts, but the the relations (5) and (6) are fulfilled for a
wide class of fuzzy (continuous) sets.

The idea followed in [8] was to make the inequality A(µ2) ≤ h(µ) · w(µ) hold in a
“proper” way, (i.e., (A(µ) ≤ h(µ) · w(µ)), and let the changes needed to achieve that
propagate to other definitions. For that purpose,

√
µ, instead of µ, is considered in the

definition of a projection, which introduces the same change in the definitions of height,
and width, as well as diameter and perimeter of a fuzzy set. In that way, the isoperimetric
inequality holds for continuous fuzzy sets, as well.

Area, perimeter and compactness measure of a discrete fuzzy set are studied in [41],
where discrete fuzzy shapes are defined by a membership function based on the area
coverage of a pixel (see Figure 3). The transition from continuous to discrete fuzzy shapes
is obtained by interpreting a membership function of a discrete fuzzy set as a piece-wise
constant continuous function (so-called step-function). However, discretization introduces
additional inconsistency with the properties of crisp continuous sets. For example, the
compactness measure, derived from the iso-perimetric inequality, for a discrete crisp disk
is not in general equal to 1 and , even more, 1 is not the extreme value of the compactness
measure, as it is in the continuous case. This property, as a consequence of discretization,
propagates to the case of fuzzy discrete sets.

The focus of the research presented in [41] is on the precision of the estimation of the
perimeter and compactness measure, when a discretized shape is used. A statistical study
of discrete fuzzy disks having radii up to 20 pixels shows that the precision of the area
and perimeter estimation increases when introducing fuzziness, and that the improvement
(compared to the crisp case) is more significant for small objects (low resolutions). It
is also shown that the compactness measure, incorporating perimeter defined as in Sec-
tion 3.1, of the discrete fuzzy shapes has a similar behaviour. For all these measures, area,
perimeter and compactness, it holds that increased fuzziness leads to increased accuracy.
As a consequence, a crisp discrete disk is less compact than a fuzzy discrete disk, whose
compactness measure is a more accurate approximation of the real disk. This property of
a compactness measure is useful for estimations, but it is not intuitive.

The definitions suggested in [8], when adjusted to discrete shapes, lead to that the com-
pactness measure (4) indicates the crisp discrete disk as the most compact fuzzy discrete
shape. The consequences of introducing these definitions propagate to the compactness
measure not only by giving a value higher than one, but also to give it a more intuitive
behaviour. However, the measure gives high over-estimates, and therefore it is less ap-
propriate for approximations of real shape compactness measure. Statistical results are
shown in Figure 4. The different curves denote different levels of fuzziness.
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Figure 4: P 2A measure estimation for digitized disks. Left: Results based on definitions
in Section 3.1. Right: Results based on modified definitions, [8] (from [41]).

3.3 General approach to the evaluation of parameters from fuzzy regions

If the imprecision included in the segmentation process can be captured using fuzzy regions,
it seems natural and useful to carry over that imprecision to the parameters which describe
the various features of the region. A general approach to the evaluation of parameters
from fuzzy regions is studied in [16].

When R is a fuzzy region, with a membership function µR, it is seen as a nested
uncertain region, under the form of a finite set {R1 ⊆ R2 ⊆ . . . ⊆ Rn} of regions, together
with a basic probability assignment m defined from µR by

m(Ri) = αi − αi+1,

where α1 = 1, αi = µR(x) for any x ∈ Ri \Ri−1 and αn+1 = 0. Then

Definition 5 The property f measured on a fuzzy region R yields a random number r,
defined by the probability

pf (r) =

{

∑{m(Ri) | f(Ri) = r} if r 6∈ {f(Ri) | i = 1, . . . n}.
0 if r 6∈ {f(Ri) | i = 1, . . . n}.

The expected value f(R) of f(R) is evaluated as

f(R) =
n

∑

i=1

m(Ri) · f(Ri). (7)

The expected value has already been proposed in the literature in order to measure
some features of fuzzy sets. The area of a fuzzy region R,

A(R) =
∑

x∈X

µR(x)
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defined for fuzzy regions as in Section 3.1, is equal to the expected area A(R), in the sense
of (7). The same holds for the perimeter, and the height, of a fuzzy region; the definitions
given in Section 3.1 are equivalent to their corresponding expected values, given by (7).

It is clear that any parameter which can be extracted from a region has a natural
meaning for a fuzzy, or uncertain, region R, when defined by Definition 5, and (7). The
center of gravity, the diameter, the orientation, the compactness, etc., can be defined this
way. However, not all the definitions based on membership function are equivalent to the
expected value (7). For example, for the extrinsic diameter e(R) of a fuzzy region R,
defined in [34], it holds

e(R) ≥ e(R),

where e(R) is the expected value of the extrinsic diameter.

3.4 Fuzzy feature values

The fuzzification principle may lead to a fuzzy, instead of a crisp number. Such a method
is called extension principle [4], and assigns membership for a feature R, to have some
particular value n, over a fuzzy set S, given by its membership function µS :

R(µS)(n) = sup
R(Sα)=n

α.

Similar approach is considered in [16]. It is noted that the expected (crisp) value of
the parameters of fuzzy regions may sometimes be insufficient, and fuzzy parameter values
extracted from fuzzy regions may be desired, instead. Possible ways to achieve this, as
presented in [16], are:

• The imprecision of f(R) can be expressed by a fuzzy number f(R) with a support
equal to [infi f(Ri), supi f(Ri)], and a modal value f(R).

• A more rigorous definition of the fuzzy interval, obtained by transforming the prob-
ability measure associated to f(R) by Definition 5, into a possibility distribution
π = µF (R) consistent with the probability measure.

4 Vector-valued descriptors

4.1 Fuzzy shape signature based on the distance from the centroid

In [12], a shape representation which combines boundary information and region informa-
tion, in order to design a description of the shape that is truly invariant to translation
within the digitization grid, is studied. A signature is a one-dimensional (1D) functional
representation of a two-dimensional (2D) shape boundary. The simplest way to generate
a signature is to traverse the boundary and plot the distance from the centroid to the
boundary as a function of the angle, see Figure 5.
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Figure 5: A star-shaped object and its corresponding shape signature (from [12]).

This shape signature function is extended to the case of discrete fuzzy star-shaped
sets, having the centroid included in its kernel. Two methods are presented. The first
method is based on the integration of a membership function over the considered straight
paths, i.e., calculation of the length of a fuzzy line segment; the boundary of the fuzzy
shape is considered to be the boundary of its support (the lowest α-cut), while the length
estimation method is similar as the one presented in [37].

The second method processes each α-cut separately and averages the obtained signa-
tures of binary shapes (based on the Euclidean distance), according to one of the fuzzifi-
cation principles. In the continuous case, these two methods are equivalent for the class
of star-shaped fuzzy objects having a centroid included in the kernel (for Definition of a
star-shaped fuzzy object and a kernel of a fuzzy star-shaped object, see Section 5.1.1).
However, the specific issues induced by the discretization lead to different performances
of the proposed methods, when they are applied to discrete shapes.

The experiments show that the second method provides better results than the first
one. The average SNR values obtained for 50 disks of each radius are presented in Figure 6,
for increasing disk radius. It can be noticed that for both methods, the use of a fuzzy,
instead of a crisp object, improves the description. However, for Method 1, the improve-
ment tends to zero when the radius increases. Method 2 greatly outperforms Method 1,
both in the crisp and in the fuzzy case. Furthermore, for Method 2 the advantage of using
fuzzy objects is obvious and remains so also with the increase of the radius of the object.

The poor performance of Method 1 is not surprising, since the method relies on the
discrete approximation of a straight line, and estimated length of a line segment, while
Method 2 directly uses Euclidean distances. However, the first method can be seen as
more general, since it can naturally be extended to shape signature calculation of non-
star-shaped sets, while non-star-shapedness causes problems (in the crisp case, as well)
when the second approach is used. The difficulties are related to the treatment of “exter-
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nal” parts of the line connecting the centroid with the boundary point, where “external”
becomes a rather subtle notion in relatively complex fuzzy topological issues. This is seen
as a reason to be interested in a less efficient approach, as well.
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Figure 6: SNR of computed shape signatures for disks; comparative study of the two
methods on crisp and fuzzy shapes (from [12]).

In any case, an important conclusion is that the use of fuzzy sets greatly improves the
quality of the shape description; the sensitivity of the descriptor to the translation of the
object within the digitization grid is highly reduced, compared to the crisp case.

4.2 Motion descriptors based on the Fourier transform

4.2.1 2D case

Shape descriptors based on the Fourier transform are both popular and efficient. They
are often successfully applied to crisp shapes, where the main information about the
shape is contained in the boundary of the object. Fourier descriptors are invariant under
translations, rotations and change of the perimeter of the boundary. It is for sure useful
to extend the concept to fuzzy shapes, but the first and very important difference is that
a boundary of a fuzzy (grey-level) object is not well-defined. The method, if extended to
fuzzy (grey-level) objects, should be applied to the whole object, rather than to only the
boundary.

The approach presented in [17] relies on the idea of so-called motion descriptors, a fam-
ily of invariants which remain unchanged under the motions of objects in 2D grey-level
images. Using these invariants, similarity descriptors are defined. They are computed

17



by using the Fast Fourier Transform, and are stable, in the sense that if the difference
between two objects is small, the difference between the invariants will also be small. This
shape description method uses the whole fuzzy segmented image; no decisions about the
(fuzzy) object boundary are made.

Starting with a Fourier transform f̄ = f̄(ψ) of a function f , and using polar coordinates
(λ, ϑ) of a point ψ, a motion descriptor Dα

f of order α is defined as

Dα
f (λ) =

∫ 2π

0
|f̄(λ, ϑ)|α dϑ,

where f̄(λ, ϑ) denotes the Fourier transform of f at a point (λ, ϑ). The motion descriptor
Dα

f (λ) is invariant under translations, rotations, and reflections of objects. The invariance
of a descriptor under the multiplication of f by a scalar can be obtained by normalization.
The function

Iα
f (λ) =

1

‖f‖α
L1

Dαf(λ)

is called the normalized motion descriptor of order α, of a function f .
Further, to achieve invariance under change of size of an object, the similarity descrip-

tor of order α of f is defined:

Jα
f (λ) = Iα

f

(‖f‖L2

‖f‖L1

λ

)

.

The similarity descriptor is a normalized motion descriptor with a particular sampling

step,
‖f‖

L2

‖f‖
L1

λ, which provides invariance under change of size of an object, in addition to

the invariance under translation, rotation, and reflection of objects.
It is proved that for two objects having the same shape, their similarity descriptors

are the same. The main disadvantage of the similarity descriptor is that two objects can
have equivalent descriptions, even if not being equivalent themselves (not obtained by a
translation, a rotation or a reflexion from each other). Compensations for this disadvan-
tage are that no previous knowledge is required about the type of a studied shape, the
invariances are stable (they are similar for similar shapes), the computation is fast, and
the interpretation of the result is very easy.

4.2.2 3D case

The shape descriptor described in [17] is further developed in [52] (although [17] does not
exist in the list of references of [52]). A stable set of volume descriptors, invariant under
the group of motions of the 3D Euclidean space, is derived for 3D grey-level objects,
analogously as in the 2D-case. Due to the fact that the correspondence between the
set of shapes and the set of their descriptors is not bijective, the similarity descriptors
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cannot provide reconstruction of a shape. However, these descriptors are stable and, in
addition, easy and fast to compute, different from, e.g., moment invariants, which provide
recoverability, but need a lot of computational time when being of order larger than 3,
and appear in rather complex expressions.

Examples of shape descriptions by the volume descriptor (VD) are presented in Fig-
ures 7 and 8. Equivalent shapes are described by (almost) the same VD function (Figure 7),
while more or less different objects have different volume descriptor (Figure 8).

Figure 7: An ellipsoid (a) and a displaced ellipsoid (b). Volume Descriptors of objects (a)
and (b) (from [52]).

Figure 8: Three objects with different shapes. Volume Descriptors of objects (c), (d), and
(e) (from [52]).
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4.3 Description by moments

For a 2D continuous function f(x, y), the moment of order p+ q is defined as

mpq =

∫ ∞

−∞

∫ ∞

−∞
xpyqf(x, y)dxdy ,

for p, q = 0, 1, 2, . . . In the case of discrete images, integration is replaced by summation
over a bounded set. Moments are uniquely determined by the image, and moreover, they
uniquely determine the image (if the set of moments is big enough). By using so-called
normalized central moments, moment-invariants can be derived; they are invariant to
translation, rotation and scale change, and thus are often used as shape descriptors.

Moments naturally “simultaneously” deal with both spatial and intensity properties of
an image. The idea of incorporating fuzzy set theory into the shape description method
based on moments is studied in [3]. However, this approach involves a more general
definition of moments; essentially, the idea of summing the products of a spatial-related
and intensity (membership)-related terms is what makes a connection, while the fact that
distances, instead of spatial coordinates, are used introduces the difference to the classical
notions.

The proposed descriptor provides a unique description of two alike but distinct images,
and is invariant to rotation and size variation of the images. Being based on the fuzzy
approach, the descriptor is less sensitive to noise and variation in illumination. It is
successfully applied in inexact image matching.

The idea applied in [3] can be described as follows: a grey-level image is partitioned
into non-overlapping blocks of equal size. Blocks contain regions of three possible types,
“edge”, “shade”, and “mixed range” (additionally, edges are subdivided into different
classes, depending on their slope). The degree of membership of a block to a certain class
is defined by using some additional knowledge. Membership functions corresponding to
the different classes are defined, by considering, e.g, average gradient, and variance. An
“edge” is a contour of pixels within a block which has a large gradient with respect to its
neighbours. A “shade” is a region with a small or no variation of grey-levels. A “mixed-
range” is a region excluding edges and shades on a given image. Fuzzy reasoning is used
to combine the information. The fuzzy moment, i.e., the membership-distance product of
a block with respect to another block, is computed for all blocks obtained in the partition.
A feature called “sum of moments”, which keeps track of the image types and their relative
distances, is used as image descriptor. The set of sums of fuzzy moments is stored in a
one-dimensional array in a descending order, for each observed feature.

The number of blocks affects both time complexity and success of the description. It
is noted that for a 512 × 512 pixel image the block size should be approximately 32 × 32
pixels to have a good matching result.

Normalization of a Euclidean distance between each two blocks of an image with respect
to the image size itself provides insensitivity of a description to size variation. Rotation
invariance is achieved by sorting the description vectors to keep the blocks with the most
predominant features at the beginning of the array.
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Incorporation of fuzzy membership functions and non-linearity of mappings reduce the
effect of noise on the whole process.

5 Shape representation (non-numerical descriptors)

5.1 Convexity

5.1.1 Definitions

Definition 6 A fuzzy subset S of a reference set X, given by its membership function
µS : X → [0, 1], is convex if for all P,Q ∈ X and all R on the line segment PQ it holds

µS(R) ≥ min{µS(P ), µS(Q)}.

If S is crisp, the definition reduces to the standard one.
An equivalent definition of a convexity is that a fuzzy set is convex if and only if all

its α-cuts, for α ∈ [0, 1], are convex.
If a cross-section of a fuzzy set S with a line l is defined as a restriction of µS to l,

then it holds that S is convex if and only if all its cross-sections are convex.
The convexity property has been exploited in many applications of fuzzy sets; convexity

is central to some metric definitions and to some topological properties of the corresponding
metric spaces of fuzzy convex sets. It can be used for formulation of decomposition criteria,
in the shape description procedures.

Definition 7 A crisp set K is star-shaped from a point P ∈ K, if for each point Q ∈ K,
the line segment PQ, joining P to Q, is contained in K.

Definition 8 A fuzzy set is star-shaped from P if and only if its α-cuts are all star-shaped
from P .

A fuzzy set S is star-shaped from a point P if its cross-sections through P are all
convex. Obviously, a fuzzy set S is convex if it is star-shaped from each of its points.
Fuzzy star-shaped sets, and many of their properties, reduce to the well-known properties
of crisp star-shaped sets.

The kernel kerK of a star-shaped set K is defined as a set of all points P ∈ K such
that the line segment PQ is contained in K, for each Q ∈ K. In other words, kernel
contains all the points with respect to which the set is star-shaped. The fuzzy kernel of a
fuzzy set is defined in [15]:

Definition 9 Let ker(S) be the set of Q such that S is fuzzy star-shaped with respect to
P . For a fuzzy star-shaped set, fuzzy kernel fker(S) is defined by

[fker(S)]α = ker[S]α,

for α ∈ [0, 1].
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The intersection and the union of two fuzzy star-shaped sets, S1 and S2, such that
ker(S1)∩ker(S2) is non-empty, is star-shaped. This proposition is not true for the (fuzzy)
union of (fuzzy) convex sets, so fuzzy star-shaped sets extend fuzzy convexity in an impor-
tant way, while, as shown in [15], many topological properties of spaces of fuzzy star-shaped
sets remain similar to their fuzzy convex counterparts.

The convex fuzzy hull, conv(A), of a fuzzy set A is defined as the smallest convex fuzzy
set containing A.

The convex deficiency of S is the area of

conv(µS) − µS,

where (µA − µB)(P ) = min{µA(P ) − µB(P ), 0}, and the area of a fuzzy set is defined by
integration. Normalized convex deficiency (e.g., by the area of a convex hull of a set), can
be seen as a measure of the degree of concavity of a set S.

A complementary shape of a convex fuzzy set is a concave fuzzy set. Formally, such
set is defined by

Definition 10 A fuzzy set S of a reference set X is a concave fuzzy set if for all P,Q ∈ X

and all R on the line segment PQ it holds

µS(R) ≤ max{µS(P ), µS(Q)}.

5.1.2 Fuzzy convex hull

A method of computing the convex hull of a fuzzy subset is presented in [13]. It is assumed
that the fuzzy set has a bounded support and a finite number of distinct membership values
in [0, 1]. The fuzzy shapes in discrete images fulfill these assumptions.

To determine the fuzzy convex hull of a fuzzy set, the convex hull of each α-cut is
determined, and the fuzzification principle is aplied to the stack of crisp (convex) α-cuts.

Another approach for computation of a discrete convex hull of 2D grey-level images
is presented in [26]. The presented method is purely discrete, and based on simple local
computations. The resulting convex hull approximation fulfills convexity both in terms
of geometric and grey-level information. In order to take grey-level information into ac-
count, but still use the methods developed for binary images, a 2D grey-level image is
transformed into a 3D binary image, in a way that for each point its grey-level value
becomes its third co-ordinate. The correspondence between grey-level g and z value de-
pends on the application. An example of the original grey-level (a) and corresponding 3D
representations (b) are shown in Figure 9. The inverse conversion is straight-forward. A
method for computation of a convex hull of an object in 3D binary image is then applied.
Covering polyhedra of the volume objects are created by filling local concavities. Local
concavities are defined by the number and the configuration of neighbouring object voxels.
The resulting covering polyhedron is convex and includes the convex hull. The difference
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(a) (b) (c)

(d) (e) (f)

Figure 9: Grey-level convex hull computation and analysis. (a) A photograph of a face.
(b) The 3D representation of the face. (c) The convex hull of (b). (d) The grey-level
representation of (c). (e) The grey-level concavity regions, i.e., the difference between (d)
and (a). (f) The 3D representation of (e) (from [26]).

between the covering polyhedron and the convex hull is reasonably small. The resulting
3D convex hull is projected back to a 2D grey-level image g, i.e., the grey-level convex
hull.

The performance of the method is shown on the set of images in Figure 9.

5.1.3 Convexity indicators

A fuzzy set theory can be incorporated in the design of convexity indicators for (both
binary and) grey-level (fuzzy) images. As presented in [32], convexity indicators measure
the degree of convexity of an object in an image, using fuzzy inclusion indicators. Inclusion
indicator I(A,B) gives the degree to which a fuzzy set is a subset of another fuzzy set [39].
An inclusion indicator is defined as a two-argument function, mapping two fuzzy sets, A
and B, to the interval [0, 1] and satisfying nine particular properties (axioms):

A1 I(A,B) = 1 ⇔ A ⊂ B;
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A2 I(A,B) = 0 ⇔ {x|µA(x) = 1} ∩ {x|µB(x) = 0} 6= ∅.

A3 B ⊂ C ⇒ I(A,B) ≤ I(A,C).

A4 A ⊂ C ⇒ I(A,B) ≥ I(C,B).

A5 I(A,B) = I(A+ t, B + t), for any translation t.

A6 I(A,B) = I(BC , AC).

A7 I(A ∪ C,B) = min[I(A,B), I(C,B)].

A8 I(A,B ∩ C) = min[I(A,B), I(A,C)].

A9 I(A,B ∪ C) ≥ max[I(A,B), I(A,C)].

The union and intersection of two fuzzy sets is computed as the pointwise maximum
and minimum, respectively, of their membership functions, while A ⊂ B means µA(x) ≤
µB(x) for every x in the reference set. Note that the axioms are not independent.

Inclusion indicators can be defined by using (different) fuzzified union and complemen-
tation:

I(A,B) = inf
x∈S

(AC ∪B)(x).

The other approach is to use the fuzzification principle based on α-cuts, and define

I(A,B) =

∫ 1

0
inf

x∈Aα

µB(x)dα.

However, this inclusion indicator fulfils the axioms A7 and A8 only as inequalities.
For a given indicator and a fuzzy set, fuzzy erosion and fuzzy dilation operations are

defined.
Starting from a property of a crisp compact set X, that it is convex if and only if

2X = X
⊕

X, where
⊕

is a Minkowski addition and λX denotes homothety, a convexity
indicator of the fuzzy set A with respect to the inclusion indicators I1 and I2, is defined
as

c[I1, I2](A) = I1(δA(A), 2A).

A homothety λX for λ > 0, is defined by

µλX(x) =











µX

(

1
λ
x
)

λ 6= 0,

0 λ = 0, x 6= 0,
1 λ = 0, x = 0.

The dilation δ is defined as an operation dual to the erosion,

δA(B) = (ε−A(BC))C
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where the erosion is
µεA(B)(x) = I2(τx(A), B),

and the translate of a set X by a vector a is a set τa(X) given by

µτa(X)(y) = µX(y − a).

Different inclusion indicators, and consequently, different convexity indicators, are
studied and analyzed. The choice of the indicator may be done with respect to the specific
application.

Note: Basic morphological concepts for fuzzy sets are presented in more details in
Section 5.4.

5.2 Symmetry

Symmetries are good candidates for describing shape. It is a powerful concept that facil-
itates object detection and recognition in many situations. Symmetry may be defined in
terms of three linear transformations in n-dimensional Euclidean space: reflection, rota-
tion, and translation. A set S is symmetric with respect to a linear transformation T if
T (S) = S. In [42] a reflection symmetry is analyzed, and a procedure for detection of a
reflection line is presented. Opposite from most of other methods for symmetry detection,
based on edge or contour or set of point information, the one presented in [42] uses gra-
dient information from a grey-scale image (so, no segmentation is needed), by analyzing
the shape of the orientation histogram. The method should be equally applicable to fuzzy
objects.

The idea is to determine the orientation of the gradient vector in each object surface
point, where the object surface is defined by the grey-level function. The histogram of
the gradient orientation, ranging from 0 to 360 degrees, can be obtained. The orientation
histogram of a symmetrical object is symmetrical, and also periodic with period 2π, see
Figure 5.2.

Figure 10: Typical shape of the gradient orientation histogram for a reflection symmetry
object (from [42]).
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The function

c(x) =
π

∑

θ=0

h(x+ θ)h(x− θ)

calculated for each orientation x in the histogram h will reach its maximum for the sym-
metry axis orientation. The function c(x) is a symmetry measure. It can be used to detect
more than one symmetry axis, in which case it has more than one peak.

The position of a symmetry line (after its orientation is obtained) can be determined
by, e.g., using a center of gravity, or projecting the original image onto a line perpendicular
to the symmetry axis, and analyzing the profile of the projection.

The gradient image is obtained by using the Sobel operator. The obtained histogram
is circularly smoothed, i.e, the angular data should be circularly continuous.

5.3 Distances and distance transforms

As noted in [4], there are two main approaches in measuring distances considering fuzzy
objects: the first one basically compares only the membership functions (values) represent-
ing the concerned fuzzy object(s), while the other one combines spatial distance between
objects and membership functions. The second class of methods finds more general appli-
cations in image processing since these methods take into account both spatial information
and information related to the imprecision attached to the image object(s).

The problems that can be addressed when fuzzy distances are concerned, are

• distances between two points in a fuzzy set;

• distances from a point to a fuzzy set;

• distances between two fuzzy sets.

All three types of distances can be applied in shape analysis. A typical application
for the first type of distances consists of finding the best path in the geodesic sense in a
spatial fuzzy set. Distances from a point to a set are used when computing distance from
a point to a complement of a fuzzy set, i.e., performing distance transform. The distances
between sets are used in shape matching.

Fuzzy distances are often defined by generalizing crisp distances. It should be men-
tioned that some of the definitions do not always satisfy the properties of a distance (or
metric); more general proximity functions can be used, instead.

5.3.1 Bloch’s fuzzy geodesic distance

In [5] a geodesic distance between points in a fuzzy set are studied. Geodesic distance
is defined with respect to the reference set X; a geodesic distance dX(x, y) from x to y

is the length of a shortest path from x to y, completely included in X. The definition
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of a geodesic distance between two points of a fuzzy set which is shown to have the best
properties relies on the degree of conectivity of two points. The degree of connectivity in
a fuzzy set µ between x and y is defined by Rosenfeld ([35]) as

cµ(x, y) = max
Li∈L

[min
t∈Li

µ(t)],

where L is the set of all paths between x and y. Let L∗(x, y) denote the shortest path
between x and y on which cµ is reached; this path is not necessarily unique and can be
interpreted as a geodesic path descending as little as possible in terms of membership
degrees. Let l(L∗(x, y)) denote its length (the number of points along the path). Then
the geodesic distance in µS between x and y is defined as

dµ(x, y) =
l(L∗(x, y)

cµ(x, y)
.

If cµ(x, y) = 0, then dµ(x, y) = ∞, which corresponds to the result obtained for
the classical geodesic distance in the case where x and y belong to different connected
components. The definition corresponds to the classical geodesic distance computed at
the α-cut of µ at level α = cµ(x, y). In this α-cut x and y belong to the same connected
component. The definition satisfies the following set of properties:

• the distance between any two points is non-negative;

• the distance between x and y is the same as the distance between y and x;

• the distance equals zero only between two spatially identical points;

• the distance is defined by the shortest path between x and y that “goes out” of µ “as
little as possible”, and tends to infinity if it is not possible to find a path between x
and y without going through a point t such that µ(t) = 0;

• the distance decreases when µ(x) and µ(y) increase;

• the distance decreases when cµ(x, y) increases;

• the distance is equal to the classical geodesic distance if µ is crisp.

The triangular inequality is not satisfied, but from the given definition it is possible to
derive a true distance, satisfying triangular inequality, while keeping all other properties:

d′µ(x, y) = min
t∈S

[

l(L∗(x, t)

cµ(x, t)
+
l(L∗(t, y)

cµ(t, y)

]

,

where S is the whole image space.
A step further can be to define a geodesic distance between two points in a fuzzy set

to be not a crisp, but a fuzzy number, since for an imprecisely defined set the distances
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within it may be also imprecisely defined. To achieve this, the extension principle based
on a combination of the geodesic distances computed on each α-cut of µ can be used (see
Section 3.4). If dµα(x, y) denotes the geodesic distance between x and y in the crisp set
µα, the degree to which the geodesic distance between x and y in µ is equal to d is

dµ(x, y)(d) = sup{α ∈ [0, 1], dµα (x, y) = d}.

Some properties of a fuzzy number defined in this way are, e.g., that the degree to
which the geodesic distance between two points can be less than the Euclidean distance
is zero and that the maximum of a fuzzy number representing the distance between two
points is reached for the distance between them at the level (α-cut) of their connectedness.

5.3.2 Toivanen’s distance transform on curved spaces

Two geodesic distance transforms for grey-scale images are presented in [44]. The first
one, called the Distance Transform on Curved Space (DTOCS), performs the distance
calculation with integer numbers. After the length of a path between two points is defined,
a distance map in which the value of every pixel is the length of the shortest path to the
nearest background pixel is generated. The DTOCS calculates the distance value for
each point by calculating the grey-level difference between two adjacent point along the
minimal path. The distance between two adjacent points is determined as an absolute
value of a difference between their grey levels, increased by 1, which is used as an integer
approximation of the length of a step on the grey level surface, using the chess board
kernel for horizontal displacement estimation (see Figure 11). The parameter, related
to the curvature of a grey-level image, is introduced to provide a possibility of different
scaling of horizontal and vertical “components” of a displacement (horizontal step is 1,
while the vertical can be e.g., [0, 255], for 8-bit pixel size).

Figure 11: The height displacement of DTOCS for all 8-neighbours xi of a pixel e, in a
rectangular grid (from [44]).
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The second presented distance transform is called the Weighted Distance Transform
on Curved Space (WDTOCS) and gives a weighted distance map over a grey-level im-
age. Each sub-distance along the path is Euclidean, i.e, the distances between two edge-
neighbours is 1 and between two point neighbours is

√
2. Optimal propagating weights,

0.95509 for isothetic step, and 1.3693, for a diagonal step in a 3×3 mask, are used instead;
this gives a better approximation of the (global) Euclidean distance. It is shown that both
transforms converge to the correct distance map; depending on the size and complexity of
an image, the number of iterations of two scans of an image needed is 3 − 10.

In the so-called
√

2−DTOCS distance transform presented in [18] step-lengths (hor-
izontal displacements) 1 and

√
2 are used, instead of a chessboard mask, or optimal step-

weights. This transformation is seen as a hybrid of chessboard and Euclidean distance
definitions, but without as solid theorethical basis as for the DTOCS and the WDOTCS.
The computation of both WDOTCS and

√
2 − DTOCS includes floating-point values

calculations, which is computationally havier that working with integers. It is shown in
[9] that using integer values 3 and 4 as weights for a horizontal and a diagonal step, re-
spectively, gives better approximation of Euclidean distance than using the weights 1 and√

2. It is left for a further investigation to find appropriate integer weights which would
correspond to both horizontal and vertical displacement in grey-level images.

5.3.3 Borgefors and Svensson’s distance transform for sets with fuzzy borders

A distance transform in images with fuzzy borders is proposed in [10]. The difference
from a standard distance transform is in the initialization, which takes the fuzziness of
the border into account. In the standard case, object pixels are initially set to infinity
and background pixels to zero. In the fuzzy border weighted distance transform (fWDT)
the initialization reflects the uncertainty of the border pixels. Except for the initialization
step, the method uses standard chamfering technique.

In the digitization process, the pixels are assigned to the object, or to the background,
according to some principle which usually creates jagged border of the digital object, due
to the hard decision if the point belongs to the interior, or not. A whole interval of possi-
ble border positions between two points (one inside, and one outside) results in the same
digital situation. In order to allow smoother transition between background and object to
have an influence on the distance map, the initialization is done so that small distance la-
bels are linearly distributed among pixels having grey-levels between two thresholds set to
get “certainly inside” and “certainly outside” points. If, e.g., 〈5, 7〉2D distance transform
is used (in the 3 × 3 neighbourhood), the smallest distance label assigned to the object
point is 5; labels 1, 2, 3, 4 are free to be used to initialize the fuzzy border, so that the
position of a “real” border (between two extreme situations) does make a difference. It is
important to use a distance transform for which the weight for a horizontal step is not too
small, in order to get a more graded transition on the border, reflected by different initial
values. Good choices in 2D are, e.g, (6, 8)2D , (8, 11)2D , (9, 12)2D , (10, 14)2D , for the 3× 3
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neighbourhood. After the initialization, the distance map is calculated in the standard
way, i.e., by two raster scans over the image. In the distance map, points with labels
smaller than half the length of a horizontal step are seen as most plausibly background,
and those with labels larger than half of a horizontal step are most plausibly object points.
The fWDT is not necessarily a metric, or even ordered in any way.

5.3.4 Saha’s et al. distance transform for fuzzy sets

Another way of calculating distance transform for fuzzy sets (FDT) is proposed in [37].
The notion of fuzzy distance is formulated by first defining the length of a path on a fuzzy
subset, and then finding the path with a minimal length, connecting two points. FDT is
defined as a process on a fuzzy subset that assigns to a point its fuzzy distance from the
complement of the support. It is shown that the fuzzy distance is a metric for the support
of the object.

A path π between two points in a set S is a sequence of adjacent points of S, connecting
these two points. The length of a path is equal to the number of points along the path.
Only hard adjacency relations are considered to define a path. To define the strength of
a path, the strength of a link pq (a path consisting of two points, p and q) is defined as,
e.g.,

• max{µ(p), µ(q)} × ‖p− q‖ , or

• 1
2 (µ(p) + µ(q)) × ‖p− q‖.

In the continuous case, according to this approach, the length of a path between two points
in the fuzzy set is obtained by integration of the membership function along the points
forming the path between them. Adjusted to the discrete case, the integral is replaced
by some discrete approximation (integration sum). In [37], the second definition of the
strength of the link is used; it incorporates two components into the strength of a link – one
coming from the membership values of p and q, and the other from the distance between
these two points. The strength of a path is then defined as the sum of the strengths of
the links along the path.

An algorithm for computing the FDT of digital objects is presented. The background
(reference set) in the fuzzily segmented image is determined by thresholding. The spatial
distances are determined for each point and its 8 neighbours, and the vector containing the
distances is generated. For a crisp object, the shortest path from a point to the background
is always a straight line, but for a fuzzy object that is not always the case. That is why the
computation of FDT requires more than two scans of the image; the number of raster scans
needed in the computation is dependent on the shape of the object. FDT is computed by
using a dynamic programming-based approach.

Some examples of the application of FDT in medical imaging are presented, e.g., a
computation of local thickness, a very useful parameter in analyzing object shape and
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morphology, see Figure 12. It is noted that a skeleton generated from a fuzzy represen-
tation of an object would be a desirable starting point (since thickness is supposed to be
computed along the skeleton of an object), but such skeletonization methods are not well
developed yet. It is concluded that the FDT method promisses to be of significant value
for structural object analysis, once the technique has been fully validated.

Figure 12: FDT-based thickness computation applied to an arterial tree. (a) A MIP
rendering of a 3D subvolume taken from a 3D CTA image of a patient’s head (after
removing bones) showing a portion of the carotid arterial tree. (b) A MIP of the fuzzily
segmented arterial tree. (c) A MIP of the FDT image of the 3D image shown in (b). Mean
and standard deviation of the thickness values computed along the curve skeleton of the
arterial tree mask are 2.7 and 1.8 mm, respectively (from [37]).

5.4 Fuzzy mathematical morphology

Mathematical morphology is a set-theoretic method for the extraction of shape information
from a scene; it studies the transformations of an image when it interacts with a matching
pattern (structuring element) through well-defined local operations. The basic ones are
erosion, E(A,B), and dilation, D(A,B), defined by

E(A,B) = {y ∈ Rn | Ty(B) ⊂ A} ,
D(A,B) = {y ∈ Rn | Ty(B) ∩A 6= ∅} .

Ty(B) = {x ∈ Rn | x− y ∈ B} is a translation of a set B by a vector y.
By varying the size and shape of the structuring element, it is possible to obtain use-

ful geometrical and topological information of the different objects in the scene. Erosion
reduces the image area, while dilation enlarges it, by reducing the background region.
Opening (erosion followed by dilation) smoothes the contour from the inside, and sup-
presses small islands and capes; closing (dilation followed by erosion) smoothes the object
from the outside by filling narrow bays. Due to these characteristics, an appropriate choice
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of the structuring element together with a suitable combination of morphological opera-
tions can be successfully used for cleaning noise pixels, to compute the gradient of a scene,
to detect the edges of the objects, to define the skeleton of the object [22], and to find
simple shapes in the image.

Mathematical morphology cannot be directly extended to fuzzy sets, since it is not
internal in the [0, 1] interval. In attempts to build a mathematical morphology which
can process fuzzy sets, two major construction principles are followed [6]. One relies
on the fuzzification principle, while the other is based on translating set equations into
functional ones and involves the theoretical framework of triangular norms and conorms.
The second construction principle leads to an infinity of definitions for the basic operators.
In [6], various definitions for basic morphological operations are presented, analysed, and
compared.

By following the fuzzification principle, see Section 1.2, fuzzy dilation and fuzzy erosion
can be obtained from binary definitions. Depending on which of the equations (1) or (2)
is used in the fuzzification process, fuzzified morphological operations are

D(µ, ν)(x) = Dν(µ)(x) =

∫ 1

0
sup

y∈(να)x

µ(y)dα,

E(µ, ν)(x) = Eν(µ)(x) =

∫ 1

0
inf

y∈(να)x

µ(y)dα,

or

D(µ, ν)(x) = Dν(µ)(x) = sup
α∈(0,1]

[

α sup
y∈(να)x

µ(y)

]

= sup
y

[ν(y − x) · µ(y)],

E(µ, ν)(x) = Eν(µ)(x) = inf
y

[µ(y) · ν(y − x) + 1 − ν(y − x)]

The second approach is followed in [23], where several ways to design fuzzy morphology
are studied and analysed. Some of them are based on the fuzzification of underlying
logical operations, i.e., Boolean conjunction and Boolean implication, while others rely on
fuzzifying set inclusion.

The most general approach of the first type is based on the generalization of negation,
conjunction, and implication, see Section 1.2. Then, the fuzzy dilation DC(A,B) and fuzzy
erosion ET (A,B) are defined by:

DC(A,B)(y) = sup
x∈Ty(dB)∩dA

C(B(x− y), A(x)),

ET (A,B)(y) = inf
x∈Ty(dB)

T (B(x− y), A(x)),

where dF = {x ∈ Rn | F (x) = t for some t ∈ [0, 1]} is the domain of the function F .
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The second group relies on an extension of a binary inclusion relation and assumes a
mapping which assigns a number from a unit interval to a pair of fuzzy sets. Fuzzified set
inclusion is then used to extend the binary erosion to operate on fuzzy sets. Fuzzy erosion
is thus defined by using fuzzy inclusion I instead of the standard one, i.e., E(A,B)(x) =
I(x+B,A)), while fuzzy dilation can be defined by duality with respect to the standard
negator.

Different lists of desired properties of an inclusion indicator lead to different morpho-
logical operations.

In general, it is concluded that fuzzy morphological operations have weaker properties,
compared to binary ones. For example, a condition ν(0) = 1 is necessary and sufficient to
guarantee the extensivity of dilation, and thus antiextensivity of erosion; it corresponds
to the classical condition 0 ∈ B. If this condition is not satisfied, it is possible to get more
imprecision or uncertainty in an eroded fuzzy set than in the initial one (0 valued points
in the initial fuzzy set may not be 0 valued in the eroded one). Second, a generalization of
Matheron’s representation [24, 38] cannot be derived for fuzzy morphological operations
(it cannot be shown that any increasing spatially translation invariant operation can be
represented by a union of fuzzy erosions). Third, fuzzy morphological opening and closing
have weaker properties, and they are not morphological filters (increasing and idempotent
mappings). Fourth, the property of binary mathematical morphology that it is not useful
to apply the same operation twice is not valid. Well-defined properties of the operators
(providing well controllable chaining of the operations) do not hold for fuzzy morphological
definitions in general.

In spite of that, fuzzy mathematical morphology appears as a powerful theory as it
provides a large set of operations that can be used in fuzzy image processing. It provides
operations whose effects are spatially controlled; e.g., dilation allows us to propagate
fuzziness to an extent defined by a structuring element. The applicability and importance
of fuzzy mathematical morphology is also in the low sensitivity of fuzzy morphological
operators to small changes of shapes; they provide degrees of fulfilment for the observed
property, slightly different for slightly different shapes, which makes them useful in images
slightly changed by noise.

In [22], an example of application of the basic morphological operations is shown. For
a fuzzy image I and a structuring element SE of a size s(SE), fuzzy erosion is defined as

Emin(I, SE) = min{1 − |I − SE|}, Minimum Erosion

Eave(I, SE) = 1 − 1

s(SE)

∑

|I − SE|, Average Erosion

while dilation is defined by using duality:

D(I, SE) = 1 −E(1 − I, SE).

The use of different metrics in the definition of fuzzy operators is dependent on the par-
ticular problem; in an image with a high object connectivity, minimum erosion may be
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sufficient to clean the image, while in a sparse image such operations may erase all relevant
data if the size of the structuring element is not greater than the maximal connectivity
between the pixels (in this case average erosion performs much better).

Minimum Erosion, with a flat 3 × 3 square as a structuring element, filters small
background effects in the image, but also eliminates details that can be useful. Dila-
tion enhances noise, background, and spurious effects, but when combined with erosion,
it allows the retrieval of relevant geometric information. The opening of the image is
cleaned and smoothed, and its components appear more separated. In closing, the image
is smoothed too, but by filling the holes inside regions with higher intensities.

Another example of using fuzzy morphological operators in image processing is given
in [6]. The application concerns data fusion in medical imaging. The aim is to combine
several magnetic resonance images to improve the detection of spatial information. In
these images, the imprecision is due both to fuzziness in contours in each image, and to
imperfect registration between images. The first type of fuzziness is taken into account
by representing edges in these images by a fuzzy set, depending on their strength. The
second type is modeled by a fuzzy structuring element representing the the registration
imprecision. The fuzzy dilated edge set then provides the location of the edges with
graduations which represent both sources of imprecision. The fusion of such dilated fuzzy
sets obtained from several images allows taking the decision using all the information about
the problem and thus avoids the conflicts obtained from the fusions of crisp edges. The
imprecision in spatial data is introduced and managed in a fusion and decision process,
by means of fuzzy mathematical morphology.

5.5 Medial axis transform and skeletons

The Medial Axis Transform (MAT) [7] is a method which reduces an objects to its medial
axis, or to its skeleton. If the pixels resulting from MAT are unmarked, the obtained image
is binary and does not allow recovering of the original object; such shape representation is
called a medial axis. If the resulting pixels are marked, a grey-level image is obtained, and
the original object can be recovered from it; such shape representation is called a skeleton.
It should be noted that the distinction between a medial axis and a skeleton is not always
clear in the literature, and both names are used interchangably. In the following, we refer
to the result of MAT as it is originaly done by the authors of the papers. The comments
on the recoverability of the object from the described representations are given explicitely.

In [25], four equivalent definitions of the MAT of shapes in the real plane are given.
The first one is the prairie fire model, where the MAT points are the locations where the
propagating wavefront, initiated on the shape boundary, “intersects itself”. This approach
is illustrated in Figure 13(a). The second equivalent definition of MAT is based on the
paths from a point to the boundary, i.e., on the distance from the point to the boundary
(being the length of the shortest path between them). MAT is defined as the set of all
points of S which do not belong to the minimal path of any other point, together with
their distances. The skeleton is the planar projection of the ridges of the distance map
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Figure 13(b). The third model considers the skeleton as the geometric location of centres
of maximal disks. For a point P in a set S, the largest disk centered in P and fully
contained in S is called maximal disk of S if it is not contained in any other disk, centered
in any other point of S. The skeleton of a set S consists of the centres of its maximal
disks, together with their radii. This approach is illustrated in Figure 13(c). The fourth
model defines a MAT of a set as the set of points that do not belong to any straight line
segment connecting other points to their respective closest boundary points, Figure 13(d).

These four definitions are not equivalent in the discrete plane. In order to apply them
to the discrete plane, adjustments have to be made. Discrete versions of a straight lines,
a path, a distance, and a disk have to be used.

Figure 13: Illustration of four definitions of the skeleton (white) and an object (striped).
(a) The black curves are offsets of the boundary obtained by constant velocity propagation.
The set of self-intersecting points of the propagating curves is the skeleton. (b) The
skeleton is the planar projection of the ridges of the distance map from the boundary. The
ridges are shown as black curves in 3D, where the third dimension represents distance.
(c) The skeleton is the set of centres of maximal disks. (d) The skeleton is considered as
the set of points that do not belong to any straight line connecting other interior points
to their respective closest boundary points (from [19]).

Several generalizations of MAT to the case of grey-value (fuzzy) images have been
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proposed. Spatial Piecewise Approximation of neighbourhoods (SPAN) ([1]) is defined in
terms of maximal homogeneous disks; the given image can be approximated started from
the set of centres, radii, and average grey levels of the disks. The disadvantage of this ap-
proach is the computational cost of determining the maximal disks. Another generalization
GREYMAT, or GMAT, [20], is based on the concept of grey-weighted distance: the grey-
weighted length of a path is proportional to the sum (or integral) of the grey levels along
the path, and the grey-weighted distance between two points is the lowest grey-weighted
length of any path between them (compare to [37]). The GREYMAT of an image is de-
fined as the set of points whose grey-weighted distance to the zero-valued background is a
local maximum, together with their distances. The disadvantage of this approach is that
it requires segmentation of an image into background and not-background. Still another
generalization is GRADMAT [48], where a score is computed for each point P in the im-
age, based on the gradient magnitudes at pairs of points that have P as their midpoint.
These scores are high at the points that lie midway between antiparallel edges, or along
angle bisectors, so they define a MAT-like (grey-valued) skeleton. However, this skeleton
is very sensitive to noise and a subject of artifacts created by pairs of edges belonging to
different objects.

A generalization of MAT to grey-level images, overcoming the disadvantages of the
approaches presented in earlier works (SPAN [1], GREYMAT [20], and GRADMAT [48]),
is presented in [31]. The approach is inexpensive to compute, does not require image to
be segmented, and is unsensitive to noise. It is based on the fact that the MAT of a set S
can be constructed by a process of iteratively shrinking and reexpanding S. For grey-scale
images, the operations of local MIN and local MAX are generalizations of shrinking and
expanding. The value in a point is replaced by the minimum, or maximum, of all values of
the points within some given distance δ from the observed point. These definitions reduce
to the ordinary shrinking and expanding, respectively, in the crisp case. If applied to a
fuzzy image, they produce a fuzzy-valued output (values between 0 and 1). For the fuzzy
set µ, µ−δ and µδ denote the results of shrinking, and expanding, of a set by performing
MIN and MAX in a local neighbourhoud within distance δ. Such neighbourhood depends
on the distance which is used; e.g., for δ = 1 and the city block distance, it reduces to
4-neighbourhood, while for δ = 1 and the chessboard distance it becomes 8-neighbourhood.

The medial axis of a fuzzy set µ is defined as

sup
δ≥0

[µ−δ − (µ−δ−1)1)

where δ is an integer. In this way, medial axis is the set of pixels of all µ−δ that disappear
when µ−δ is shrunk by one unit and do not appear when it is re-expanded by one unit.

The reconstruction of an image from its generalized (min-max) MAT is not possible
(as opposite from the crisp case). If the whole sequence of changes produced during the
medial axis detection is known for each point of the image, the reconstruction can be done,
however requiring a large amount of information. This is a consequence of the fact that
in the min-max medial axis construction process the value of each point may be changed
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in every iteration, while in the crisp case it is changed at most once, from 1 to 0.
To assign the min-max MAT value to a point, e.g., the maximum, or the sum, of all

the values (differences) obtained for the observed point during the process can be used.
Reconstruction of an image starting from min-max medial axis, and also from GRAD-

MAT image, is studied in [47]. An exact reconstruction is possible, but needs a lot of
information. However, a good approximate reconstruction can be obtained by using only
those skeletal points which have high min-max MAT values, and only the few most signif-
icant components of their corresponding “difference” vectors. Some modifications of the
min-max MAT, providing thin skeletons, are proposed.

In [30], an extension of Maximal Square Moving (MSM) algorithm, proposed in [46],
to the grey-level and, in particular, fuzzy images, is given. The method is called the
Weighted Maximal Square Moving (WMSM) algorithm; it operates on digitized pictures
and produces a structure-descriptive representation of the core-line of an image, consisting
of the centres of the maximal squares contained in the image, together with their size,
average value of the membership values within it, and the coordinates of the centroids of
the neighbouring squares. The points composing the core-line do not necessarily coincide
with image pixels and are kept in a data structure from which syntactical or semantical
representations of the original image can easily be obtained.

The algorithm is based on the definitions of runs and squares, and three operations
on squares: enlarging, deriving, and meeting. By performing these operations and gen-
erating maximal squares contained in the image, while keeping track on the derivations
and meetings made for each maximal square, information of the neighbouring maximal
squares can be extracted. The center of a detected maximal square is computed as the
center of gravity, where membership values of the points are used as weights.

In order to improve skeletonization results, and reduce the number of spurious branches,
it is possible either to put some restrictions on the side length of the maximal squares,
and disregard those which are too small, or to disregard squares having too low average
membership value.

The fuzzy compactness measure proposed in [35] can be used for generating a skeleton
of a fuzzy set, as well [27]. Optimal fuzzy thin skeleton is extracted by minimizing the
compactness measure in the fuzzy skeleton plane in the image. From an optimal fuzzy
skeleton thus produced, one may also obtain its crisp single pixel width version, by re-
taining only those pixels which have strong skeleton-membership value compared to their
neighbours.

The skeleton extraction is done in three steps. The first step assumes fuzzy segmen-
tation of the regions in the image. Various algorithms for minimizing ambiguity both in
greyness and in spatial geometry are proposed in [28]. The algorithm extracts different
membership planes using Zadeh’s S-function [51] with varying cross-over point. Among
them, the one having minimal spatial and intensity fuzziness measured by entropy, index
of fuzziness, or compactness measure, is regarded as the fuzzy segmented version of the
image.

The second step is a construction of a skeleton membership plane; each pixel is assigned
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a membership to the core-line, by considering three factors. The skeletal pixels should have
high intensity, and they should occupy vertically and horizontally middle positions from
the edges of the object, determined as the border of a support of a fuzzy segmented
object. Suggestions how to define each membership term, and also how to combine them,
are given. Either it is required that the pixel “highly” fulfils at least two out of three
criteria, or some weighted sum of the criteria is calculated. In any case, membership
values decrease at positions away from the core-line, and towards the edges of the object.

The third step is to generate α-cuts of the skeleton membership function, in order
to determine the optimal skeleton (in terms of minimizing ambiguity in geometry or in
the spatial domain). That is achieved by minimizing a (crisp) compactness measure, here
defined as the ratio of the area and squared perimeter of the fuzzy object. With an increase
of α, the compactness measure of the skeleton decreases, since less points are considered
at each step, and both area and perimeter decrease. After achieving its optimum, the
compactness measure increases again, since the object becomes disconnected, and the
perimeter decreases more rapidly than the area. The α-cut providing minimal compactness
for a skeleton is used in the process of enhancement and fuzzy segmentation, similarly as
in the first step, for the initial membership function.

An approach which is theoretically interesting, but practically less useful, is presented
in [29]. The method is called FMAT, and is a natural generalization of the MAT. It is
defined by using either fuzzy disks, or convex fuzzy disks, but the FMAT of the image
sometimes requires more storage space than specifying the original grey-scale image itself.

For any metric, a fuzzy disk centered at the point P is a fuzzy set in which membership
values depend only on the distances from P . In [29], a fuzzy disk g

f
P in a fuzzy set f ,

having the center at P , is defined by

g
f
P (Q) = inf

d(P,R)=d(P,Q)
f(R),

for a metric d. Thus, gf
P is the maximal fuzzy disk centered at P and not exceeding f .

The set Df of disk centres being local maxima of f (points having no neighbours Q such

that gf
P < g

f
Q), is the fuzzy medial axis of f , and {gf

P | P ∈ Df} is the fuzzy medial axis
transformation of f . This set is sufficient to reconstruct f , since it holds that

sup
P∈Df

g
f
P = f.

It should be mentioned that fuzzy disks are not necessarily convex. If Euclidean metric is
used, and f is fuzzy convex, then the gf

P are fuzzy convex.
For an n × n digital image, and a chessboard distance, the total number of values

needed to specify the FMAT is O(n2).
In a grey-level image, the regions with locally higher grey-values can be understood

in the global context as a set of lines which gives sufficient evidence for a perceptually
meaningful sketch of an image, see Figure 14. Intuitively, the pattern can be interpreted
as a Digital Elevation Model, and the identification of the skeleton on it can be related to
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the detection of topographical features such as ridges, peaks and saddles. Detection of the
skeleton of the pattern, by referring to the structural properties of its distance transform, is
presented in [2]. An advantage of using a distance transform in the skeletonization process
is that it creates a structure in the interior of the pattern, and guides the detection of the
skeletal pixels in a more robust way, particularly regarding the extraction of the skeleton
end-points.

In the case of binary images, the distance transform shows the way in which the
background propagates over the pattern, and highlights the zones where interaction occurs
between wave fronts coming from distinct parts of the background. However, in grey-level
images, the length of a path, taking into account both spatial and intensity information,
can be the same for different points, some of them not being positioned along the middle
line of the image at all. To overcome this difficulty, structural information characterizing
the distance transform of a single-valued region and information about dominance relations
among the regions in the image are considered.

Figure 14: (a) A grey-tone pattern. (b) The skeleton obtained by using the procedure
discribed in [2] (from [2]).

The pattern is seen as piecewise constant, and for each region with a constant grey-
level the distance transform, based on the city-block distance, is computed. In particular,
the distance between two neighbouring points is calculated as

L(p, q) = d(p, q) + |g(p) − g(q)|,

where d(p, q) = 1 is a spatial distance (distance in the xy-Cartesian plane) between p and
q.

The constant-valued regions are classified into three groups, according to the grey-
levels of the adjecent regions. Regions of first type are those where all adjacent regions
have smaller grey-values. Within such regions the distance transform is unconstrained.
All points belonging to them are certainly included into the skeleton.
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Regions of the second type are those having both lower- and higher-valued neighbours.
Within them the distance transform is constrained, with respect to the higher-valued
region.

Figure 15: The skeleton is not found along the midline of the silhouette of the grey-tone
pattern, but along the midline of the higher intensity region. (Left) Input. (Right) The
skeleton (from [2]).

Regions of the third type are those having only higher grey-level neighbours. The
distance transform within them is not computed, since the reference set (the set containing
the points with lower grey-values) is empty. Such regions are hollows in the image. If the
depth of a hollow is significant enough

(which is decided by some threshold), the skeleton contains a loop around it, since the
region is seen as a part of the background. Otherwise, it is filled in, and merged with the
neighbouring regions.

In a similar way, the number of significant plateaux (regions with high intensity) is
reduced by merging neighbouring ones, if the difference between their grey-levels is lower
than a predefined threshold.

Neighbourhood conditions, extending the ones which are valid in the binary case,
are used to detect the set of intrinsic skeletal pixels on the Distance Transform, and to
grow monotonously increasing paths to connect some of those pixels having locally higher
distance labels. The conditions favour the detection of skeleton branches mainly along
the central line of a region, they particularly prevent the creation of peripheral branches.
Standard sequential removal operations are applied to obtain a one-pixel thick skeleton.
In the end, two kinds of pruning, related to significance in terms of degree of elongation
and in terms of grey-values, are done. The obtained set is reduced to unit width, and
the pruning process is applied, in order to obtain a skeleton of a grey-tone pattern. An
example is shown in Figure 15.

The presented procedure requires a number of input parameters (for the detection of
significant plateaux, and hollows, and for pruning), whose values depend on the problem
domain. Some questions about connectedness properties, as well as the type of distance
transform which is used, are still open.

The skeletonization algorithm presented in [19] is based on the global properties of the
boundary and skeleton curves. It is noticed that each skeletal point corresponds to at least
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two boundary points – those where the maximal disk centered at the observed skeletal
point touches the boundary. The distances from a skeletal point to both boundary points
are equal. If the boundary is segmented into small segments, and the distance map from
each of these segments is determined, the skeleton is located at the positions where at
least two distance maps share the same value. These locations are identified as zero sets
of distance map differences.

In order to determine the most appropriate way to segment the boundary, it is shown
that a skeletal point is never generated by a single curve segment defined between succes-
sive positive curvature maxima. It is suggested to segment the shape boundary at points
of positive maximal curvature, since in that case points generating the skeleton of a shape
always belong to different boundary segments. For the segmentation of a closed curve, at
least two partitioning points need to be assigned.

The algorithm consists of four main steps, as illustrated in Figure 16:

• find the curvature along the boundary curve and split the boundary into segments
at the points of maximal positive curvature;

• for each segment calculate the Euclidean distance map over the whole image domain;

• find a preliminary skeleton as the location of the zero-level sets of all distance map
differences;

• eliminate all background points and all points located on branches being too close
to the corresponding boundary segment (at the distance lower that the reciprocal
value of a curvature at the observed point).

The skeletonization algorithm described above can be successfully applied to all shapes
unless they contain a specially shaped hole; in that case, the boundary of the hole (being a
part of a shape boundary) does not necessarily contain two points of the negative curvature
minima.

When applied to a discrete grey-level shape, the skeletonization algorithm includes
interpolation of the boundary curve and its corresponding curvature. The discrete bound-
ary of the object is obtained by subtracting a given threshold from an initial image, and
taking the zero level of the resulting image. Distance maps are calculated on the grey-level
images, by using numerical approximations which are consistent with the continuous case,
so the method does not suffer from digitization bias, caused by a metrication errors and
implementation on the grid.

A skeleton of a fuzzy shape can be computed by using fWDT, as presented in [10].
As in the binary case, the algorithm is based on iterative thinning guided by a distance
transform. After calculating fWDT, the centres of maximal disks are detected. In this
step, the points having labels lower than one half of a length of a of a horizontal step are
considered as background points if they have at least one neighbour in the background,
and kept (at least temporarily) if being surrounded by pixels with higher labels, to avoid
creating spurious holes. All other labels are treated in the same way as in the classical
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Figure 16: (Upper left) An object after geometric smoothing. (Upper right) Interpolated
curvature function along the outer boundary (upper graph) and inner boundary (lower
graph). (Lower left) Voronoi diagram of the segments (preliminary skeleton) in which the
branches to be pruned are in light gray. (Lower right) The skeleton is the white curve,
interpolated to subpixel accuracy, shown on the object (from [19]).

skeletonization algorithm, based on DT. The resulting skeleton is centered within the
object with respect to the used fWDT. The topology of the object is preserved. The
skeleton generated by using fWDT is, in general, smoother, compared to the one obtained
by using WDT.

In Figure 17, first from the left, a cross section of a wood fibre in a scanning electron
microscope image of paper is shown. The grey-levels of the pixels are in the range from 39
to 98. This is an example where the segmentation into object, fibre wall, and background
is, in principle, easy. In Figure 18, the grey-level histogram for the image is shown.
The peak for the object is centred around grey-level 56 and the peak for the background
around grey-level 74. If the grey-levels are assumed to be normally distributed for both
the object and the background, there is only a small overlap. Here, Tl = 61 (lower values
are background), Th = 72 (higher values are object), and pixels with grey-level 62 to 71
can be either object or background.

If we use a hard threshold and consider pixels with grey-level not lower than 62 as
object, the resulting object (grey) and its skeleton (black) are shown in Figure 17, second
from left. There are many non-significant skeleton components, and there is a bridge
between the central fibre and the one at bottom right. If the threshold is set to 71, we get

42



Figure 17: Grey-level image (first to the left) and skeletons resulting after using thresholds
62 (second to the left), 71 (third from the left), and the fuzzy border approach (the most
right) (from [10]).
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Figure 18: Grey-level histogram of Figure 17, left (from [10].

the skeleton in Figure 17, second from right. There are now holes in the skeleton, that do
not correspond to holes in the fibre. If instead fWDT (here 〈5, 7〉2D) and the described
skeletonization algorithm is used, the resulting skeleton reflects the shape and topology
for the imaged object in a better way, see Figure 17, right, where the skeleton consists
of the points with the highest grey-level. This result has been achieved even though the
grey-levels in the “bridge” between the fibres are the same as the ones in the “holes” in
the fibre. The fWDT skeleton is also generally smother than the WDT one, even if this is
hard to see in this small example.

A medial surface representation of a 3D grey-volume image is computed in [43]. The
method combines distance information with grey-level information.

The suggested procedure reduces the foreground to a subset having the same topology
as the initial foreground, constituted by surfaces (and curves) mainly placed along the
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central position of the regions with locally higher intensity.
The first step is to compute the DT of all regions in the image. The voxels with grey-

level gk are labeled with the distance to their closest voxel in the reference set. Voxels
placed in cavities are not reached by the distance propagation. After computation of the
DTs, the voxels placed in cavities are set to the background level g0.

The distance label assigned to a voxel can be interpreted as the iteration during erosion
at which that voxel belongs to the border of the current foreground. Thus, an iterative
thinning of the foreground, guided by the DT to identify the voxels that at each iteration
constitute the border of the current foreground, is performed. To simplify the structure
of the surface skeleton, some of its peripheral surfaces are removed to obtain the desired
grey-medial surface representation.

6 Comments and conclusions

The fuzzy set theory has found a promising field of application in digital image processing.
The use of fuzzy approaches for representing spatial relationships allows us to integrate
both quantitative and qualitative knowledge about them, using the semi-quantitative in-
terpretation of fuzzy sets. Fuzzy sets fit our intuitive knowledge of the diffuse localization
or limits of the image components due to both uncertainty and imprecision.

Fuzziness is an intrinsic quality of images and a natural outcome of most picture
processing techniques [6]. Two kinds of fuzziness can be distinguished, related to images.
The first deals with crisp objects whose observation is corrupted by noise. Thus, fuzziness
represents the imprecision and uncertainty due to noise. On the other hand, imprecision
may be inherent to the observed objects and to the images, which leads to the second kind
of fuzziness, that cannot be modeled by noise combined with a crisp object. The first type
of fuzziness is not desired, and is preferably eliminated (if possible) before the analysis
procedures, after which classical binary image analysis techniques can be performed. The
second type provides important information, and is an essential part of the image [45, 6].
It has been shown to be useful to perform analysis while keeping this type of fuzziness
present in the image as long as possible. Consequently, new appropriate image analysis
methods are required.

The interest for developing such methods appeared almost forty years ago, and has
been more or less active since then. That has resulted in the fuzzy shape analysis tool-box
containing the extensions of almost all classical shape analysis methods, but with varying
quality. While some of them, like distance transforms, and mathematical morphology, are
rather intensively studied and well developed, some other, like moment-based methods,
are hardly even mentioned in the literature. There are still a lot of challenges in fuzzy
shape analysis; an evident improvement of the analysis, first of all in terms of precision
and robustness, if fuzzy shape representations are used, seems to be a good motivation to
take them.
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