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Introduction

Well known texture features

o Haralick features (Haralick 1972)
e Gabor filters (Gabor 1946, (in 2D,
Granlund 1978))

e Local Binary Patterns (Ojala
1996)

Texture - “A textured area in an image
can be characterized by a nonuniform
or varying spatial distribution of
intensity or color" - Pietikiinen et.al 2011
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Local Binary Patterns
- explained in one slide

a) Threshold neighbouring values using
center pixel value. b) Traverse over the
image repeating step a. ¢) Compile a
histogram over occurring binary
sequences.
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Local Binary Patterns
- explained in one slide

The local binary code using N samples where
on a radius R for a pixel position (x, y)
is defined as: spy=d box=0 2
0, otherwise
N-1

LBPy r(x,y) = Z s(gp —&c)2P, (1) and gc is the gray value at (x,y) and g
p=0 the gray value at point p.
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Local Binary Patterns

- variants

LBP - Developed in mid '90s as a local
contrast descriptor. Initially used in
computer vision, now more general use.

The noise sensitivity of LBP soon lead
people to develop LBP-based
descriptors keeping more of the local
information.
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o Improved (mean) Local Binary
Patterns

e Median Local Binary Patterns

e Local Ternary Patterns

e Improved Local Ternary Patterns
e Local Quinary Patterns

e Robust LBP

e Shift LBP

o Fuzzy/Soft LBP
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Improved Local Binary Patterns

N—-1
ILBPNR(x,¥) = > s(gp — Gmean)2” + S(gc — Emean)2", 3)
p=0
where
1 N—-1
Bmean = m ; 8+ 8|, (4)
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Median Binary Patterns

N-1

MBPNR(Xv}/) = Z s(gp - gmedian)2p + S(gc - gmedian)zNﬁ

p=0
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Local Ternary Patterns

N-1

LTPyR(xy) =Y s3(gp> &> 11)2", (6)

where

1,
53(gp-, 8c tl) = 0,
-1

)

p=0

8 =8+t
ge—t1<gp<gt+ttr . (7)
otherwise

Two binary codes are used to code for 1 and —1 respectively. The two resulting histograms are
then concatenated to form the feature vector.
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Improved Local Ternary Patterns Local Quinary Patterns
N-1
Nt LQPNR(x.Y) =) 55(8ps &c: 11, 12)2°, (10)
p=0
ILTPN,R(Xay) = Z 53(gp - gmean)Qp + 53(gc - gmean)2N7 (8)
p=0 where the two thresholds are used in the ss-function according to:
where 2, gp=8gtt
Lo gp=gth ( t b)) = (1)7 gc+§1§gpigci:2 (11)
53(gp7 gc, t1) = 0, ge—t1<gp<getts (9) S5\8pr Eer 1 12) = 717 g o tl 2 & < & _ tl ’
—1, otherwise > 8c 2 < 8 <8 —h
—2, otherwise
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Four binary codes are used to code for 2,1, —1 and —2 respectively. The four resulting
histograms are then concatenated to form the feature vector.
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Robust Local Binary Patterns

RLBPy r(x,y, k) =

where

s(x) =

1,
0,

k is typically set to a small value like 3 or 4.

Swedish University of Agricultural Sciences
Uppsala University

E Centre for Image Analysis

N-1

Z S(gp — g — k)2P,

p=0

x>0
otherwise

(12)

(13)
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Shift Local Binary Patterns

N-1
SLBPNR(x,y, k) = > s(gp — g — k)2°, (14)
=
where k is defined as:
kel[-1, 1NZ. (15)

The number of generated binary patterns K for one pixel position equals the number of

different values k assumes;

K=2-/+1. (16)
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Fuzzy Local Binary Patterns (1/3)

A membership function for a neighbouring point p to a ‘0-class’, mg, and the antonym
function mjy, expressing belongingness to a ‘1-class’ is defined as:

0, 8 =8+ f
mo(p,f) = { TEE g f<gy<gt+f (17)
1, otherwise
m(p.f) = 1 mo(p) (18)
WQN- e my
7}@" }(‘ 9p — 9e
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Fuzzy Local Binary Patterns (2/3)

f governs the interval of fuzzy belongingness. The contribution from one pixel position (x, y)
to a bin 7 in the histogram H of occurring binary patterns is:

N-1
FLBPR(x, i) = [ [bp(i)mi(ge — g5) + (1~ bp())mo(ec — )] +
p=0

(19)
where by (i) € {0,1} is the value of the p-th bit of the binary representation of pattern /.
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Fuzzy Local Binary Patterns (3/3)

By remembering that all considered pixel positions may contribute to bin 7 in the histogram H
it follows that:

Heigp(i) = Y FLBPN r(x,y, 1) . (20)

X,y
Analogous to the other LBP-based descriptors, the resulting histogram constitutes the FLBP
feature vector.
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A faster FLBP implementation is achieved by only calculating memberships for positions falling
within the fuzzy region [—f, f]. Outside the fuzzy region the standard LBP is computed.
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Datasets

Dataset No. classes No. samples Total no. §ample
per class samples  size [px]
Brodatz? 111 9 999 213 x 213
Kylberg® 28 640 17,920 288 x 288
Mondial Marmi® 12 16 192 272 x 272
Outex® 24 20 480 128 x 128
uiuc 25 40 1,000 640 x 480
Virus 15 100 1,500 41 x 41

2 Dataset accessed via (?). © Each original sample is divided into four samples.
€ The Outex texture set Outex_TC_00000 is used.
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Texture Datasets

Mondial Marmi
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Noise Robustness Test
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Noise Robustness Test
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Remarks

e Many LBP-based descriptors has been

introduced using different encoding
and thresholding schemes but there
are few comparative studies and few
pointers to when to use what.

The LBP-based descriptors vary in
performance and no one seems to be
superior to all the others.
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e MBP tend to perform poorly (the

possible binary patterns are restricted

when using the median value).

e FLBP may perform well in specific
situations.

e FLBP is very slow compared to the

other LBP based descriptors.
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References

e For a good overview of most of the LBP-descriptors see the recent book: “Computer Vision Using Local
Binary Patterns” by Pietikdinen, Hadid, Zhao, and Ahonen, Springer London, 2011, 40, 135-148.

e MATLAB implementation of LBP: http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab

e For MATLAB implementations of ILBP, MBP, LTP, ILTP, LQP, SLBP, RLBP, FLBP (and also multiscale
LBP) just contact me (gustaf@cb.uu.se). My ambition is to document and put the implementations on
the CBA wiki (http://www.cb.uu.se/wiki/)
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