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Feature estimation - some general
observations

• Our aim is to obtain information about continuous real objects, having
available their discrete - coverage - representation.

• Different numerical descriptors, such as area, perimeter, moments, of
the objects are often of interest, for the tasks of shape analysis,
classification, etc.

• Estimators should be adjusted/designed so that they utilize in a best
way information preserved in a coverage representation.
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Precision of features extracted from the
coverage representation

1 Geometric moments
• N. Sladoje and J. Lindblad. Estimation of Moments of Digitized Objects with Fuzzy Borders.

ICIAP’05, LNCS-3617, pp. 188-195, Cagliari, Italy, 2005.

2 Perimeter
• N. Sladoje and J. Lindblad. High Precision Boundary Length Estimation by Utilizing Gray-Level

Information. IEEE Trans. on PAMI, Vol. 31, No. 2, pp. 357–363, 2009.

3 Signature of a shape
• J. Chanussot, I. Nyström, N. Sladoje. Shape Signatures of Fuzzy Sets Based on Distance

from the Centroid, PRL, 26(6), pp. 735-746, 2005.

4 Projection (diameter, elongation)
• S. Dražić, J. Lindblad, N. Sladoje. Precise Estimation of the Projection of a Shape from a Pixel

Coverage Representation. Proc. of ISPA 2011 (IEEE), pp. 569-574, Dubrovnik, Croatia, 2011.

5 Distances between sets (shape matching, image registration)
• V. Ćurić, J. Lindblad, and N. Sladoje. Distance measures between digital fuzzy objects and

their applicability in image processing. IWCIA2011, LNCS-6636, pp. 385-395, Madrid, Spain,
2011.
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Feature estimation - some general
observations

• Evaluation of an estimator should, in an ideal case, provide some
relevant error bounds.

• Several estimators proposed for general fuzzy membership functions
are (only) statistically evaluated (for some selection of cases) and
improvements in terms of precision are observed.

• Generality is often an obstacle for derivation of stronger theoretical
statements about the derived estimation methods.

• Membership function of a coverage model is restricted enough to allow
derivation of error bounds for feature estimators.
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Feature extraction - some general
observations

Aggregation over α-cuts – a standard approach for fuzzy sets

Given a function f : P(X) → R, which assigns a real valued “feature” to a
crisp subset of an integer grid,

we can extends this function to f : F(X) → R, so that it assigns a real
valued feature to a fuzzy subset of an integer grid, using the equation

f (S) =
∫ 1

0
f (Sα)dα,

where Sα is an α-cut of a fuzzy set S, i.e., a crisp set that contains all the
elements in X that have membership value in S greater than or equal to α:

Fα = {x ∈ X | µF(x) ≥ α}.

α-cutting is thresholding of the membership function at a level α.
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Geometric moments - computation

Definition

The two-dimensional Cartesian moment, mp,q of a function f (x, y) is defined
as

mp,q =

∫ ∞

−∞

∫ ∞

−∞
f (x, y)xpyq dxdy ,

for integers p, q ≥ 0. The moment mp,q(S) has the order p + q.

Definition

Geometric moment mp,q of a digital image f (i, j) is

mp,q =
∑

i

∑

j

f (i, j)ipjq ,

where (i, j) are points in the (integer) sampling grid.

Geometric moments of objects provide information about area,
(hyper-)volume, centroid, principal axes, and a number of other features of
the shape.
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Geometric moments - error estimation

Crisp representation:

Theorem

The moments of a closed bounded set S, digitized in a grid with resolution r
(the number of grid points per unit), can be estimated by

mp1,p2(S) =
1

rp1+p2+2
m̃p1,p2(rS) +O

(
1
r

)

for p1 + p2 ≤ 2

Here rS denote a scaling of the continuous set S about the origin by the
factor r. Scaling of the object can be used instead of changing resolution of
a grid.

Geometric moments are multi-grid convergent.
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Geometric moments - error estimation

Coverage representation:

Theorem

The moments of a closed and bounded 2D shape S can, for p1 + p2 ≤ 2, be
estimated by

mp1,p2(S) =
1

rp1+p2+2
s

M̃rf
p1,p2(rsS) +O

(
1
r2

s

)
+O

(
1

rsrf

)

where M̃rf
p1,p2 is (p1, p2)-geometric moment of rsS computed from its

rf -sampled coverage segmentation.
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Geometric moments - error estimation

Observations:

• Once the spatial resolution is high enough to fully “exploit” the coverage
values of pixels, using r2

f coverage values provides the same accuracy
of moment estimation as increasing the (crisp) spatial resolution of the
image rf times.

• Even though rf -sampled coverage representation is observed here, the
results hold for ℓ-level quantized coverage digitization (with ℓ = r2

f ).

• Extensions to nD and moments of higher orders are studied as well.
Corresponding error bounds are derived (Course material).
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Geometric moments - error estimation
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Plot of maximal observed error for first order moment estimation for different spatial
and coverage resolutions, for a disk.
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Area estimation error in a noisy environment
in combination with coverage segmentation
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Noise free crisp segmentation
Noise + pixel coverage segmentation

Left: (top) Synthetic test objects. (middle) Part of object with 30% noise added.
(bottom) Coverage segmentation result for 30% noise. Right: Estimation errors for
increasing levels of noise. Green is noise free crisp reference. Lines show averages
for 50 observations and bars indicate max and min errors.
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How to assign local step lengths

Using 4 edge directions.

Digital edge
√

2 times longer than
true edge.

Using 8 edge directions.

Edge 1.08 times longer than true edge.

Freeman 1970:

a = 1, b =
√

2
Using a = 1, b =

√
2 lead to

an overestimate.
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Error minimization

• Observe straight lines of all directions.

• Restrict to lines with slopes k ∈ [0, 1]. Other cases follow by
symmetries.

• Decide what error to minimize
• The mean square error (MSE) minimization leads to estimators that, in

average, perform well for lines of all directions.
• The maximal error minimization leads to estimator with a better

“controllable” error.

• Compute optimal step lengths to minimize the chosen error measure
when estimating the length of straight segments of arbitrary direction.

• To minimize MSE: a = 0.9481 and b = 1.3408.
Root Mean Square (RMS) Error is 2.33%.

• To minimize MaxErr: a = 0.9604 and b = 1.3583.
Maximal Error is 3.95%.

• The error does not decrease with increasing resolution
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Local and non-local estimators

Local estimators
Use information from a small region of the image to compute a local feature
estimate. The global feature is computed by a summation of the local feature
estimates over the whole image.

• Easy to implement

• Trivial to parallelize

• If a local change in the image, only that part has to be traversed to update the
estimate

• Stable, if the local estimate is bounded

Non-local estimators
Use information from larger (unbounded) regions of the image.

• Difficult to parallelize, if at all possible

• Often of higher complexity (may be NP-hard)

• May suffer from stability problems

• Small change of the image requires global recomputation
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Local and non-local estimators

• Local estimators have sufficiently many advantages compared to global
ones, to deserve to be studied further.

• Local perimeter estimators are, however, not multigrid convergent, not
even for straight edges.
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The straight edge of a halfplane

Discrete, grey-scale, non-quantized

Observe a halfplane H = {(x, y) | y(x) ≤ kx + m, k,m ∈ [0, 1]},
over an interval x ∈ [0,N], N ∈ Z+.
Let I be the non-quantized pixel coverage digitization I = D(H)
(∆x = ∆y = h = 1 by definition.)

Then it holds that
y(i) =

∑

j≥0

I(i, j)− 0.5

k(i) = y(i + 1) − y(i) = k

l =
√

N2 + (kN)2 =
N−1∑

i=0

√
1 + k(i)2

The length of the edge segment l is “estimated” with no error.
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Non-quantized example
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l = 4.39

sc:
dc:
lc:

Example illustrating edge length estimation based on the difference dc of column sums sc for a segment
(N = 4) of a halfplane edge given by y ≤ 0.45x + 0.78.

sc =
∑

j≥0

I(c, j) , dc = sc+1 − sc , lc =
√

1 + d2
c
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The straight edge of a halfplane

Discrete, grey-scale, quantized

Observe a halfplane H = {(x, y) | y(x) ≤ kx + m, k,m ∈ [0, 1]},
over an interval x ∈ [0,N], N ∈ Z+.
Let I be the quantized pixel coverage digitization I = Dn(H)

Then

l̃ =
N−1∑

c=0

√
1 + d2

c

provides an estimate of the edge length l.

However, this is in general an overestimate (zig-zag steps). Scaling the
estimate with an optimally chosen factor γn < 1, gives an estimate with a
minimal error.

l̂ =
N−1∑

c=0

γn

√
1 + d2

c
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Quantized example
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s̃c:
d̃c:
l̃c:

Example illustrating edge length estimation based on the difference dc of column sums sc for a segment
(N = 4) of a halfplane edge given by y ≤ 0.45x + 0.78.

sc =
∑

j≥0

I(c, j) , dc = sc+1 − sc , lc =
√

1 + d2
c
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Minimization of the maximal relative error

An edge is a linear combination of local steps
The edge segment l = (N, kN) can be expressed as a linear combination of two of the vectors, Si = (1, i

n
),

Sj = (1, j
n
), i, j ∈ {0, 1, . . . , n}, having slopes ki =

i
n
, kj =

j
n

such that ki ≤ k ≤ kj.
Its length on the interval [0, N] can be estimated by

l̂ = γn

(
(j − nk)N

j − i
Si +

(nk − i)N

j − i
Sj

)
, where Si =

√
1 + ( i

n
)2 .

Relative error of the length estimation

The relative error of the length estimation of the line segment with slope k, such that k ∈ [ i
n
, j

n
):

εi,j(k) =
l̂ − l

l
= γn

(j − nk)Si + (nk − i)Sj

(j − i)
√

1 + k2
− 1 .
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Minimization of the maximal relative error

Result [Sladoje and Lindblad, PAMI 2009]

The maximal error is minimized for

γq
n =

2q

q +
√

(
√

n2 + q2 − n)2 + q2

, where q = j − i .

The maximal error is |ε| = 1 − γq
n .

Quantization leads to q > 1. In 2D it holds that q ≤ 3.
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Asymptotic behaviour

Observing the estimation error as a function of the number of grey-levels n,
we conclude that

|εn| = O
(

1
n2

)
.
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Asymptotic behaviour of the maximal error for straight edge length estimation using
γn = γ1

n ; theoretical (line) and empirical (points) results.
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Algorithm

Input: Pixel coverage values p̃i, i = 1, . . . , 9, from a 3 × 3 neighbourhood T(c,r).
Output: Local edge length l̂T

(c,r) for the given 3 × 3 configuration.

if p̃7 + p̃8 + p̃9 < p̃1 + p̃2 + p̃3 /* y ≥ kx + m */
swap(p̃1, p̃7)
swap(p̃2, p̃8)
swap(p̃3, p̃9)

endif

if p̃3 + p̃6 + p̃9 < p̃1 + p̃4 + p̃7 /* k < 0 */
swap(p̃1, p̃3)
swap(p̃4, p̃6)
swap(p̃7, p̃9)

endif

if p̃4 + p̃7 + p̃8 < p̃2 + p̃3 + p̃6 /* k > 1 */
swap(p̃2, p̃4)
swap(p̃3, p̃7)
swap(p̃6, p̃8)

endif

s̃1 = p̃1 + p̃4 + p̃7

s̃2 = p̃2 + p̃5 + p̃8

s̃3 = p̃3 + p̃6 + p̃9

ũl = (̃s1 + s̃2)/2
ũr = (̃s2 + s̃3)/2

if 1 ≤ ũl < 2
d̃l = s̃2 − s̃1

l̂l =
γn

2

√
1 + d̃2

l

else
l̂l = 0

endif

if 1 < ũr ≤ 2
d̃r = s̃3 − s̃2

l̂r =
γn

2

√
1 + d̃2

r

else
l̂r = 0

endif

l̂T(c,r) = l̂l + l̂r

Only integer arithmetics used locally (fast, exact).
Only local information is used (fast, stable, parallelizable).
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Perimeter estimation - evaluation
Trade-off between spatial and grey-level resolution
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Relative errors in percent for test shapes digitized at increasing resolution for 5
different quantization levels and non-quantized (n = ∞).
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Segm. (soft threshold) + perimeter estimation

Digital photos of the straight edge of a white paper on a black background at
a number of angles using a Panasonic DMC-FX01 digital camera in
grey-scale mode.
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(b)

(a) Close up of the straight edge of a white paper imaged with a digital camera. (b)
Segmentation output from Algorithm 2 using 130 positive grey-levels. Approximating
edge segments are superimposed.
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Results – Segm. method 2 + perimeter est.

The observed noise range in the images is between 20 and 50 grey-levels,
out of 255, and the found value of n in the segmentation varies from 90 to
140 for the different photos.

The observed maximal errors for the
methods are as follows:

• Proposed method 0.14%;

• Binary 3.95%;

• Corner count 1.61%;

• Eberly & Lancaster 8.78%;

• Gauss σ = 2 + E & L 0.57%;

• Gauss σ = 4 + E & L 0.58%.
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Perimeter estimation error in a noisy
environment

in combination with coverage segmentation
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Crisp, noise free
Coverage segmentation .

Left: (top) Synthetic test objects. (middle) Part of object with 30% noise added.
(bottom) Coverage segmentation result for 30% noise. Right: Estimation errors for
increasing levels of noise. Green is noise free crisp reference. Lines show averages
for 50 observations and bars indicate max and min errors.
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Orthogonal projection of a shape

Extremal points of a set S in the direction ϕ is defined as

Minϕ(S) = min
(x,y)∈S

(x cosϕ+ y sinϕ).

x

y

P

Min

S

l

Tangent direction at extremal point P is orthogonal to the line y = x tan ϕ
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Orthogonal projection of a shape

Boundary of a smooth shape S in pixel A containing extremal point P, can be
approximated by tangent line in extremal point.

AB

C D

P

P

1

2

P

Triangle
P1(i, j + 1 −

√
2 · α(i, j) · cot ϕ)

P2(i −
√

2 · α(i, j) · tan ϕ, j + 1),

P'
1 AB

C DP

P

1

2

P

Trapeze

P1(i − 2·α(i,j)−tan ϕ
2 , j)

P2(i − 2·α(i,j)+tan ϕ
2 , j + 1),

AB

C DP

P

1

2

P

Pentagon
P1(i − 1 +√

2 · (1 − α(i, j)) · tan ϕ, j)
P2(i − 1, j −√

2 · (1 − α(i, j)) · cot ϕ).
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Algorithm: Projection of an extremal point of
a given shape onto a given direction.

• Input: Pixels p(i,j) , i ∈ {1, ...m}, j ∈ {1, ...n}, with values of area coverage digitization α(i, j) of given shape S, and

direction ϕ for projecting.

• Output: Value of projection, Minϕ, of minimal extremal point onto the direction ϕ.

for i ∈ {1, ..., m}, j ∈ {1, ..., n}, α(i, j) > 0

if 0 < α(i, j) <
tan ϕ

2
x̃i = i,

ỹj = j + 1 −
√

2 · α(i, j) · cot ϕ

end if

if tan ϕ
2 ≤ α(i, j) ≤ 1−tan ϕ

2

x̃i = i − 2·α(i,j)−tan ϕ
2 ,

ỹj = j

end if

if α(i, j) > 1 − tan ϕ
2

x̃i = i − 1 +
√

2 · (1 − α(i, j)) · tan ϕ,
ỹj = j

end if
P̃i,j = x̃i · cos ϕ + ỹj · cos ϕ

end for
M̃inϕ = min{P̃i,j | i ∈ {1, ...m}, j ∈ {1, ...n}}.
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Diameter of a shape
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Performance of estimation of a diameter estimator. Signed relative error of width of a
circle, for different angles of projection and fixed radius (left) and for increasing radius
of a disk (right)
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Signature of a shape – work in progress
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A star-shaped object with respect to the centroid and its corresponding shape
signature.
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Signature of a shape: Sensitivity to rotation
Signature based on a Euclidean distance from a shape centroid computed
from coverage representation of a square by fuzzification principle
(averaging over α-cuts)

Work to do: further adjust the method to the coverage representation and
derive estimation error bounds.
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Conclusions

• Main results presented here are the given upper bounds for the
estimation error as functions of spatial and coverage resolution.

• For some of the descriptors only statistical studies are performed.
Results are encouraging, but should preferably be theoretically
supported.

• We have confirmed that inter-relations between the two types of
resolutions affect the precision of estimation, and that one of the
resolutions can, to some extent, be used to compensate for the other.

• It is usually the case that spatial resolution is given by the imaging
device and cannot be changed, whereas improved intensity information,
or simply better utilization of grey-levels, already at hand, may be much
more easily accessible.

• It is clear that there are still many more descriptors/estimators to
address.


