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Motivation

Task:
Characterize a pair of sets by a single number

- the distance between them -
reflecting size of a displacement and/or difference in some other way.

• Interest is both in
• theoretical aspects of the problem i.e., different properties of different

measure defined,
• practical issues, i.e. performance of distance measures in applications.

• Our choice of distance measures to explore:
• applicable to image registration and pattern/shape matching;
• of linear computational complexity;
• applicable to crisp sets and applicable to fuzzy sets.
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Motivation

Our results are summarized in the following papers:

• J. Lindblad, V. Ćurić, and N. Sladoje. On set distances and their application to image
registration. In Proceedings of the 6th International Symposium on Image and Signal
Processing and Analysis (ISPA),Salzburg, Austria. IEEE, pp. 449-454, 2009.

• V. Ćurić, J. Lindblad, N. Sladoje, H. Sarve, and G. Borgefors. A new set distance and its
application to shape registration. Accepted for Pattern Analysis and Applications, 2012.

• V. Ćurić, J. Lindblad, and N. Sladoje. Distance measures between digital fuzzy objects
and their applicability in image processing. In Proceedings of the 14th International
Workshop on Combinatorial Image Analysis (IWCIA2011), Madrid, Spain. Lecture Notes
in Computer Science, Vol. 6636, pp. 385-395 , 2011.
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Motivation

Our results are summarized in the following papers:

• J. Lindblad, V. Ćurić, and N. Sladoje. On set distances and their application to image
registration. In Proceedings of the 6th International Symposium on Image and Signal
Processing and Analysis (ISPA),Salzburg, Austria. IEEE, pp. 449-454, 2009.

• V. Ćurić, J. Lindblad, N. Sladoje, H. Sarve, and G. Borgefors. A new set distance and its
application to shape registration. Accepted for Pattern Analysis and Applications, 2012.

• V. Ćurić, J. Lindblad, and N. Sladoje. Distance measures between digital fuzzy objects
and their applicability in image processing. In Proceedings of the 14th International
Workshop on Combinatorial Image Analysis (IWCIA2011), Madrid, Spain. Lecture Notes
in Computer Science, Vol. 6636, pp. 385-395 , 2011.

• J. Lindblad, and N. Sladoje. Distance measures between digital fuzzy objects - cutting
vertically vs. cutting horizontally. In preparation.
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Distance

Most generally, distance is any mapping d : X × X → R+ ∪ {0}. A list of desirable properties
of a distance contains the following:

• Non-negativity: d(A,B) ≥ 0.

• Separability: d(A,B) = 0 if and only if A = B.

• Symmetry: d(A, B) = d(B,A).

• Subadditivity (triangle inequality): d(A,C) ≤ d(A,B) + d(B,C).
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Distances between objects

Distances

• between two points in a set

• between a point and a set

• between two sets

are of interest.

Point-to-point:
Distance d between two points a, b ∈ X, is d(a, b) = ‖a − b‖2.

Point-to-set:
The distance between a point a ∈ X and a non-empty set B ⊆ X is

d(a,B) = inf
b∈B

d(a, b) .

The distance between sets often incorporates information on point-to-set distances, for some
selection of the points involved.
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Distances between crisp objects

• Hausdorff distance

dH(A, B) = max
(

sup
a∈A

d(a, B), sup
b∈B

d(b, A)

)

• Modified Hausdorff distance

dMH(A,B) = max

(
1

|A|
∑

a∈A

d(a, B),
1

|B|
∑

b∈B

d(b,A)

)

• Metric by Symmetric difference
dSD(A, B) = |(A \ B) ∪ (B \ A)|

• Chamfer matching distance
dCH(A,B) =

∑

a∈∂A

d(a, ∂B)

• The Sum of minimal distances

dSMD(A, B) =
1

2

(∑

a∈A

d(a,B) +
∑

b∈B

d(b,A)

)
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Main properties of the set distances

• Hausdorff distance is a metric, however very sensitive to noise.

• Modified Hausdorff distance is not a metric, but it is less sensitive to noise.

• Metric by Symmetric Difference is a metric, but it is not sensitive to spatial displacements of
non-overlapping sets.

• Chamfer Matching distance is not a metric. It can be sensitive to boundary noise and to an
exchange of foreground and background.

• Sum of Minimal Distances is not a metric. Exhibits reasonably good properties.

The Chamfer matching distance does not distinguish between points of the object and points of the
background. A: Reference image Ir , B: Observed image Io, C: Observed image (Red) and Registered
image (Green) superimposed.

A B C
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Complement Weighted Sum of Minimal
Distances

Newly proposed set distance

Intention:

To assign a higher importance to the points of A deep inside the set than to points closer to the
boundary of the set, and by that further improve The Sum of Minimal Distances.

dCW(A, B) =
1

2




∑
a∈A

d(a, B)d(a,A)

∑
a∈A

d(a,A)
+

∑
b∈B

d(b,A)d(b,B)

∑
b∈B

d(b, B)


 .

Properties:

non-negativity, separability and symmetry.
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Complement Weighted Sum of Minimal
Distances

Comparison of weighting performed - an illustration

Two binary shapes A and B and their
symmetric difference A △ B.
Values assigned to individual points of
sets A and B for dSMD and for dCW .
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Set distances between crisp sets
An overview of the results

• Newly proposed set distance measure, CWSMD, is a semimetric, and is of a linear
computational complexity.

• CWSMD is a weighted version of the Sum of Minimal Distances, SMD.

• An improved performance (regarding monotonicity under translation and rotation, and
noise sensitivity), compared to SMD (and even more to other observed set distances) is
evident, even if not dramatic.

• Applicability of CWSMD in image registration is confirmed on synthetic and real tasks.

• Applicability of CWSMD to the distance based handwritten characters recognition task is
also shown to be high.
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Set distances between fuzzy sets
Motivation - an illustration

A crisp discrete representation (B) of a disk (A) looks like a discrete representation of an
octagon, while a crisp discrete representation (E) of an octagon (D) appears more similar to a
discretized disk.

A fuzzy discrete representation of a disk (C) looks more like a disk, analogous observation can
be made for (D) and (F).

(A) (B) (C) (D) (E) (F)

An appropriately defined distance measure should be able to utilize the information contained
in fuzzy representations and, e.g., classify (C) and (F) correctly, even in the cases when the
crisp measures fail at classifying (B) and (D).

The
Coverage

model

Nataša
Sladoje and

Joakim
Lindblad

Distances
between
sets

Distances
between
fuzzy sets

Concluding
remarks

Distances between fuzzy sets
Motivation

• Well defined and thoughtfully adjusted image processing tools can utilize, or pass to
further processing steps, a great deal of information preserved in fuzzy representations.

• Extension of the existing set distances so that they can be applied to fuzzy sets, with
meaningful interpretations and applications in image processing, is one of important
tasks, considering range of applications of set distances.

• It is expected that distances between fuzzy representations of objects provide better
discriminatory power than distances between crisp representations at the same spatial
resolution.
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Set distances between fuzzy sets
Extension principle based on α-cuts

A “horizontal” approach is a common fuzzification approach based on integration over
α−cuts.

A distance measure between two fuzzy sets A and B defined that way is

dα(A,B) =
∫ 1

0
d(αA,αB) dα,

where d is some crisp set distance.

An important requirement of this approach:
The heights of the two observed fuzzy sets, h(A) and h(B), must be equal for a distance
between the sets to be finite.

The height of a fuzzy set S is h(S) = max
x∈X

µS(x),
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Set distances between fuzzy sets
A “horizontal” approach

• The Hausdorff distance

dα
H (A,B) =

∫ 1

0
dH(

αA,αB) dα .

• Sum of minimal distances

dα
SMD(A,B) =

∫ 1

0
dSMD(

αA,αB) dα .

• Complement weighted sum of minimal distances

dα
CW(A,B) =

∫ 1

0
dCW(αA,αB) dα .
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Set distances between fuzzy sets
Performance analysis - shape matching

• Classification performance on fuzzy and crisp discrete representations of disks and
octagons at the same resolution is compared.

• Distances dCW and dα
CW are used, showing best performances regarding monotonicity.

Distance minimization by greedy search is utilized for object alignment, as well as in the
nearest neighbour rule based assignment of the object to a class.

• 5 disks and 5 octagons are used as template objects; 1000 disks and 1000 octagons are
created as observed objects.

A B C D

An example: Fuzzy representations of a disk (A) and an octagon (C), as well as the crisp
representation of an octagon (D), are correctly classified, whereas the crisp disk (B) is
incorrectly classified as an octagon.



The
Coverage

model

Nataša
Sladoje and

Joakim
Lindblad

Distances
between
sets

Distances
between
fuzzy sets

Concluding
remarks

Set distances between fuzzy sets
Performance analysis - Shape matching results

Correct classification ratios for distance based classification of objects of different radii, based
on fuzzy and crisp discrete object representations:
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Fuzzy set distances
Performance comparison - “crisp” vs. “fuzzy”

Top Relative distance between R and T (F) plotted against rotation angle for the set in (a) when
bilinear interpolation is used. Bottom The catchment region of the different distance measures.
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Fuzzy set distances
Performance comparison - crisp vs. fuzzy

Relative distance as a function of rotation angle for the crisp set in (c) when (top) nearest
neighbour interpolation and (bottom) bilinear interpolation is used.
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Distances between fuzzy sets
Concluding remarks

• Fuzzy object representations and appropriately adjusted image analysis tools
are, one more time, shown to provide image processing with improved
performance.

• Most common fuzzification approach of α-cutting provides distance measures
that perform very well in many situations and significantly outperform their
corresponding crisp counterparts.

• An important observation is that, even in analysis performed on crisp objects,
utilization of distance measures defined for fuzzy sets in intermediate steps and
intermediate fuzzy object representations, lead to significant improvements in
terms of precision. They, here as well, enable analysis at sub-pixel precision.
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Set distances between fuzzy sets
Possible step further – When (and how) to cut?

• Distance between sets is, in crisp case, based on distance between a point and a set.

• Fuzzification can be performed earlier than at a “set distance level”.

• What about fuzzifying a point-to-set distance?

• What about point-to-point distance in a fuzzy set?
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Set distances between fuzzy sets
Fuzzification of a point-to-set distance

Definitions of so far used set distances can be adjusted to fuzzy sets also as:

• Point-to-set based Hausdorff distance:

dps
H (A,B) = max

(
sup

a∈Supp(A)

d(a,B), sup
b∈Supp(B)

d(b,A)

)
;

• Point-to-set based Sum of Minimal Distances:

dps
SMD(A,B) =

1

2


 ∑

a∈Supp(A)

d(a,B) +
∑

b∈Supp(B)

d(b,A)


 ;

• Point-to-set based Complement Weighted Sum of Minimal Distances:

dps
CW(A,B) =

1

2




∑
a∈Supp(A)

d(a,B) · d(a,A)

∑
a∈Supp(A)

d(a,A)
+

∑
b∈Supp(B)

d(b,A) · d(b,B)

∑
b∈Supp(B)

d(b,B)


 .
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Distances between fuzzy sets – Future work
“Vertical approach” - Motivation

Main issue :

How to define d(a,B), for a (fuzzy) point a and a fuzzy set B.

• “Horizontal approach” is possible here too:

d(a,B) =

∫ 1

0
d(a,αB) dα =

∫ 1

0
min
b∈αB

d(a, b) dα.

• Intuitively unappealing property:
Every α-cut is observed independently of the others; distance from a point to a set may
follow different paths at different α-levels, depending on a shape of a membership
function.

Idea:

To define a path-based distance between a point and a set

seems rather promising and will be addressed in our future work!


