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Registration results of 2000 synthetic images using different quantization
levels of the coverage representation.
Real X-ray registration results. (a) and (b) show full X-ray observation images and the
outlines of the registered template shapes (c) shows a close up view of a third study 1 A_A nd 5= [RA O]
around the top and bottom part of the implant. “m Z (A-Ap|, a R+ 0]
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Examples from the image database: template
objects (top) and their affine deformed
observations (bottom).

Table: Median error values for different
supersampling levels n.

n € ) Time (sec)

1] 0.0361 0.1555 1.54 N .

2| 00108 0.0627 1.56 Registration of pelvic CT data
4 1 0.0069 0.0470 1.54

8 | 0.0065 0.0402 1.52
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Measure bone implant integration for the purpose of evaluating new surface
coatings which are stimulating bone regrowth around the implant.

Local unmixing segmentation followed by area and boundary estimates.
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Fig. 3. Segmentation of the spleen in a slice from a CT volume. (Left) Seed-point regions
@ (b) © @ @ used in the experiment. The green pixels define all object seeds, while the red pixels
define background seeds. Single pixels from the green region were used to define object
(a): The screw-shaped implant (black), bone (purple) and soft tissue (light grey). (b) seeds. (Middle) Example result of crisp IFT. (Right) Example result of the proposed
Part of a crisp (manual) segmentation of (a). (c) The set of re-evaluated pixels. (d) and sub-pixel IFT.
(e) Pixel coverage segmentations of the soft tissue and the bone region, respectively. Table 1. Statistics on the measured arca for the 41 segmentations in the experiment
(Areas are given in number of pixels.)
Resu"? . Method Mean area Min area Max area T
Approximately a 30% reduction of errors on average, as compared to Crisp IFT 266.5 265 260 0.08
when using estimates from the crisp starting segmentation. Sub-Pixel IFT 266.2 2654 266.7 040
Result: 50% reduction of standard deviation of estimates, as compared to when
using estimates from the crisp starting segmentation.
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Segmentation no.

Result: Assuming that the mean result is correct, more than 3 times reduction of
the maximal error, as compared to when using estimates from the crisp starting
segmentation.




