
A tutorial on direction estimation and orientation
representations

erikw

@ CBA, 2012-09-17

Introduction

Problem 1

Assign orientation to each pixel
using local information

Strategies

Uncertainity principles

Problem 2

Orientation for larger regions,
circular data etc...

Averaging

Representation

Orientation vs direction

Introduction
Type 1 problems

Local estimation

Any small patch

Lines

Edges

Introduction
Type 2 problems

Semi local/global estimation

Averaging

Multiple orientations

Symmetric representations

Local estimation of orientation

Taylor series
Jacobian/Gradient

One variable

f (x) =
f ′(0)
1!

x +
f ′′(x)
2!

x2 + ...

Several variables (dimensions)

Let f : RN → R , then

f (x) = f (0) + Df (0)Tx+ ...

Df (x) =

(
∂f

∂x1
(0),

∂f

∂x2
(0), ...,

∂f

∂xN
(0)

)

and Df : RN → RN

Finite differences
Directions from discretized derivatives I

To discretise the gradient, the smallest
stencil is: [1,−1] for each partial
derivative.

In matlab

dx=convn(I, [1,−1], 'same');

dy=convn(I, [1,−1]', 'same');

Very local, depends only on three
pixels.

Half pixel offset!

Rotationally invariant? (I.e. do we
get the same result if we rotate the
image first, then calculate the
gradient, and then rotate back?)
See fig (1,2) and (1,3)!

Finite differences
Directions from discretized derivatives I

Second smallest filter: [1, 0,−1]/2

In matlab

dx=convn(I,[1,0,−1]/2,'same');
dy=convn(I,[1,0,−1]'/2,'same');

Invariant to [...,1,0,1,0,1,...]

Still a little too discrete?

Symmetric

Local

Gradient as a Least Squares Problem




1/9 −1 1
1/9 −1 0
1/9 −1 −1
1/9 0 1
1/9 0 0
1/9 0 −1
1/9 1 1
1/9 1 0
1/9 1 −1







c0
dx
dy


 =?




M(1, 1)
M(2, 1)
M(3, 1)
M(1, 2)
M(2, 2)
M(3, 2)
M(1, 3)
M(2, 3)
M(3, 3)




c0 +dx +dy =?

When the solution x to Ax = b can’t be
found by matrix inverse (i.e. too low
rank), we can find

arg minx ||Ax − b||2

i.e.
x = (ATA)−1AT y

Least Squares and Projections

Say we have some data points {yi} := y(xi), i = 1, ...,N and a
basis function {bi}. Now we want to find the c that minimises

E (c) = ||cb(x)− y(x)||. (1)

In the least squares approach, we expand Eq. 1 as

E (c) =
N∑

i=1

[
c2b2i − 2cbiyi + y2

]
. (2)

Least Squares and Projections

Derivation with respect to c :

d

dc
E (c) =

∑[
cb2i − biyi

]
= 0, (3)

gives

c =

∑
biyi∑
b2i

. (4)

With the projection approach, the projection of y to b is expressed

Projby = b
(b, y)

||b||2 (5)

so we identify

c =
(b, y)

||b||2 =
byT

bbT
=

∑
biyi∑
b2i .

(6)

Gaussian Derivatives
Scale Space Theory

Equivalences

Convolutions

Projection on linear bases

Least squares solutions

Rotational invariance →
round support

Non ringing → smooth
radial profile

→ Gaussian derivatives!

See Koenderink and Lindeberg!

Gaussian derivatives in Matlab
Generalises to ND

1 function y=gpartial(x, d, sigma)
2 w = 10*ceil(sigma); w = w+mod(w+1,2); % Filter length
3 g =fspecial('gaussian', [w,1], sigma); % 1D Gaussian
4 x=(−(w−1)/2:(w−1)/2)';
5 k0=1/sqrt(2*pi*sigmaˆ2); k1=1/(2*sigmaˆ2);
6 dg=−2*k0*k1.*x.*exp(−k1*x.ˆ2); % d/dx Gaussian
7 if d==1
8 y=convn(x, reshape(dg, [w,1]), 'same');
9 y=convn(y, reshape(g, [1,w]), 'same');

10 end
11 if d==2
12 y=convn(x, reshape(g, [w,1]), 'same');
13 y=convn(y, reshape(dg, [1,w]), 'same');
14 end

A1: Sub pixel location of extremal points

Another example of Taylor expansion in image analysis. Sub pixel
location of local extreme points is acheived by second order Taylor
expansion using the 3N closest points by:

D(x) = D +
∂DT

∂x
x+

1

2
xT

∂2D

∂x2
x

x̂ = −
(
∂2D

∂x2

)−1
∂D

∂x

A2: Location of edges

A one dimensional signal P(x). We define a unit step edge located
at x = 0 by

θ(x) =

{
1, x ≥ 0
0, < 0

(7)

Def 1: An edge can be located where the first derivative of the
signal has an extremal value (zero crossing of second derivative)

ED = {x :
d2

dx2
P(x) = 0}. (8)

Def 2: the edge can be located where the signal obtains a specific
value or level c , i.e. the set

EI = {x : P(x) = c}. (9)

A2: Location of edges
Definitions

Gσ(x) :=
1√
2πσ2

e
−x2

2σ2 := ae−x2b, (10)

a =
1√
2πσ2

, b =
1

2σ2

erfσ(x) =

∫ x

−∞
Gσ(ξ)dξ, (11)

A2: Location of edges
Differential Definition, Def 1

Step edges: P(x) = Gσ ∗ θ(x), ED is the set of points that satisfy

0 =
d2

dx2
Gσ ∗ θ(x) = d2

dx2
erfσ(x) = G ′

σ(x), (12)

gives ED = {0}
Lines: P = δ(x) ≈ 1

ǫ (θ(x)− θ(x + ǫ)) for a small ǫ. ED is the set
of points that satisfies,

0 =
d2

dx2
δ ∗ Gσ(x) = e−bx2

(
4x2b2a− 2ab

)
, (13)

which are

x = ±
√

2ab

4ab2
= ±

√
2σ. (14)

Two detections, none at x = 0.

A2: Location of edges

Unit ridges P(x) = θ(x)− θ(x − w), where w > 0 is the width.
ED contains the points that satisfy

0 = G ′
σ(x)−G ′

σ(x−w) = −2abxe−bx2+2ab(x−w)e−b(x2−2wx+w2),
(15)

or simplified

0 = 2abe−bx2
{
(x − w)e−b(w2−2wx) − x

}
. (16)

which further can be reduced to

0 = x − (x − w)e−b(w2−2wx). (17)

Neither x = 0 or x = w are solutions.

A2: Location of edges
Iso-level definition, def 2

For an ideal step edge,

EI = {x : Gσ ∗ θ(x) = erfσ(x) = c}, (18)

and since Ei = {0} is required, c = 1/2.
For lines, no, one or two edges will be detected since the condition
is that

EI = {x : Gσ(x) = 1/2}. (19)

For finite ridges,

EI = {x : erfσ(x)− erfσ(x − w) = 1/2}. (20)

none (or one) or two edges are detected.

Location error for ridges A2: Location of edges

Figure: Left: A unit ridge, smoothed, its second derivative (scaled) and
the 1/2 line. Right: NW: A ridge. NE: Smoothed with σ/w = 0.7. SW:
Canny edge detection. SE: Pixels with intensity above 0.5.

GOP / Quadrature Filters
Phase invariance

F (u, v) = F (r , θ) = R(r)T (θ). (21)

R(ρ) = e
−4

B2 ln 2
ln2(ρ/ρ0) (22)

Td(u) =

{
〈u,d〉2, 〈u,d〉 > 0,

0, 〈u,d〉 ≤ 0.
(23)

radial part angular part combined

→ can also be achieved by averaging techniques.

Quadrature filter in the spatial domain

Intermediate summary:

Gaussian derivatives to calculate gradients!

Gradients vanish for some structures.

Higher order constructions are needed needed. One such
technique is the Hessian.

Phase invariant filters are good.

Sub pixel location of edges is not trivial (see Van Vleet)

Representing directions and
orientations

Histograms

Example: SIFT (2004)

Angular Histogram,
[0, 2π] is divided into
eight bins

Gradient directions
θ = atan2(dx , dy).

16 spatial bins, 8
angular bins (128)

Gaussian Weights

128-dimensional

Approaches from the SIFT family

SIFT GLOH SURF

Properties of Histograms

Histograms:

Discretizations

Number of binns

Rotations do no commute

Discontinuous at 2π = 0

Quantitative

Tesselation in R>2

Another representation?

1 Commuting rotations

2 Discontinuity-free

3 Perfect retrieval

G. Borgefors

Kernel Density Estimators (KDE)

E. Parzen On Estimation of A
Probability Density Function and
Mode Ann. Math. Statist. 33(3)
1962

”Given a sequence of
independent identically
distributed random variables
X1,X2, ...,Xn, ... with common
probability density function f (x),
how can one estimate f (x)?”

Extensions to manifolds

A standard approach, > 5000 citations.

Derivation, pt. I

The KDE is a linear sum of weighting functions

K (x) =
N∑

i=1

WN(x − xi)

Circular means that
x ∈ [−π, π) and limx→π K (x) = K (−π)

Derivation, pt. II

Express K as a Fourier series (parameter: M)

K =
∞∑

k=0

cke
ikθ =

M−1∑

k=0

cke
ikθ

︸ ︷︷ ︸
KF

+
∞∑

k=M

cke
ikθ

The coefficients are

ck = 〈K , e−ikθ〉 = 1

2π

∫ π

−π
Ke−ikθdθ

=
1

2π

∫ π

−π

N∑

i=1

{W (θ − θi)} e−ikθdθ

Derivation, pt. III

Since the formulas are linear, the contribution
from each sample to the coefficients of the
fourier series can be split. Let i enumberate the
samples such that

ck =
N∑

i=1

cki

Then the coefficients are given by

cki =
1

2π

∫ ∞

−∞
W (θ − θi)e

−ikθdθ

Derivation, pt. IV

A Gaussian W yields a simple
expressoin. Let

W (x) =
1√
2πσ2

w

e
− x2

2σ2
w

A few calculations later, we get the
contribution to the series from
each sample:

cki = 2πe−ikθi e−
k2σ2

w
2

Summary

Parameters: M, σw
Representation:
{ci , i = 0, ...,M − 1}

Relation to the structure tensor

Set weighting function to
cos2(x), then for one
observation, the kde is,

f (θ) = cos2(θ − θ0) =

(cos θ cos θ0 + sin θ sin θ0)
2

The structure tensor constructed
from the same angle
s = (cos θ0, sin θ0) is

S = ssT =
(

cos2 θ0 sin θ0 cos θ0
sin θ0 cos θ0 sin2 θ0

)
.

So, for an arbitrary angle, v = (cos θ, sin θ), vTSv = f (θ).

Induction and linearity gives the full story

Conclusion: The structure tensor admits an interpretation as a
special kde.

The gradient structure tensor

1 function st = gst(I, dsigma, tsigma)
2 % Calculate the image gradient
3 g = zeros([size(V), 3]);
4 for kk=1:3
5 g(:,:,:,kk)=gpartial(V, kk, dsigma);
6 end
7 % gradient to structure tensor
8 st=zeros([size(g,1),size(g,2),size(g,3), 6]);
9 st(:,:,:,1)=g(:,:,:,1).*g(:,:,:,1);

10 st(:,:,:,2)=g(:,:,:,1).*g(:,:,:,2);
11 st(:,:,:,3)=g(:,:,:,1).*g(:,:,:,3);
12 st(:,:,:,4)=g(:,:,:,2).*g(:,:,:,2);
13 st(:,:,:,5)=g(:,:,:,2).*g(:,:,:,3);
14 st(:,:,:,6)=g(:,:,:,3).*g(:,:,:,3);
15 % Average per coefficient
16 for kk=1:6
17 st(:,:,:,kk)=gsmooth(st(:,:,:,kk), tsigma);
18 end

The outer product (∇I)T∇I

The gradient of I is

∇I = (
∂

dx1
,
∂

dx2
,
∂

dx2
),

so the structure of the outer product

E := (∇I)T∇I ≈




a2 ab ac
ab b2 bc
ac bc c2


 . (24)

E is Self-Adjoint since it is real and symmetric.

The Spectral Theorem for real vector spaces then states that
the eigenvectors to E , vi form an orthonomal (ON) basis.

A shorter proof that the eigenvectors corresponding to distinct
eigenvalues are ON. Assume that Ed = δ and Ee = ǫ then

(δ − ǫ)〈d , e〉 = 〈Td , e〉 − 〈d ,T ∗e〉 = 〈Td , e〉 − 〈Td , e〉 = 0

and since δ − ǫ 6= 0, it hold that 〈d , e〉 = 0.

Using Sx as a quadratic form

Denote the eigenvalues to Sx as λi and the eigenvectors vi . Then
the structure tensor maps vectors as

〈Ew ,w〉 = 〈λ1 Projv1w + λ2 Projv2w + λ3 Projv3w ,w〉
= λ1〈〈w , v1〉v1,w〉+ λ2...

= λ1〈w , v1〉〈w , v1〉+ λ2...

= λ1 cos
2 θ1 + λ2 cos

2 θ2 + λ3 cos
2 θ3

Where the angles θi is the angle between w and each eigenvector,
vi .

The 2x2 eigenvalue problem

Eigenvalues

The eigenvalue problem det Ax = λx has the characteristic

polynomial (a− λ)(c − λ)− b2 = 0 when A =

(
a b
b c

)
and the

solutions λ = a+c
2 ±

√
b2 − ac + (a+c

2)2, equivalent to

λ = Tr/2±
√
(Tr/2)2 − D, where Tr = Trace A and D = Det A.

Eigenvectors

If we set x1 = 1, we get x2 = −b/(c − λ). When b ≈ 0, A is
diagonal and x = (1, 0)T when λ ≈ a and (0, 1)T when λ ≈ c .

The symmetric eigenvalue problem
Introduction

1 The 3x3 eigenvalue problem i.e. to find x ∈ R3 − (0, 0, 0) and
λ ∈ R which satisfies Ax = λx for A = AT ∈ R3x3.

2 Multiple approaches possible.

3 Cardano’s solution to the characteristic equation
(det(Ax − λI) = 0 is not suited for numerical computations.
(Demmel)

4 Jacobis method is the fastest?

A plane rotation matrix

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)

has the properties R−1(θ) = R(−θ). A 2× 2 real and symmetric
matrix

M =

(
α γ
γ β

)

can be diagonalised with such rotation matrix so that

R−1MR = D. (25)

After the rotation, D and M are similar, i.e. have the same
eigenvalues.

θ that makes D diagonal is not explicitly needed:

ǫ =
α− β

2γ
,

t =
|ǫ|

|ǫ|+
√
1 + ǫ2

,

c := cos θ = (1 + t2)−1/2 s := sin θ = ct.

And,

(
c −s
s c

)(
α γ
γ β

)(
c s
−s c

)
=

(
α− γt 0

0 β + γt

)
.

With Jacobi rotations, two-dimensional subspaces are rotated.
There are three of them:

R12 =




c −s 0
s c 0
0 0 1


 ,R13 =




c 0 −s
0 1 0
s 0 c


 ,R23 =




1 0 0
0 c −s
0 s c


 .

To use those matrices iteratively to diagonalise A is the core of the
Jacobi method.

1 Input A0 := A. Initialise E0 := diag(1, 1, 1) which will contain
the eigevectors and set the tolerances value tol = 10−14.

2 Find the largest off diagonal element of An(i , j),

(i , j) = argmax |An(i , j)|, i < j .

3 Find c and s using

α = A(ii), β = A(j , j), γ = A(i , j)

4 Rotate A, An := RijAn−1R
T
ij

5 Rotate E , En := RT
ij En−1

6 If max |An(ij)| < tol end, else repeat from step 2.

Matrix multiplications are explicitly written out (generality vs
speed)

Quadratic convergence

Well suited for parallelisation

30% faster than DIPLib (single core)

Get code from me

Direction vs Orientation I

A vector in a metric space represents a direction. In RN , N − 1
scalars are required (example). A direction points out how to get
from point A to point B in RN An orientation tells you to point
your nose at B and have your feet down. There is a strong
relationship between orientations and rotations. The natural
setting for a discussion on orientations is group theory (see my
thesis!) Bild: Jordglob

Direction vs Orientation II
The dimensionality of orientation

Of necessity, rotation matrices are ON. All eigenvalues have length
1. The minimal number of elements that are needed to describe
this is 1 + 2 + ...+ (N − 1) = N(N − 1) (odd dimensions)

Example I, KDE vs histogram Example II, structure description

Example III, rotation space

Input, 2D image
Outut, 3D. Isosurface shown

Example IV, Structure Tensor

CT image of wood fibre/plastic composite
Pseudo colored by orientation

(Maria Axelsson)

Example V, Structure Tensor

CT image of wood fibre/plastic composite Pseudo colored by orientation

Example VI, curvature
On meshes

Gaussian Curvature k1k2 Gaussian Curvature k1k2

Summary

Not to choose is also a choice!

There are a few different techniques for local direction
estimation.

For larger regions, orientation can be estimated as well.

I’d like to see more KDEs!

There is much more to this subject!

Selected References

Michael Van Ginkel, Image Analysis using Orientation Space
Based on Steerable Filters, PhD Theis, 2002

Gösta Granlund, In Search for a General Picture Processing
Operator, Computer Graphics and Image Processing, 8, 1978

Heinrich W. Guggenheimer, Differential Geometry, Dover,
1977

