Church-Rosser Theorem
for sequent lambda calculi

Silvia Ghilezan, Jelena Iveti¢, Silvia Likavec

University of Novi Sad
University of Turin

TYPES 2014
Paris, May 2014.

Outline

» Subject: untyped intuitionistic sequent lambda calculus -
AGZ which is known to be non-confluent;

» Goal: to obtain confluence by restrictions on the syntax
and operational semantics;
> Results:
» two confluent subcalculi are obtained;
» their mutual relation and relation with both A and A% is
discussed;
» a direct proof of confluence is developed.

Logic and A

“In the beginning Gentzen created natural deduction, but then
He switched to sequent calculus in order to sort out the
meta-theory", A Felty, A. Momigliano, B. Pientka, TYPES 2014.

Curry-Howard

match ND A
introduction abstraction
elimination application

mismatch SC A

right introduction abstraction
left introduction application and substitution
cut substitution

Paradise of sequent lambda calculi

1994 - present
H. Herbelin
R. Dyckhoff and L. Pinto
J. Espirito Santo and R. Matthes
and others

A, ALJ, AT, Aq, AJ, A®Z among others
1970 - 1994

Pottinger, Zucker, Gallier, Mints, Barendregt and G. and
other attempts.

AGtz

The syntax:

(Terms) t = Xx|Ax.t|tk
(Contexts) k X.t|t:k

» proposed by Espirito Santo;
» term: a variable, an abstraction or an application (cut);
» context: a selection x.t or a context constructor (cons) t :: k;

» expression: terms and contexts are together referred to as
expressions, denoted by e;

» tk captures the right associativity of the applications - one of the
key differences between the sequent-based and natural
deduction-based term calculi.

Operational semantics
Reduction rules:

(B) (Ax.t)(u:=k) — u(x.tk)
(0) tx.u) — ut/x]
(1) (tk)k' — t(k@k’)
(1) Xxk — kK, ifx¢Kk.

» meta-operators: substitution v[t/x] and append k@k’:
(u:: K)®k" = u :: (k@K') (x.t)OKk’ =x.tk’.

» possibility of delayed substitution:
(B) creates a substitution, (o) executes it;
> (B) + (0) + () = cut-elimination
Normal forms:

(Terms) tnf = ’)inf | /\X.tnf | X(tnf o knf)
(Contexts) Ky = Xt | tor 2 Ky

Properties of AG%

» 1S gatisfies:

» subject reduction and strong normalisation of the simply
typed version,

» characterisation of strong normalisation of the system with
intersection types,

» preservation of g-SN, etc...

» it does not enjoy confluence, unlike majority of intuitionistic
formal calculi;

> a critical pair exists between reductions (7t) and (o);

» analogous to the CBN / CBV dilemma of Curien-Herbelin’s
Aufi-calculus.

An example

Terms of the form (tk)(x.u) are both n-redexes and o-redexes. For
example, consider the term (z(u :: w.w))(x.y).
the call-by-value option:

(z(uzww))(xy) —n zZ((u=w.w)o(xy))
= z(u: (Wwe(x.y)))
= z(u (ww(xy)))
=y zZ(uXxy).

the call-by-name option:
(z(u:: ww))(X.y) Do y[z(u :: w.w)/x]

y.

Obviously, obtained normal forms differ.

However, if we translate these two nf’s to A-calculus, using the
mapping | |: A®% — A, which is defined together with the auxiliary
mapping | | : /\‘gtZ — (A — A)inthe following way:

x| = x
Ax.tl = Ax.|t|
Itk = Ikl(It])

Xt (M) = (Ax.|th)M
It k(M) = [|kl.(MIt])

we get:

z(u = xy)l = (Axy)(zu), lyl=y.

It is easy to observe that (Ax.y)(zu) — y.

Regaining confluence

Two possibilities:

» to enrich the operational semantics by adding a new reduction
rule that would reduce terms like z(u :: X.y) to y;

» to restrict the syntax and the reduction rules in order to prevent
appearance of the critical pair.

We adopt the latter option, and propose two confluent A%Z-subcalculi:

> a “call-by-value” subcalculus - AS%;

» a “call-by-name” subcalculus - A8%;

The /\ﬁtz—calculus

The syntax:
Values V o= x|Ax.t
Terms t = V]tk
Contexts k == Xt|t:k

The reduction rules:

(B) (Axt)(u:=k) — u(x.tk)
(ov) V(x.t) — t[V/x]
() (tk)k" — t(k@k’)
(1) Xxk — k, if x ¢ Fv(k).

> a syntactic category of values (a subset of terms) is introduced;
» modified (o) rule cannot be performed on (tk)(x.v);

» this reduction system is forcing us to reduce the head of the cut
to the value before substituting it instead of x in t - the essence
of CBV.

The /\ﬁtz—calculus

The syntax:
Terms t = Xx|Ax.t|tk
Lists L == Xx|t:L
Contexts k == L|xt

The reduction rules:

(Bn) (Axt)(u:L) — tu/x]L
(0) t(x.u) — uft/x]
(1in) (tk)L — t(keL)
(w) xxk — k,if x ¢ Fv(k).

» a syntactic category of lists is introduced: a subset of contexts
whose formis t; :: (t2 1 (... i (b 2 X.X)));

» modified (nty) rule cannot be performed on (tk)(X.u);

» modified (Bn) rule provides the implementation of CBN:

(Ax.t)(u:: L) —p ux.(tL) —, (tL)[u/x] = t[u/x]L.

there exists an asymmetry between the two introduced syntactic
categories: values and lists;

values simply denote variables and lambda abstractions, and
together with applications constitute /\etz, the set of Aﬁtz-terms

therefore:
Gtz _ AGt
NGE = NGz

On the other hand, lists are defined t :: L which is a restriction of
t:k;

the AGZ-expressions containing t :: X.u with u # x cannot be
represent in the A$-calculus;

therefore:

/\Gtz c /\Gtz
N

Mapping from A to A

However, the set AG* is still large enough!
All A-terms can be to embed by the mapping:

L1:A—AGE

N 7

Lx]
[Ax.M]
LMN]

[XKL)
[AX.MI(L)
[MNT(L)

[1:A— (L > AS?)

X
Ax.[M]
TMND)

xL
(Ax.LM))L
[MI(LN] :: L)

» the mapping preserves operational semantics and normal forms

of the A-calculus;

> Aﬁtz-calculus is Turing complete, although it contains less terms

than the A%Z-calculus.

The proof of confluence

» after eliminating the critical pair, we can prove confluence, i.e.,
the Church-Rosser property;

» we use a direct, parallel reductions method;

» developed by Takahashi (1995) as a refinement of the standard
Martin-L6f proof of confluence;

» based on simultaneous reduction of all existing redexes in a
term;

» used by Dougherty et al. (2005) and Likavec and Lescanne
(2012) in order to prove the confluence of some classical term
calculi;

» we will sketch the proof for the confluence of Aﬁtz, the proof for
A$= is analogous.

Parallel reductions for /\ﬁtz

t=yt! t=yt, k=yk
=ox @) ; (92) —
X=y X Ax.t=y Ax.t tk =y t'k
t=yt! t=yt, k=yk
=, g4) vi,v, (g5)
X.t=yx.t tok=yt Kk
t=oyt, u=syU, k=yk’ (g6) Voy V, t=yt
(Ax.)(u:: k) =y U'Xx.(t'K") V(X.t) =y t'[V/x]
t:>\/t’,k:>\/k/, k1$vk1/ k:>\/k’ (9
(tk)ky =y ' (k" @k]) Xxk =y k' g

(93)

(97

)

)

Properties of =

(i) For every /\ﬁtz expression e, e =y e.

(iii) If e=y e’ thene—¢e’.

)
(i) fe—e thene=ye'.
)
(iv) If e=>ye”and h=y h’, then e[h/x]=v €’[h’/X].

Confluence

Expression e* is obtained from e by simultaneously reducing all
existing redexes of e.

Properties of =y,

Star-property If ey €, then ¢’ =y €*.

Diamond-property If e &y e=y es,then e =y e’ <y e
for some ¢e’.

Confluence of Aﬁtz

If 81 «— e — &5, then e; — €’ «— e, for some ¢’.

Summary

> Two subcalculi of AG% are obtained: A and 1§ by
restricting the operational semantics.

» Both sub-calculi are proven to be confluent using parallel
reduction techniques.

» Proof-theoretic meaning of non-confluence in this setting?

Acknowledgement.
Pierre Lescanne, Hugo Herbelin, José Espirito Santo.

