
Church-Rosser Theorem
for sequent lambda calculi

Silvia Ghilezan, Jelena Ivetić, Silvia Likavec

University of Novi Sad
University of Turin

TYPES 2014
Paris, May 2014.

Outline

I Subject: untyped intuitionistic sequent lambda calculus -
λGtz, which is known to be non-confluent;

I Goal: to obtain confluence by restrictions on the syntax
and operational semantics;

I Results:
I two confluent subcalculi are obtained;
I their mutual relation and relation with both λ and λGtz is

discussed;
I a direct proof of confluence is developed.

Logic and λ

“In the beginning Gentzen created natural deduction, but then
He switched to sequent calculus in order to sort out the
meta-theory", A.Felty, A. Momigliano, B. Pientka, TYPES 2014.

Curry-Howard

match ND λ

introduction abstraction
elimination application

mismatch SC λ

right introduction abstraction
left introduction application and substitution
cut substitution

Paradise of sequent lambda calculi

1994 - present
H. Herbelin
R. Dyckhoff and L. Pinto
J. Espírito Santo and R. Matthes
and others

λ, λLJ, λT , λQ , λJ, λGtz, among others

1970 - 1994
Pottinger, Zucker, Gallier, Mints, Barendregt and G. and
other attempts.

λGtz

The syntax:

(Terms) t ::= x |λx .t | tk
(Contexts) k ::= x̂ .t | t :: k

I proposed by Espírito Santo;

I term: a variable, an abstraction or an application (cut);

I context: a selection x̂ .t or a context constructor (cons) t :: k ;

I expression: terms and contexts are together referred to as
expressions, denoted by e;

I tk captures the right associativity of the applications - one of the
key differences between the sequent-based and natural
deduction-based term calculi.

Operational semantics
Reduction rules:

(β) (λx .t)(u :: k) → u(̂x .tk)
(σ) t (̂x .u) → u[t/x]
(π) (tk)k ′ → t(k@k ′)
(µ) x̂ .xk → k , if x < k .

I meta-operators: substitution v[t/x] and append k@k ′:

(u :: k)@k ′ = u :: (k@k ′) (̂x .t)@k ′ = x̂ .tk ′.

I possibility of delayed substitution:
(β) creates a substitution, (σ) executes it;

I (β) + (σ) + (π) = cut-elimination

Normal forms:

(Terms) tnf = xnf | λx .tnf | x(tnf :: knf)
(Contexts) knf = x̂ .tnf | tnf :: knf .

Properties of λGtz

I λGtz satisfies:

I subject reduction and strong normalisation of the simply
typed version,

I characterisation of strong normalisation of the system with
intersection types,

I preservation of β-SN, etc...

I it does not enjoy confluence, unlike majority of intuitionistic
formal calculi;

I a critical pair exists between reductions (π) and (σ);

I analogous to the CBN / CBV dilemma of Curien-Herbelin’s
λ̄µµ̃-calculus.

An example

Terms of the form (tk)(̂x .u) are both π-redexes and σ-redexes. For
example, consider the term (z(u :: ŵ.w))(̂x .y).
the call-by-value option:

(z(u :: ŵ.w))(̂x .y) →π z((u :: ŵ.w)@(̂x .y))
, z(u :: (ŵ.w@(̂x .y)))
, z(u :: (ŵ.w (̂x .y)))
→µ z(u :: x̂ .y).

the call-by-name option:

(z(u :: ŵ.w))(̂x .y) →σ y[z(u :: ŵ.w)/x]
, y.

Obviously, obtained normal forms differ.

However, if we translate these two nf’s to λ-calculus, using the
mapping | | : ΛGtz

→ Λ, which is defined together with the auxiliary
mapping | |c : ΛGtz

C → (Λ → Λ) in the following way:

|x | = x
|λx .t | = λx .|t |
|tk | = |k |c(|t |)

|̂x .t |c(M) = (λx .|t |)M
|t :: k |c(M) = |k |c(M|t |)

we get:

|z(u :: x̂ .y)| = (λx .y)(zu), |y | = y .

It is easy to observe that (λx .y)(zu)→ y.

Regaining confluence

Two possibilities:

I to enrich the operational semantics by adding a new reduction
rule that would reduce terms like z(u :: x̂ .y) to y;

I to restrict the syntax and the reduction rules in order to prevent
appearance of the critical pair.

We adopt the latter option, and propose two confluent λGtz-subcalculi:

I a “call-by-value” subcalculus - λGtz
V ;

I a “call-by-name” subcalculus - λGtz
N ;

The λGtz
V -calculus

The syntax:
Values V ::= x |λx .t
Terms t ::= V | tk
Contexts k ::= x̂ .t | t :: k

The reduction rules:

(β) (λx .t)(u :: k) → u(̂x .tk)
(σV) V (̂x .t) → t [V/x]

(π) (tk)k ′ → t(k@k ′)
(µ) x̂ .xk → k , if x < Fv(k).

I a syntactic category of values (a subset of terms) is introduced;

I modified (σ) rule cannot be performed on (tk)(̂x .v);

I this reduction system is forcing us to reduce the head of the cut
to the value before substituting it instead of x in t - the essence
of CBV.

The λGtz
N -calculus

The syntax:
Terms t ::= x |λx .t | tk
Lists L ::= x̂ .x | t :: L
Contexts k ::= L | x̂ .t

The reduction rules:

(βN) (λx .t)(u :: L) → t [u/x]L
(σ) t (̂x .u) → u[t/x]

(πN) (tk)L → t(k@L)
(µ) x̂ .xk → k , if x < Fv(k).

I a syntactic category of lists is introduced: a subset of contexts
whose form is t1 :: (t2 :: (... :: (tn :: x̂ .x)));

I modified (πN) rule cannot be performed on (tk)(̂x .u);

I modified (βN) rule provides the implementation of CBN:

(λx .t)(u :: L) →β ux̂ .(tL) →σ (tL)[u/x] , t [u/x]L .

I there exists an asymmetry between the two introduced syntactic
categories: values and lists;

I values simply denote variables and lambda abstractions, and
together with applications constitute ΛGtz

V , the set of λGtz
V -terms

I therefore:

ΛGtz
V = ΛGtz

I On the other hand, lists are defined t :: L which is a restriction of
t :: k ;

I the λGtz-expressions containing t :: x̂ .u with u , x cannot be
represent in the λGtz

N -calculus;

I therefore:

ΛGtz
N ⊂ ΛGtz

Mapping from λ to λGtz
N

However, the set ΛGtz
N is still large enough!

All λ-terms can be to embed by the mapping:

b c : Λ→ ΛGtz
N , d e : Λ→ (L → ΛGtz

N)

bxc = x
bλx .Mc = λx .bMc
bMNc = dMNe〈[]〉

dxe〈L〉 = xL
dλx .Me〈L〉 = (λx .bMc)L
dMNe〈L〉 = dMe〈bNc :: L〉

I the mapping preserves operational semantics and normal forms
of the λ-calculus;

I λGtz
N -calculus is Turing complete, although it contains less terms

than the λGtz-calculus.

The proof of confluence

I after eliminating the critical pair, we can prove confluence, i.e.,
the Church-Rosser property;

I we use a direct, parallel reductions method;

I developed by Takahashi (1995) as a refinement of the standard
Martin-Löf proof of confluence;

I based on simultaneous reduction of all existing redexes in a
term;

I used by Dougherty et al. (2005) and Likavec and Lescanne
(2012) in order to prove the confluence of some classical term
calculi;

I we will sketch the proof for the confluence of λGtz
V , the proof for

λGtz
N is analogous.

Parallel reductions for λGtz
V

x⇒V x (g1)
t⇒V t ′

λx .t⇒V λx .t ′
(g2)

t⇒V t ′, k⇒V k ′

tk⇒V t ′k ′
(g3)

t⇒V t ′

x̂ .t⇒V x̂ .t ′
(g4) t⇒V t ′, k⇒V k ′

t :: k⇒V t ′ :: k ′
(g5)

t⇒V t ′, u⇒V u′, k⇒V k ′

(λx .t)(u :: k)⇒V u′x̂ .(t ′k ′)
(g6)

V⇒V V ′, t⇒V t ′

V (̂x .t)⇒V t ′[V ′/x]
(g7)

t⇒V t ′, k⇒V k ′, k1⇒V k ′1
(tk)k1⇒V t ′(k ′@k ′1)

(g8)
k⇒V k ′

x̂ .xk⇒V k ′
(g9)

Properties of⇒

(i) For every λGtz
V expression e, e⇒V e.

(ii) If e→e′ then e⇒V e′.
(iii) If e⇒V e′ then e→→e′.
(iv) If e⇒V e′ and h⇒V h′, then e[h/x]⇒V e′[h′/x].

Confluence

Expression e∗ is obtained from e by simultaneously reducing all
existing redexes of e.

Properties of⇒V

Star-property If e⇒V e′, then e′⇒V e∗.
Diamond-property If e1⇐V e⇒V e2, then e1⇒V e′⇐V e2
for some e′.

Confluence of λGtz
V

If e1←←e→→e2, then e1→→e′←←e2 for some e′.

Summary

I Two subcalculi of λGtz are obtained: λGtz
V and λGtz

N by
restricting the operational semantics.

I Both sub-calculi are proven to be confluent using parallel
reduction techniques.

I Proof-theoretic meaning of non-confluence in this setting?

Acknowledgement.
Pierre Lescanne, Hugo Herbelin, José Espírito Santo.

