
Introduction to Type Theory

Silvia Ghilezan

University of Novi Sad
Mathematical Institute SANU

Serbia

EUTypes Summer School
Ohrid, July 2017

About me...

PhD University of Novi Sad
advised by Henk Barendregt and Kosta Došen

Postdoc University of Nijmegen

Research and teaching
University of Turin
McGill University
École Normale Supérieure Lyon

RDP
2011

Federated Conference on
Rewriting, Deduction, and Programming

Novi Sad
Serbia

May 29
June 3

from

to

2011

The 22nd International Conference on
Rewriting Techniques and Applications

May 30 – June 1, 2011

The 10th International Conference on
Typed Lambda Calculi and Applications

June 1 – June 3, 2011

www.rdp2011.uns.ac.rs

COBRA'11 Compilers by Rewriting, Automated
HDTT'11 Higher Dimensional Type Theory
TPDC'11 Theory and Practice of Delimited Continuations
2FC'11 Two Faces of Complexity
WRS'11 Reduction Strategies in Rewriting and Programming
IFIP Working Group 1.6 on Term Rewriting
IFCoLog Student Session

orkshopsW
Alexandre Miquel
Sophie Tison
Ashish Tiwari
Vladimir Voevodsky
Stephanie Weirich

I nvited Speakers

RTA Chair: Manfred Schmidt-Schauß TLCA Chair: Luke Ong Conference Chair: Silvia Ghilezan

TLCA
2011

RTA
2011

Untyped lambda calculus

Simply lambda calculus

Intersection types

λoγoς

“a ground", “a plea", “an opinion", “an expectation", “a word", “a
speech", “an account", “a reason".

I Aristotle: Organon, syllogisms 24, 4th BC

I Stoic logic: syllogisms, deductive logic

I Euclid: Elements

I Roman period
I Middle Age: Scholastic Thomas Aquinus, 12th AD

I Renesanse: Francis Bacon, inductive logic, scientific method

I Gotfrid Leibnitz: logic as a universal language

I Emanuel Kant: “laws of thinking"

I George Boole: “The Laws of Thought"

I Gotlab Frege: predicate logic

I Giuseppe Peano: axiomatization of natural numbers

I George Cantor: naive set theory

I Bertrand Russell:
I Principia Mathematicae
I paradox: x 6∈ x
I Theory of Types

I Alonzo Church:
I theory of functions - formalisation of mathematics (inconsistent),
I successful model for computable functions
I Simply typed λ-calculus

I Per Martin-Löf: Type Theory

I HoTT - Homotopy Type Theory

I David Hilbert:
I problem of consistency, completeness, decidability

(Entscheidungsproblem)
I program: to provide secure foundations of all mathematics

I Luitzen Egbertus Jan Brouwer, Andrey Kolmogorov:
I intuitionism, constructivism

I Gerhard Gentzen:
I proof theory

I Kurt Gödel:
I incompleteness theorems (PA is not complete)

Let f be a function given by

f (x) = x + 42

f (5) = 5 + 42 = → 47

What is the function f

f =?

function domain type
f (x) = x + 42 R f : R→ R
g(x) = 1

x R\{0} g : R\{0} → R
h(x) =

√
x R+ ∪ {0} f : R+ ∪ {0} → R

s(x) = sin x R f : R→ [−1,1]

What are the type of f

f : A→ B

Untyped lambda calculus

Simply lambda calculus

Intersection types

Informal syntax

λ-terms are divided into three categories:
1. variables: x , y , z, z1, ...

I free or bound
2. application: MN

I function application, "apply M to N"
3. abstraction: λx .M

I function generation by binding a variable, thus creating the
parameter of the function.

Example
λ-term representing the function defined by f (x) = x + 42:

f = λx .x + 42

Syntax - more formal

Definition
The set Λ of λ-terms is generated by a countable set of
variables V = {x , y , z, x1, ...} using application and abstraction:

x ∈ V then x ∈ Λ
M,N ∈ Λ then (MN) ∈ Λ

M ∈ Λ, x ∈ V then (λx .M) ∈ Λ

Conventions for minimizing the number of the parentheses:
I M1M2M3 . . .Mn stands for ((((M1)M2)M3) . . .Mn);
I λx .M1M2...Mn ≡ λx .(M1M2...Mn);
I λx1...xn.M ≡ λx1.(λx2.(...(λxn.M)...)).

M ::= x | MM |λx .M

Running example

xyzx

λx .zx

I = λx .x

K = λxy .x

∆ = λx .xx

Y = λf .(λx .f (xx))(λx .f (xx))

Ω = ∆∆ = (λx .xx)(λx .xx)

Free and bound variables

Definition

(i) The set FV (M) of free variables of M is defined inductively:
FV (x) = {x}

FV (MN) = FV (M) ∪ FV (N)
FV (λx .M) = FV (M) \ {x}

A variable in M is bound if it is not free.
(ii) M is a closed λ-term (or combinator) if FV (M) = ∅.

Λo denotes the set of closed λ-terms.

Example

I In λx .zx , variable z is free.
I Term λxy .xxy is closed.

Running example

M Fv(M)

xyzx {x , y , z}

λx .zx {z}

I = λx .x ∅

K = λxy .x ∅

∆ = λx .xx ∅

Y = λf .(λx .f (xx))(λx .f (xx)) ∅

Ω = ∆∆ = (λx .xx)(λx .xx) ∅

α-conversion

Definition
α-reduction:

λx .M −→α λy .M[x := y], y /∈ FV (M)

I Bound variables could be renamed in order to avoid name clashing;
I Barendregt’s convention: If a term contains a free variable which would become

bound after beta-reduction, that variable should be renamed.

I Renaming could be done also by using De Bruijn name free notation.

Example

λx .fx =α λy .fy

“A rose by any other name would smell as sweet"

William Shakespeare, “Romeo and Juliet"

β-reduction

The principal reduction rule pf λ-calculus:

(λx .M)N −→β M[x := N]

provided that M,N ∈ Λ and M[x := N] is valid substitution.

I Represents an evaluation of the function M with N being
the value of the parameter x .

Example

(λx .x + 42)5 −→β 5 + 42→ 47

Substituion

Implicit substitution, meta notion

x [x := M] = M
y [x := M] = y
(PN)[x := M] = P[x := M] N[x := M]
(λx .N)[x := M] = λx .N
(λy .N)[x := M] = λy .(N[x := M]), y /∈ FV (M)
(λy .N)[x := M] = (λz.N[y := z])[x := M]),

y ∈ FV (M) ∧ z /∈ FV (M)

λ-calculus with explicit substitution.

η-conversion

Definition
η-reduction:

λx .(Mx) −→η M, x /∈ FV (M)

I This rule identifies two functions that always produce equal results if taking equal

arguments.

Example

λx .addx −→η add

Running example
M

xyzx normal form NF

I = λx .x normal form NF

K = λxy .x normal form NF

KI(KII) strongly normalizing SN

KIΩ normalizing N

Y = λf .(λx .f (xx))(λx .f (xx)) solvable HN

Ω = ∆∆ = (λx .xx)(λx .xx) unsolvable

KI(KII) → KII→ I
KI(KII) → I
KIΩ → I
KIΩ → KIΩ → . . .→ KIΩ → I stop
KIΩ → KIΩ → . . .→ KIΩ → . . . infinite loop
Y → λf .f ((λx .f (xx))(λx .f (xx)))

→ λf .ff ((λx .f (xx))(λx .f (xx)))
Ω → Ω → Ω → Ω → . . .

Properties - Confluence

I Church-Rosser (CR) theorem: If M → N and M → P,
then there exists S such that N −→ S and P −→ S
(confluence).

The proof is deep and involved.

I The corollaries of CR theorem:
I the order of the applied reductions is arbitrary and always leads to the

same result (contractum);
I every λ-term has at most one normal form (uniqueness of NF);
I reductions can be executed in parallel (parallel computing).

Properties - Normalisation theorem

Definition

(i) λ-term is in the head normal form if its form is:

λx1x2...xm.yM1...Mk , m, k ≥ 0

(ii) λ-term is in the normal form if it doesn’t contain any β nor η
redexes:

λx1x2...xm.yN1...Nk , Ni ∈ NF andm, k ≥ 0

I Informally, λ-term is in the normal form if it is completely evaluated.

I Normalisation theorem: If M has normal form, then the
leftmost strategy (the sequence of left β- and η-reductions,
is terminating, and the result is the normal form of M.

Properties - Fixed point theorems

I Fixedpoint theorem: There is a fixed point combinator

Y ≡ λf .(λx .f (xx))(λx .f (xx))

such that ∀F , F (YF) = YF , F ∈ Λ.
I Multiple fixedpoint theorem: Let F1,F2, ...,Fn ∈ Λ. There exist X1,X2, ...,Xn

such that
X1 = F1X1X2...Xn, ... , Xn = FnX1X2...Xn.

I These properties enable the representation of the
recursive functions in λ-calculus.

Logic, conditionals, pairs
I Propositional logic in λ-calculus:

> := λxy .x , ⊥ := λxy .y , ¬ := λx .x>⊥,
∧ := λxy .xy⊥, ∨ := λxy .x>y

Example

> ∨ A −→ (λxy .x>y)(λzu.z)A −→ (λzu.z)>A −→ >

I Conditionals and pairs in λ-calculus:
(E → M1|M2) := MM1M2,

fst := λx .x>, snd := λx .x⊥, (M1,M2) :=
λx .xM1M2

Example

(> → M1|M2) −→ >M1M2 −→ (λxy .x)M1M2 −→ M1

Arithmetic

I Church’s numerals (arithmetics on the Nat set):

0 := λfx .x ,
1 := λfx .fx ,
n := λfx .f nx ,
succ := λnfx .nf (fx),
add := λmnfx .mf (nfx),
iszero := λn.n(λx .⊥)>,
pre := λnfx .snd(n(prefn f)(>, x))
mult := Y multifn

I multifn := λ f m n.(iszero m → 0 | add n (f (pre m) n))

I add n m =β n + m
I mult n m =β n ×m

Properties - Expressiveness

In the mid 1930s
I (Kleene) Equivalence of λ-calculus and recursive

functions.
I (Turing) Equivalence of λ-calculus and Turing machines.
I (Curry) Equivalence of λ-calculus and Combinatory Logic.

References

H.P. Barendregt.
Lambda Calculus: Its syntax and Semantics.
North Holland 1984.

F. Cardone, J. R. Hindley
History of Lambda-calculus and Combinatory Logic
online 2006
Handbook of the History of Logic. Volume 5. Logic from Russell to Church
Elsevier, 2009, pp. 723-817

Untyped lambda calculus

Simply lambda calculus

Intersection types

Motivation

I “Disadvantages" of the untyped λ-calculus:
I infinite computation - there exist λ-terms without a normal form
I meaningless applications - it is allowed to create terms like sin log

I Types are syntactical objects that can be assigned to
λ-terms.

I Reasoning with types present in the early work of Church on untyped
lambda calculus.

I two typing paradigms:
I à la Curry - implicit type assignment

(lambda calculus with types);
I à la Church - explicit type assignment

(typed lambda calculus).

Simply typed λ-calculus - syntax of types

Definition
I The alphabet consists of

I V = {α, β, γ, α1, . . .}, a countable set of type variables
I →, a type forming operator
I), (auxiliary symbols

I The language is the set of types T defined as follows
I If α ∈ V then α ∈ T
I If σ, τ ∈ T then (σ → τ) in T.

I The abstract grammar that generates the language

σ ::= α | σ → σ

Conventions for minimizing the number of the parentheses:
I σ1 → σ2 → . . . σn−1 → σn stands for (σ1 → (σ2 → . . . (σn−1 → σn) . . .));

λ→ - the language

M : σ
Definition

I Type assignment is an expression of the form M : σ,
where M is a λ-term and σ is a type.

I Declaration x : σ is type assignment in which the term is a
variable.

I Basis (environment) Γ = {x1 : σ1, . . . , xn : σn} is a set of
declarations in which every variable is assigned as most
one type.

λ→ - the type system

I Axiom

(Ax1)
Γ, x : σ ` x : σ

I Rules

(→elim)
Γ ` M : σ → τ Γ ` N : σ

Γ ` MN : τ

(→intr)
Γ, x : σ ` M : τ

Γ ` λx .M : σ → τ

Running example

M Type

xyz x : σ → τ → ρ, y : σ, z : τ ` xyz : ρ

λx .zx z : σ → ρ ` λx .zx : σ → ρ

I = λx .x σ → σ

K = λxy .x σ → ρ→ σ

∆ = λx .xx NO

Y = λf .(λx .f (xx))(λx .f (xx)) NO

Ω = ∆∆ = (λx .xx)(λx .xx) NO

I Subject reduction, type preservation under reduction
If M −→ P and M : σ, then P : σ.

I Broader context: evaluation of terms (expressions,
programs, processes) does not cause the type change.

I type soundness
I type safety

I Strong normalization
If M : σ, then M is strongly normalizing.

I Tait 1967
I reducibility method (reducibility candidates)
I arithmetic proofs

Typability (type inference): given M

M :?

Inhabitation: given σ

? : σ

Type checking: given M and σ

(M : σ)?

Typability

λ→ typability is decidable

M :? decidable

I principal type scheme (Hindley)
I Hindley-Milner-Damas algorithm

Inhabitation

Intuitionistic logic - Natural deduction, Gentzen 1930s
I Axiom

(Ax)
Γ, σ ` σ

I Rules

(→elim)
Γ ` σ → τ Γ ` σ

Γ ` τ

(→intr)
Γ, σ ` τ

Γ ` σ → τ

Inhabitation

Intuitionistic logic - Natural deduction, Gentzen 1930s
I Axiom

(Ax)
Γ, x :σ ` x :σ

I Rules

(→elim)
Γ ` M :σ → τ Γ ` N :σ

Γ ` MN :τ

(→intr)
Γ, x :σ ` M :τ

Γ ` λx .M :σ → τ

Curry-Howard correspondence
Intuitionistic logic vs computation

` σ ⇔ ` M : σ

A formula is provable in LI if and only if it is inhabited in λ→.

I 1950s Curry
I 1968 (1980) Howard formulae-as-types
I 1970s Lambek - CCC Cartesian Closed Categories

I 1970s de Bruijn AUTOMATH

formulae –as– types
proofs – as – terms
proofs –as– programs

proof normalisation –as– term reduction

I BHK - Brouwer, Heyting, Kolmogorov interpretation of logical connectives is

formalized by CH-

Curry-Howard correspondence

Consistency Completeness
Decidability

I Intuitionistic propositional logic LI is consistent, complete
and decidable.

I Due to CH, decidability of provability in LI implies
decidability of inhabitation in λ→.

I λ→ inhabitation decidable

? : σ decidable

Curry-Howard paradigm

“If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one

sentence passed on to the next generation of creatures, what statement would contain

the most information in the fewest words?

I believe it is the atomic hypothesis that
all things are made of atoms." - Richard Feynman

In this domain, proposal:

Logical deduction and computation embody each other

Lambda cube

Theorem
M is typable =⇒ M strongly normalizing.

I More type systems: intersection types, recursive types

References

H.P. Barendregt, W. Dekkers, R. Statman.
Lambda Calculus with Types.
Cambridge University Press 2013.

B. C. Pierece.
Types and programming languages.
MIT Press 2002.

There is no perfect world

In λ→

λx .xx : NO

Untyped lambda calculus

Simply lambda calculus

Intersection types

Intersection types

I The abstract grammar that generates the language

σ ::= α | σ → σ| σ ∩ σ

I Axiom
(Ax)

Γ, x : σ ` x : σ

I Rules

Γ ` M : σ → τ Γ ` N : σ
(elim→)

Γ ` MN : τ

Γ, x : σ ` M : τ
(intr →)

Γ ` λx .M : σ → τ

Γ ` M : σ ∩ τ
(elim∩)

Γ ` M : σ

Γ ` M : σ ∩ τ
(elim∩)

Γ ` M : τ

Γ,` M : σ Γ ` M : τ
(intr∩)

Γ ` M : σ ∩ τ

Γ,` M : σ σ ≤ τ
(≤)

Γ ` M : τ

Intersection types

Introduced in the 1980s, to overcome the limitations of simple
types

I Coppo, Dezani
I Pottinger
I Sallé

I Intersection types do not correspond to inuitionistic
conjunction

σ → τ → σ ∩ τ

intuitionistically provable, but not inhabited in λ∩

x : (σ → τ) ∩ σ ` x : (σ → τ) ∩ σ
(elim∩)

x : (σ → τ) ∩ σ ` x : σ → τ

x : (σ → τ) ∩ σ ` x : (σ → τ) ∩ σ

x : (σ → τ) ∩ σ ` x : σ
(elim→)

x : (σ → τ) ∩ σ ` xx : τ
(intr →)

` λx .xx : ((σ → τ) ∩ σ)→ τ

Intersection types - SN

Complete characterization of strong normalization

Theorem

M is typable⇐⇒ M is SN

Proof.

Typability =⇒ SN

I reducibility method

SN =⇒ Typability
I typability of normal forms
I head subject expansion

Complete characterization of different normalization properties:
solvable, weakly solvable terms and standardization, among
others.

I Typability is undecidable

Intersection types - Inhabitation

I Inhabiation is undecidable - 1996 P. Urzyczyn, J. Tyurin

? : σ

I Automated theorem proving
I Program synthesis

I Fragments of intersection types with decidable inhabitation
- J. Rehof

I Complexity

Intersection types - models of λ-calculus

Filter models built by means of intersection types, enable to
prove completeness of type assignment.

Theorem

Γ ` M : σ ⇐⇒ Γ |= M : σ

Filter models became powerful tool for proving completeness of
type assignment in different framework.

References

H.P. Barendregt, W. Dekkers, R. Statman.
Lambda Calculus with Types.
Cambridge University Press 2013.

H.P. Barendregt, M. Coppo, M. Dezani-Ciancaglini.
A filter lambda model and the completeness of type assignment.
Journal of Symbolic Logic 48(4):931–940, 1983.

J.-L. Krivine.
Lambda-calcul, types et modèls
Masson 1990
Lambda calculus types and models, English translation

Take away

I Types have gained an important role in the analysis of
formal systems.

I A type system
I splits elements of the language (terms)
I into sets (types)
I proves absence of certain undesired behaviours.

I Formal calculi: subject reduction (type preservation under reduction,

characterization of reduction.

I Programming languages: types represent a well-established technique

to ensure program correctness.

I Concurrent systems: types have become a powerful means for security

and access control and privacy issues.

	Untyped lambda calculus
	Simply lambda calculus
	Intersection types

