
Preciseness of Subtyping
on Intersection and Union Types

Silvia Ghilezan

University of Novi Sad
Serbia

Université Paris Diderot, 21 April 2016

1/27

Subtyping

Joint work with Mariangiola Dezani-Ciancaglini
M. Dezani-Ciancaglini and SG.
Preciseness of subtyping on intersection and union types.
In RTA-TLCA 2014, volume 8560 of LNCS, pages 194–207 (2014).

2/27

Subtyping

Subtyping is a binary relation (preorder) on the set of Types

� ⌧

Subsumption rule in the type inference system

M : � � ⌧

M : ⌧

• �-calculi, concurrent calculi
• programming languages

3/27

1 Soundness and completeness

2 Concurrent �-calculus

3 Preciseness Results

4 Conclusion

4/27

1 Soundness and completeness

2 Concurrent �-calculus

3 Preciseness Results

4 Conclusion

5/27

Preciseness of subtyping

Preciseness
• Soundness
• Completeness

Two aspects:
• Denotational preciseness
• Operational preciseness

6/27

Denotational Preciseness of Subtyping

[[�]] is a set interpreting type �

denotational soundness: � ⌧ implies [[�]] ✓ [[⌧]]

denotational completeness: [[�]] ✓ [[⌧]] implies � ⌧

denotational preciseness: � ⌧ iff [[�]] ✓ [[⌧]]

H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini.
A Filter Lambda Model and the Completeness of Type Assignment.
Journal of Symbolic Logic, 48(4):931–940, 1983.

J. Vouillon.
Subtyping Union Types.
In CSL, volume 3210 of LNCS, pages 415–429, 2004.

7/27

Operational Soundness of Subtyping

If � ⌧ , then each context

• that is safe when filled with a term of type ⌧ is also safe
when filled with a term of type �

8C[] (8M : ⌧ C[M] 6!⇤
error =) 8N : � C[N] 6!⇤

error)

Example. nat int C[�5] converges, then C[2] converges

Subsumption rule in the type system

M : � � ⌧

M : ⌧

Operational soundness of subtyping follows from subject
reduction of the type system

8/27

Operational Completeness of Subtyping

Converse:
If each context that is safe when filled with a term of type ⌧ is
also safe when filled with a term of type �, then � ⌧

Instead:
If � 6 ⌧ , then there is a context

• that is safe when filled with an arbitrary term of type ⌧ , and
• gives an error when filled with a suitable term of type �

9C0[](8M : ⌧. C0[M] 6!⇤
error

V
9N0 : �.C0[N0] !⇤

error)

9/27

Operational Preciseness of Subtyping

soundness and completeness

� ⌧ iff for each context
• that is safe when filled with a term of type ⌧ is also safe

when filled with a term of type �

8C[] (8M : ⌧. C[M] 6!⇤
error =) 8N : �. C[N] 6!⇤

error)

� ⌧ iff there is no context
• that is safe when filled with an arbitrary term of type ⌧ and
• gives an error when filled with a suitable term of type �

¬9C0[](8M : ⌧. C0[M] 6!⇤
error

V
9N0 : �C0[M0] !⇤

error)

J. Blackburn, I. Hernandez, J. Ligatti, and M. Nachtigal.
Completely subtyping iso-recursive types.
Technical Report, University of South Florida, 2014.

10/27

1 Soundness and completeness

2 Concurrent �-calculus

3 Preciseness Results

4 Conclusion

11/27

Concurrent �-calculus - Syntax

M. Dezani-Ciancaglini, U. de’Liguoro, and A. Piperno.
A Filter Model for Concurrent Lambda-Calculus.
SIAM Journal on Computing 27(5):1376–1419, 1998.

M ::= x | v | (�x .M) | (�v .M) | (MM) | (M + M) | (MkM)

1 call-by-name and call-by-value variables
2 internal choice
3 parallel operator

W ::= v | �x .M | �v .M | WkW TVal total values:
V ::= W | VkM | MkV Val values

12/27

Reduction rules

(+
L

) M + N �! M (+
R

) M + N �! N

(k
app

) (MkN)L �! MLkNL (k
s

)
M �! M

0
N �! N

0

MkN �! M

0kN

0

(k
a

)
M �! M

0
W 2TVal

MkW �! M

0kW , WkM �! WkM

0

(�) (�x .M)N �! M[N/x] (�
v

)
W 2 TVal

(�v .M)W �! M[W/v]

(�
v

k) V �! V

0
V 2 Val

(�v .M)V �! M[V/v]k(�v .M)V 0

(µ
v

)
N �! N

0
N 62 Val

(�v .M)N �! (�v .M)N 0 (⌫)
M �! M

0
M 62 Val

S
Par

MN �! M

0
N

TVal total values: W ::= v | �x .M | �v .M | WkW

Val values V ::= W | VkM | MkV

Par = {MkN} 13/27

Convergence

reduction tree P = �x .(x + I) Q = (�x .P(xx))(�x .P(xx))
Bar is a subset of nodes of the reduction tree such that each maximal
path intersects the bar at exactly one node
a term converges if there is a bar of values in its reduction tree

IIk⌦+ Kk⌦

ww ''
IIk⌦ Kk⌦

Ik⌦
✏✏

Kk⌦
✏✏

. . .✏✏ . . .✏✏

YP

Q

✏✏

PQ

✏✏

Q + I
✏✏

yy ""
Q I

PQ

✏✏

Q + I
✏✏

yy ''.

IIk⌦+ Kk⌦

ww ''
IIk⌦ Kk⌦

Ik⌦
✏✏

Kk⌦
✏✏

. . .✏✏ . . .✏✏

converges

YP

Q

✏✏

PQ

✏✏

Q + I
✏✏

yy ""
Q I

PQ

✏✏

Q + I
✏✏

yy ''.
diverges

14/27

Types and Subtyping

Type: � ::= ! | � ! � | � ^ � | � _ �

� ⌧ is the smallest pre-order on types such that

1 hType,i is a distributive lattice, in which ^ is the meet, _
is the join and ! is the top;

2 the arrow satisfies
1 � ! ! ! ! !;
2 (� ! ⇢) ^ (� ! ⌧) � ! ⇢ ^ ⌧ ;
3 � � �0, ⌧ ⌧ 0) � ! ⌧ �0 ! ⌧ 0.

CType: a type � is coprime if � ⌧ _ ⇢ implies � ⌧ or � ⇢

Each type is equal to an union of coprime types.

15/27

Typing Rules

A basis � maps
1 call-by-name variables to types (! by default) and
2 call-by-value variables to coprime types (! ! ! by default)

(Ax) � ` ↵ : �(↵) (!) � ` M : !

(! I

n

)
�, x : � ` M : ⌧

� ` �x .M : � ! ⌧

(! I

v

)
�, v : �

i

` M : ⌧ � =
W

i2I

�
i

�
i

2 CType i 2 I

� ` �v .M : � ! ⌧

(! E)
� ` M : � ! ⌧ � ` N : �

� ` MN : ⌧

(^ I)
� ` M : � � ` M : ⌧

� ` M : � ^ ⌧
()

� ` M : � � ⌧

� ` M : ⌧

(+ I)
� ` M : � � ` N : ⌧

� ` M + N : � _ ⌧
(k I)

� ` M : � � ` N : ⌧

� ` MkN : � ^ ⌧
16/27

Characterisation of Convergence

Each type is either a subtype of ! ! ! or it is equivalent to !.

Theorem (Type preservation)
The type system enjoys subject reduction.

Theorem
A closed term is convergent iff it has type ! ! !.

Corollary
A closed term is divergent iff it has only types equivalent to !.

17/27

Unsoundness of (� ! ⇢) ^ (⌧ ! ⇢) � _ ⌧ ! ⇢

� = ⇢ ! ! ! ⇢ ⌧ = ! ! ⇢ ! ⇢ ⇢ = ! ! !

` �x .x I⌦k�x .x⌦I : (� ! ⇢) ! (⌧ ! ⇢) and ` K + O : � _ ⌧

` (�x .x I⌦k�x .x⌦I)(K + O) : ⇢ (= ! ! !)

(�x .x I⌦k�x .⌦I)(K + O) �! (K + O)I⌦k(K + O)⌦I)
�! OI⌦kK⌦I �! ⌦k⌦

⌦k⌦ diverges 6` ⌦k⌦ : ! ! ! subject reduction fails!

18/27

1 Soundness and completeness

2 Concurrent �-calculus

3 Preciseness Results

4 Conclusion

19/27

Preciseness for the Concurrent �-calculus

The subtyping is denotationally precise when

� ⌧ if and only if [[�]] ✓ [[⌧]]

The subtyping is operationally precise when

� ⌧ if and only if
there is no closed terms M0 such that M0P converges for all
closed terms P : ⌧ and for some N0 : � the term M0N0 diverges

¬9M0[](8P : ⌧. M0P conveges
^

9N0 : �. M0N0 diverges)

20/27

Operational preciseness for the Concurrent �-calculus

key terms

R! = ⌦; T! = �xy .y ;
R�!⌧ = �x .(T�x)R⌧ ; T�!⌧ = �v .T⌧ (v R�);
R�^⌧ = R�kR⌧ ; T�^⌧ = �x .(T� x + T⌧ x);
R�_⌧ = R� + R⌧ . T�_⌧ = �v .(T� v kT⌧ v) where � _ ⌧ 6= !.

characteristic term
R� is the “worst” (with respect to convergence) term of type �

R� has type ⌧ iff � ⌧

test term
T�M (M closed) converges (to I) iff M has type �

T� has type ⌧ ! ⇢ ! ⇢ iff ⌧ �

21/27

Theorem
The subtyping is denotationally precise for the concurrent

�-calculus.

[[�]] = {M | ` M : �}

Theorem
The subtyping is operationally precise for the concurrent

�-calculus.

22/27

1 Soundness and completeness

2 Concurrent �-calculus

3 Preciseness Results

4 Conclusion

23/27

Preciseness for Pure �-Calculus

Operational completeness requires that all empty (i.e. not inhabited) types
are less than all inhabited types

Inhabitation is undecidable for polymorphic types and for intersection types

A complete subtyping on polymorphic types or on intersection types for the
pure �-calculus must be undecidable

This makes unfeasible an operationally complete subtyping for
the pure �-calculus, both in case of polymorphic types and
intersection and union types

The terms of the concurrent �-calculus inhabit all types

Open problem: to study the extensions of �-calculus enjoying
operational preciseness for the decidable subtyping between
polymorphic types

24/27

Related work

J. Blackburn, I. Hernandez, J. Ligatti, and M. Nachtigal.
Completely subtyping iso-recursive types.
Technical Report, University of South Florida, 2014.

T. Chen, M. Dezani-Ciancaglini, and N. Yoshida.
On the Preciseness of Subtyping in Session Types.
In PPDP 2014, 135–146, 2014.

M. Dezani-Ciancaglini, SG, S. Jaksic, J. Pantovic and N. Yoshida.
Precise subtyping for synchronous multiparty sessions.
In PLACES 2015, EPTCS 203:29–43, 2016.

M. Dezani-Ciancaglini, SG, S. Jaksic, J. Pantovic and N. Yoshida.
Denotational and Operational Preciseness of Subtyping: A Roadmap.
In Theory and Practice of Formal Methods 2016, LNCS 9660: 155–172,
2016.

25/27

TYPES 2016, May 23-27, 2016, Novi Sad

• TYPES 2016 - 22nd International Conference on
Types for Proofs and Programs

• Affiliated events: CLA 2016, EUTYPES 2016
• Novi Sad, Serbia
• May 23- 27, 2016
• http://www.types2016.uns.ac.rs/

26/27

Thanks

27/27

