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Abstract. In this article, a third order singularly perturbed problem
with a weak layer is considered. To obtain approximation to the solu-
tion of this problem, a standard difference scheme on a new modification
of the Duran-Shishkin mesh is used. Our modification has several ad-
vantages and provides numerical solution with better accuracy then the
standard Shishkin mesh, which is confirmed in numerical experiments.
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1. Introduction

We consider the following third order singularly perturbed problem:

(1.1)
εu′′′(x) + a(x)u′′(x) + b(x)u′(x) + c(x)u(x) = f(x) in Ω

u(0) = u(1) = u′(0) = 0,

where Ω = (0, 1), ε is a small positive parameter, a(x) > α > 0, and the
coefficients are infinitely differentiable. This problem has a weak layer near
x = 0 and from [6] we have

|u(k)(x)| < C(1 + ε−k+1e−αx/ε), k = 0, 1, 2,

where C is some constant independent of ε.
There are only few papers dealing with third order singularly perturbed

problems, see for example [3],[4],[6]-[8]. These problems are more difficult than
second or fourth order singularly perturbed problem, which are studied widely.
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2. Discretization

For a given arbitrary mesh 0 = x0 < x1 < . . . < xn = 1, the following
notation is used

hi = xi+1 − xi, i = 0, 1, . . . , n− 1, h = max
i=0,1,...,n

hi,

and the divided difference operator

Dkuhi := k!uh[xi, . . . , xi+k], k = 1, 2, 3

for a grid function uh. The following discretization
(2.1)

εD3uhi + aiD
2uhi+1 + biD

1uhi+1 + ciu
h
i+1 = fi, for i = 0, 1, . . . , n− 3,

uh0 = uhn = 0, D1uh0 = 0.

is used to obtain approximate solution to problem (1.1), [6]. Also, to measure
the error of the approximation, we introduce the following discrete norms

‖uh‖h,ε := max{‖uh‖h,∞, ‖D1uh‖h,∞, ε‖D2uh‖h,∞},

‖Dkuh‖h,∞ := max{|Dkuhi | : i = 0, 1, . . . , n− 3}, k = 0, 1, 2.

Finally, ‖ · ‖h,∞ is the standard maximum discrete norm.

3. Duran-Shishkin mesh

To capture boundary layers for singularly perturbed problems, the layer-
adapted meshes are most often used. One type of those meshes is the Duran
mesh introduced in [1] and it is obtained as a simplified version of Gartland-
type mesh from [2]. In [7] the authors presented a version of the Duran mesh,
the so-called Duran-Shishkin (D-S) mesh which was used to capture the layers
for a third order singularly perturbed problem.

Let 0 < µ < 1 be a given parameter and N some chosen even integer. Mesh
from [7] tailored for problem (1.1) is defined as follows:

x0 = 0,

x1 = µε,

xi = xi−1 + µxi−1 = µ(1 + µ)i−1ε, i = 2, . . . ,M,

xM+i = τ̄ + 2iN−1(1− τ̄), i = 1, . . . , N/2,

xM+N/2 = 1,

where xM = τ̄ , and M is the smallest integer such that

τ̄ = µ(1 + µ)M−1ε ≥ τ := min

{
1

2
,

2

α
ε lnN

}
.

This mesh has two issues. The fist one is a transition point τ̄ which is not the
standard transition point of the Shishkin mesh τ . The second issue is related
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to the number of mesh points, which is M + N/2 + 1. This number is not a
priori known since it depends on the mesh parameter µ. Also, it is not clear
what is the ratio between M - the number of mesh points in the layer, and N/2
- the number of mesh points outside of it. If µ is large, then this ratio could
be too small (M is very small). If µ is small, than the ratio could be too large
(M is very large number).

The main goal here is to modify this mesh, in order to solve both issues
given the above. For a fixed N , our modified mesh is defined as follows

(3.1)

x0 = 0,

x1 = µε,

xi = xi−1 + µxi−1 = µ(1 + µ)i−1ε, i = 2, . . . ,M,

xN/2+j = τ + 2iN−1(1− 2τ), i = 1, . . . , N/2,

where M = N/2, and µ is calculated so that

(3.2) xM = µ(1 + µ)M−1ε = τ.

Now, the transition point of such a mesh is exactly τ and it has the same
number of mesh points inside and outside of boundary layer. Precisely, there
are N/2 points in the interval (0, τ) and N/2 points in the interval (τ, 1).

On Figure 1 the position of mesh points (for different values of ε) is shown.
With decreasing of parameter ε, the number of mesh points in the neighborhood
of x = 0 increases.

Figure 1: The modified D-S mesh (3.1) for N = 32.

The parameter µ in (3.2) can be calculated numerically. Table 1 shows the
values of µ, for fixed ε and various N . Using these values, the obtained meshes
are unique. In other words, for a chosen N, there exists only one modified D-S
mesh, which is unlikely for the original D-S mesh [5], Duran mesh, as well for
the one from [7].

For the method (2.1) applied on modified mesh (3.1), numerical solution
converges to the exact solution of (1.1), when N → ∞. Theoretical results
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N µ
25 0.2484575
26 0.1406596
27 0.0792910
28 0.0444235
29 0.0247098
210 0.0136418
211 0.0074769
212 0.0040706

Table 1: Values of parameter µ for ε = 10−6

for different numerical methods on some kind of D-S mesh can be found in [6]
and [7]. In this paper we want to compare numerical results for method (2.1)
on mesh (3.1) with the results obtained by the same method on the standard
piecewise uniform Shishkin mesh, which is defined by

xi =


i

2

N
τ, i = 0, 1, . . . , N/2

τ +

(
i− N

2

)
(1− τ)

2

N
, i = N/2 + 1, N/2 + 2, . . . , N.

4. Numerical results

The following test problem is used to compare efficiency of method (1.1) on
two mentioned

εu′′′(x) + u′′(x) + εu′(x) + u(x) = x in Ω = (0, 1),

u(0) = u(1) = u′(0) = 0,

The exact solution of this problem is given by

u(x) =

(
e

1
ε (ε− 1)− ε

)
sinx

ε+ e
1
ε (sin 1− ε cos 1)

+
ε
(
e

1
ε (1− ε) + ε

)
cosx

ε+ e
1
ε (sin 1− ε cos 1)

+
εe

1
ε−

x
ε (ε(1− cos 1)− 1 + sin 1)

ε+ e
1
ε (sin 1− ε cos 1)

+ x− ε.

The errors and convergence rates

χN = ‖u− uh‖h,ε, pN =
lnχN − lnχ2N

ln 2

on modified D-S and Shishkin meshes are presented in Table 2. The rate of
convergence on mesh (3.1) is slightly larger than on the Shishkin mesh. It can
be observed that numerical results on the D-S mesh outperform results on the
Shishkin mesh in the sense that errors are smaller on mesh (3.1).

Table 3 shows uniform convergence of previously described method on the
D-S mesh – the number of mesh points is fixed (N = 512) while parameter ε
takes various values.
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modified D-S mesh Shishkin mesh
N χN pN χN pN
25 6.73e-02 0.872 6.70e-02 0.834
26 3.68e-02 0.911 3.76e-02 0.860
27 1.96e-02 0.931 2.07e-02 0.878
28 1.03e-02 0.941 1.13e-02 0.890
29 5.35e-03 0.946 6.08e-03 0.900
210 2.78e-03 0.949 3.26e-03 0.907
211 1.44e-03 0.951 1.74e-03 0.912
212 7.44e-04 – 9.23e-04 –

Table 2: Comparison of results on D-S and Shishkin meshes for ε = 10−6.

ε χN
10−2 2.23e-03
10−3 2.70e-03
10−4 2.77e-03
10−5 2.78e-03
10−6 2.78e-03
10−7 2.78e-03
10−8 2.78e-03

Table 3: Uniform convergence for N = 512.
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