
The 9th Conference on Mathematics in Engineering: Theory and Applications
Novi Sad, May 31st–June 2nd 2024

PROCESS CALCULI COMPARISONS: A JOURNEY
THROUGH ENCODINGS

1

Jovana Dedeić
2

https://doi.org/10.24867/META.2024.04 Professional paper

Abstract. This paper provides a comprehensive literature review on
the comparison of process calculi, specifically focusing on the encodings.
It explores systematic methods for evaluating expressive power through
encodings or proofs of their absence. The survey includes commonly used
encodability criteria, general frameworks for assessing encoding quality,
and methods for comparing these criteria. The insights gained from this
review contribute to a better understanding of the concepts of encodings.

AMS Mathematics Subject Classification (2020): 03B30, 68V20

Key words and phrases: concurrent systems, process calculi, encodings,
encodability criteria, expressiveness

1. Introduction

The complexity of programs necessitates advanced models for analysis,
which highlights the use of formal methods to analyze the properties of com-
plex systems. Formal methods rely on mathematical and logical frameworks
for specifying and verifying intricate systems. They utilize modeling languages
with precise mathematical syntax and semantics, enabling the demonstration
of system properties and verification through mathematical proofs. Examples
of formal methods for concurrency include Petri nets, communicating state
machines, and process calculi.

In the following, this paper offers an extensive survey of existing litera-
ture concerning the evaluation of process calculi, with a specific emphasis on
encoding techniques.

2. Expressiveness of Concurrent Calculi

The concept of expressive power in programming languages traces back to
the late 1960s, notably with Landin’s [12] work on a unified framework for de-
scribing language families. Felleisen’s [7] framework in the 1990s contributed to
studying relative expressiveness, emphasizing eliminable syntactic symbols and
definitional extensions between languages. Mitchell [15] and Riecke [25] in 1993

1
The author acknowledge the financial support of Department of Fundamentals Sciences,

Faculty of Technical Sciences, University of Novi Sad, in the frame of Project ”Improving
the teaching process in the English language in fundamental disciplines”.

2
Department of Fundamental Sciences, Faculty of Technical Sciences, University of Novi

Sad, e-mail: radenovicj@uns.ac.rs

27

https://orcid.org/0000-0002-5946-4438
https://doi.org/10.24867/META.2024.04
mailto:radenovicj@uns.ac.rs


Jovana Dedeić

analyze abstraction-preserving reductions in functional languages, focusing on
their impact on program abstraction and expressive power.

Shapiro [27] in 1989 was the first to study expressiveness issues for con-
current languages. He suggested using embedding as a method to compare
concurrent logic programming languages that are relatively similar, enabling a
focused examination of their distinctions.

The introduction of the π-calculus in the early 1990s significantly advanced
the exploration of expressiveness issues within process calculi. This simplicity
and adaptability of name-passing, as demonstrated in the π-calculus, spurred
numerous works proposing variants or extensions of it. Expressiveness studies
for the π-calculus were essential for understanding its fundamental proper-
ties, identifying its inherent sources of expressiveness, and exploring relation-
ships between its variants. Examples include studies on polyadic-to-monadic
π-calculus translation properties ([24, 30]), point-to-point versus broadcast-
ing communication ([6]), different choice operators ([16, 17]), mechanisms for
synchronous and asynchronous communication ([1, 21]), and λ-calculus into
the π-calculus [14]. Also, there are comparing various subcalculi of the π-
calculus [9], comparing different process calculi and some separation results
[2, 3, 4, 11, 13, 22, 23, 26, 28]. Due to varied motivations, each work proposed
its own definition of encoding based on specific working intuitions or necessities.

Calculi undergo evaluation, with expressiveness being a key criterion for
their assessment. Yet, the theory of concurrency lacks a formal definition of
language expressiveness. Given the diversity of concurrency models, a unified
theory that encompasses them all is unlikely [10].

In the study of expressiveness, the concept of encoding plays a crucial role,
as outlined in [? ]. This encoding, represented as J⋅K, translates terms from
a source calculus to terms in a target calculus, adhering to correctness crite-
ria that encompass both structural and semantic dimensions of the function
J⋅K. The challenge lies in defining these criteria due to diverse practical needs,
which hinders the development of a unified theory for language comparison.
Various works in the literature, including those in [8, 19, 20, 21], emphasize the
lack of consensus regarding a standardized set of criteria for meaningful en-
coding. These criteria are often customized to specific analysis requirements.
Furthermore, in [20], the author underscores the significance of systematically
comparing the increasing number of process models, highlighting a pivotal area
of research in the field.

The concept of expressiveness raises questions about its purpose. Expres-
siveness studies typically focus on two key aspects: encodability and non-
encodability. Encodability investigates the presence of an encoding, while non-
encodability deals with the absence of such an encoding. Consider two lan-
guages L1 and L2. To establish that L1 is more expressive than L2, both
encodability and non-encodability results must be provided. This means pre-
senting/proving an encoding J⋅K ∶ L2 ⟶ L1 and simultaneously demonstrating
that an encoding J⋅K ∶ L1 ⟶ L2 does not exist.

Another classification in the literature involves absolute and relative expres-
siveness. Absolute expressiveness focuses on a single process calculus, leading
to either positive or negative absolute results depending on the ability to solve

28



Process Calculi Comparisons: A Journey Through Encodings

specific problems. Conversely, relative expressiveness compares two languages,
determining whether they have the same expressive power or evaluating the
impact of specific operators on their expressiveness.

2.1. The Notation of Encoding

As stated in [5], an encoding function maps processes from a source calculus
to a target calculus, indicating that the target language is as expressive as the
source, or vice versa if no encoding exists. This approach, combining positive
and negative encodability results, helps establish differences in expressivity
between languages. Translations are often seen as syntax mappings between
languages (Ls to Lt), where Ps and Pt represent sets of process terms. Trivial
mappings, like translating every process to inaction, are valid but don’t reflect
full expressive power. To evaluate encoding quality and avoid trivial mappings,
encodings are assessed using a set of correctness criteria. References for further
exploration of correctness criteria include [8, 18, 20, 29, 31].

It is common to relate the sources and target calculus through valid encod-
ings (simply encodings). To define valid encodings, we adopt five correctness
criteria formulated by Gorla [8]: (1) compositionality, (2) name invariance, (3)
operational correspondence, (4) divergence reflection, (5) success sensitiveness.
The first two criteria are structural criteria, while the other three are seman-
tic criteria. Structural criteria describe the static structure of the encoding,
whereas the semantic criteria describe its dynamics – how the behavior of en-
coded terms relates to that of source terms, and vice versa. As stated in [20],
structural criteria are needed in order to measure the expressiveness of opera-
tors in contrast to expressiveness of terms. As for semantic criteria, operational
correspondence is divided into completeness and soundness properties: the for-
mer ensures that the behavior of a source process is preserved by the translation
in the target calculus; the latter ensures that the behavior of a translated (tar-
get) process corresponds to that of some source process. Divergence reflection
ensures that a translation does not introduce spurious infinite computations,
whereas success sensitiveness requires that source and translated terms behave
in the same way with respect to some notion of success.

Following [4, 5, 8], we start by defining an abstract notion of calculus:

Definition 2.1 (Calculus [5]). We define a calculus as a triple (P,⟶,≈),
where: P is a set of processes; ⟶ is its associated reduction semantics, which
specifies how a process computes on its own; ≈ is an equality on processes,
useful to describe the abstract behavior of a process, which is a congruence at
least with respect to parallel composition.

We will further assume a countably infinite set of names, usually denoted
N . Accordingly, the abstract definition of encoding refers to those names.

Definition 2.2 (Encoding [5]). Let Ns and Nt be countably infinite sets of
source and target names, respectively. An encoding of the source calculus
(Ps,⟶s,≈s) into the target calculus (Pt,⟶t,≈t) is a tuple (J⋅K, ϕJ⋅K) where
J⋅K ∶ Ps ⟶ Pt denotes a translation and ϕJ⋅K ∶ Ns ⟶ Nt denotes a renaming
policy for J⋅K.

29



Jovana Dedeić

The renaming policy defines the way names from the source calculus are
translated into the target calculus. A valid encoding cannot depend on the
particular names involved in source processes.

As in [5], we shall use the following notations. We write⟶
∗

to denote the

reflexive, transitive closure of ⟶. Also, given k ≥ 1, we will write P ⟶
k
P
′

to denote k consecutive reduction steps leading from P to P
′
. That is, P1 ⟶

k

Pk+1 holds whenever there exist P2, . . . , Pk such that P1 ⟶ P2 ⟶ ⋯⟶

Pk⟶ Pk+1.
We apply compositionality, as per [4], employing a context that combines

translated subterms based on the source operator’s combination of subterms.
In this paper, for definition of the operational correspondence we follow

more strict criteria than Gorla [8]. We rely on [4, 5] form of operational com-
pleteness that explicitly describes the number of steps required to mimic a step
in the source language. Also, for divergence reflection we use the following
definition:

Definition 2.3 (Divergence [5]). A process P diverges, written P ⟶
ω

, if
there exists an infinite sequence of processes {Pi}i≥0 such that P = P0 and for
any i, Pi⟶ Pi+1.

To formulate success sensitiveness, as in [5], we assume that both source
and target calculi contain the same success process ✓. Also, we assume that
⇓ is a predicate that asserts reducibility (in a “may” modality) to a process
containing an unguarded occurrence of ✓.

Definition 2.4 (Success [5]). Let (P,⟶,≈) be a calculus. A process P ∈ P
(may)-succeeds, denoted P ⇓, if it is reducible to a process containing an
unguarded occurrence of ✓, i.e., if P ⟶

∗
P
′
and P

′
= C[✓] for some P

′
and

context C[•].
In the following definition, we formally present the five criteria for valid

encoding:

Definition 2.5 (Valid Encoding [5]). Let Ls = (Ps,⟶s,≈s) and Lt =

(Pt,⟶t,≈t) be source and target calculi, respectively, each with countably
infinite sets of names Ns and Nt. An encoding (J⋅K, ϕJ⋅K), where J⋅K ∶ Ps ⟶ Pt

and ϕJ⋅K ∶ Ns ⟶ Nt, is a valid encoding if it satisfies the following criteria:

(1) Compositionality: J⋅K is compositional if for every n-ary (n ≥ 1) op-
erator op on Ps and for every set of names N there is an n-adic context
C

N
op[•1, . . . ,•n] such that, for all P1, . . . , Pn with fn(P1, . . . , Pn) ⊆ N it

holds that Jop(P1, . . . , Pn)K = CN
op [JP1K, . . . , JPnK] .

(2) Name invariance: J⋅K is name invariant if for every substitution σ ∶
Ns ⟶ Ns there is a substitution σ

′ ∶ Nt ⟶ Nt such that (i) for every
a ∈ Ns ∶ ϕJ⋅K(σ(a)) = σ′(ϕJ⋅K(a)) and (ii) Jσ(P )K = σ′(JP K).

(3) Operational correspondence: J⋅K is operational corresponding if it sat-
isfies the two requirements:

a) Completeness: If P ⟶s Q then there exists k such that JP K⟶k
t≈t

JQK.
b) Soundness: If JP K ⟶∗

t R then there exists P
′

such that P ⟶
∗
s P

′

and R⟶
∗
t≈t JP ′K.

30



Process Calculi Comparisons: A Journey Through Encodings

(4) Divergence reflection: J⋅K reflects divergence if, for every P such that
JP K⟶ω

t , it holds that P ⟶
ω
s .

(5) Success sensitiveness: J⋅K is success sensitive if, for every P ∈ Ps, it
holds that P ⇓ if and only if JP K ⇓.

Interested readers are encouraged to refer to [4, 5] to see how the authors
defined another criterion for their encodings, known as ”efficiency”. There, the
authors consider the number of reduction steps required in the target language
to mimic the behavior of the source language.

References

[1] D. Cacciagrano, F. Corrardini, and C. Palamidessi, ”Separation of syn-
chronous and asynchronous communication via testing”, Theor. Comput.
Sci. 386, 3, pp. 218–235, 2007.

[2] M. Carbone and S. Maffeis, ”On the expressive power of polyadic synchro-
nisation in pi-calculus”, Nordic Journal of Computing, 10, 2, pp. 70–98,
2003.

[3] O. Dardha, E. Giachino, and D. Sangiorgi, ”Session types revisited”, In-
formation and Computation, 256, pp. 253–286, 2017.

[4] J. Dedeić, J. Pantović, and J. A. Pérez, ”On primitives for compensa-
tion handling as adaptable processes”, Journal of Logical and Algebraic
Methods in Programming, p. 100675, 2021.

[5] J. Dedeić, Relative Expressiveness of Process Calculi with Dynamic Update
and Runtime Adaptation, PhD dissertation, Faculty of Technical Sciences,
University of Novi Sad, 2022.

[6] C. Ene and T. Muntean, ”Expressiveness of point-to-point versus broad-
cast communications”, In Proc. of FCT. Lecture Notes in Computer Sci-
ence, vol. 1684, Springer, pp. 258–268, 1999.

[7] M. Felleisen, ”On the expressive power of programming languages”, Sci.
Comput. Program., 17, 1-3, pp. 35–75, 1991.

[8] D. Gorla, ”Towards a unified approach to encodability and separation
results for process calculi”, Inf. Comput., 208, 9, pp. 1031–1053, 2010.

[9] K. Honda and M. Tokoro, ”An object calculus for asynchronous commu-
nication”, In Proc. of ECOOP’91, Geneva, Switzerland, July 15-19, 1991,
Proceedings, vol. 512 of Lecture Notes in Computer Science, pp. 133–147.
Springer, 1991.

[10] J. A. Pérez, Higher-Order Concurrency: Expressiveness and Decidability
Results, PhD dissertation,, University of Bologna, Department of Com-
puter Science, 2010.

[11] I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt, ”On the expres-
siveness and decidability of higher-order process calculi”, Information and
Computation, 209, 2, pp. 198–226, 2011.

[12] P. J. Landin, ”The Next 700 Programming Languages”, Communications
of the ACM, 9, 3, pp. 157–166, 1966.

[13] D. Medić and C. A. Mezzina, ”Static VS dynamic reversibility in CCS”,
8th International Conference, RC 2016, Bologna, Italy, July 7-8, 2016,
Proceedings, vol. 9720 of Lecture Notes in Computer Science, pp. 36–51.
Springer, 2016.

31



Jovana Dedeić

[14] R. Milner, ”Functions as processes”, Mathematical Structures in Computer
Science, 2, 2, pp. 119–141, 1992.

[15] J. C. Mittchell, ”On abstraction and the expressive power of programming
languages”, Sci. Comput. Program., 21, 2, pp. 141–163, 1993.

[16] U. Nestmann, ”What is a ”good” encoding of guarded choice?”, Inf. Com-
put., 156, 1-2, pp. 287–319, 2000.

[17] U. Nestmann and B. C. Pierce, ”Decoding choice encodings”, Inf. Com-
put., 163, 1, pp. 1–59, 2000.

[18] U. Nestmann, On Determinacy and Nondeterminacy in Concurrent Pro-
gramming, PhD dissertation, Universität Erlangen-Nürnberg, 1996.

[19] U. Nestmann, ”Welcome to the jungle: A subjective guide to mobile pro-
cess calculi”, In Proceedings of the 17th International Conference on Con-
currency Theory, CONCUR’06, pp. 52–63, Berlin, Heidelberg, 2006.

[20] J. Parrow, ”Expressiveness of process algebras”, Electronic Notes in The-
oretical Computer Science, 209, pp. 173–186, 2008.

[21] C. Palamidessi, ”Comparing the expressive power of the synchronous and
asynchronous pi-calculi”, Mathematical Structures in Computer Science,
13, 5, pp. 685–719, 2003.

[22] C. Palamidessi, V. A. Saraswat, F. D. Valencia, and B. Victor, ”On the
expressiveness of linearity vs persistence in the asynchronous π-calculus”,
In Proc. of the 21st IEEE Symposium on Logic in Computer Science (LICS
2006), Seattle, WA, USA, August 12-15, 2006, pp. 59–68. IEEE Computer
Society, 2006.

[23] I. Prokic and H. T. Vieira, ”The Cπ-calculus: A model for confidential
name passing”, Journal of Logical and Algebraic Methods in Programming,
119, p. 100622, 2021.

[24] P. Quaglia and D. Walker, ”Types and full abstraction for polyadic pi-
calculus”, Inf. Comput., 200, 2, pp. 215–246, 2005.

[25] J. G. Riecke, ”Fully abstract translations between functional languages”,
Mathematical Structures in Computer Science, 3, 4, pp. 387–415, 1993.

[26] D. Sangiorgi, Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms, PhD thesis, University of Edinburgh, UK, 1993.

[27] E. Y. Shapiro, ”The family of concurrent logic programming languages”,
ACM Comput. Surv., 21, 3, pp. 413–510, 1989.

[28] M. G. Vigliotti, I. Phillips, and C. Palamidessi, ”Tutorial on separation
results in process calculi via leader election problems”, Theoretical Com-
puter Science, 388, 1, pp. 267–289, 2007.

[29] N. Yoshida, ”Minimality and separation results on asynchronous mobile
processes - representability theorems by concurrent combinators”, Theo-
retical Computer Science, 274, 1, pp. 231–276, 2002.

[30] N. Yoshida, ”Graph types for monadic mobile processes”, In Proc. of
FSTTCS. Lecture Notes in Computer Science, vol. 1180, Springer, pp.
371–386, 1996.

[31] K. Peters, Translational expressiveness: comparing process calculi using
encodings, PhD dissertation, Technische Universität Berlin, Fakultät IV -
Elektrotechnik und Informatik, Berlin, 2012.

32


	Introduction
	Expressiveness of Concurrent Calculi
	The Notation of Encoding


