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Abstract. The paper is a preliminary announcement of studying
bipolar capacities on bounded lattices. An algebraic structure will be
constructed where it is possible to define a bipolar capacity and one spe-
cial case will be shown when the bipolar capacity is additive.
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1. Introduction

Bipolarity in solving decision-making problems has been used already for
about 20 years. The theory of bipolar capacities and integral with respect to
such capacities was introduced by Grabisch et al. [6, 7]. In some cases, a single
value is not sufficient as a result. Interval-valued fuzzy sets or Atanasov’s
intuitionistic fuzzy sets (see [1]) are broadly used in fuzzy decision-making.
Both, interval-valued fuzzy sets as well as Atanasov’s intuitionistic fuzzy sets,
are special cases of lattice-valued fuzzy sets, introduced by Goguen [5]. This
paper contains some preliminary considerations in examining possible lattice-
valued fuzzy sets where it is possible to define bipolar capacities. Readers are
assumed to be familiar with basics of lattices. For details on the lattice theory
readers are referred to the monograph [2]. The paper is organized as follows.
Section 2 is devoted to recalling known results and notions that will be needed
in authors’ considerations. In Section 3 the main results will be formulated.
Conclusions will be formulated in Section 4.

2. Preliminaries

In this section basic notions and results on bipolarity and also some types
of lattices will be provided.

An important notion will be that of a complemented lattice.

1Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering,
Slovak University of Technology in Bratislava, e-mail: juraj.kalafut@stuba.sk

2Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering,
Slovak University of Technology in Bratislava, e-mail: martin.kalina@stuba.sk

50

https://orcid.org/0009-0004-5373-3133
https://orcid.org/0000-0002-8072-1574
https://doi.org/10.24867/META.2024.08
mailto:juraj.kalafut@stuba.sk
mailto:martin.kalina@stuba.sk


Juraj Kalafut, Martin Kalina

Definition 2.1 ([2]). Let (L,∨,∧, 0, 1,c ) be a bounded lattice and ·c a decreas-
ing function such that for every x ∈ L there exists a uniquely given element xc

with

(2.1) x ∧ xc = 0, x ∨ xc = 1.

Then the lattice L is said to be complemented and the element xc the comple-
ment of x.

•

•

•

•

0 = 1c

a = bc b = ac

1 = 0c

•

•

•

••

0 = 1c

a = cc c = bcb = ac

1 = 0c

Figure 1: Examples of complemented lattices, left the lattice L1, right L2

Remark 2.2. Both of the lattice in Figure 1 are complemented, however, there
is substantial difference between them. The lattice left has a so-called involutive
complement, i.e., (xc)c = x for all elements of L1, while the complement in the
lattice L2 is not involutive.

Definition 2.3. Let X be a non-empty finite set and P(X) its powerset. A
monotone set-function µ : P(X) → [0, 1] is said to be a capacity if µ(∅) = 0,
µ(X) = 1.

One of the main notions in this paper is that of a bicapacity. Its definition
on a finite set X follows.

Definition 2.4 ([6]). Let X be a non-empty finite set and P(X) its powerset.
Denote Q(X) = {(A,B) ∈ P(X)×P(X);A∩B = ∅}. A function h : Q(X)→
[−1, 1] such that

1. h is increasing in the first variable,

2. h is decreasing in the second variable,

3. h(∅, ∅) = 0, h(X, ∅) = 1, h(∅, X) = −1,

is called a bicapacity.

Example 2.5. A typical example of a bicapacity on a non-empty finite set X
is the following

(2.2) h(A,B) = µ(A)− ν(B) where µ and ν are capacities.
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Particularly, if card(X) = n, one may have

(2.3) hsym(A,B) =
card(A)

n
− card(B)

n
,

where (A,B) ∈ Q(X) from Definition 2.4.
The bicapacity hsym defined by formula (2.3), is called symmetric (see, e.g.,

[8, 9]).

An important notion will be also that of MV-algebra [4].

Definition 2.6 ([3, 4]). An MV-algebra is an algebra (A,⊕,¬, 0) of type
(2, 1, 0), satisfying

(M1) x⊕ y = y ⊕ x,

(M2) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,

(M3) x⊕ 0 = x,

(M4) ¬¬x = x,

(M5) x⊕ 1 = 1 where 1 = ¬0,

(M6) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

Remark 2.7. On any MV-algebra M , an order ≤ can be introduced in the
following way ([3]):

(2.4) x ≤ y if and only if ¬x⊕ y = 1.

Moreover, the order (M,≤) can be organized into a bounded distributive lattice
(M,∨,∧, 0, 1) by

(2.5) x ∨ y = ¬(¬x⊕ y)⊕ y and x ∧ y = ¬(¬x ∨ ¬y).

The operation ¬ is not a complement in the sense of Definition 2.1.

3. Main results

Complemented lattices and MV-algebras are main structures that moti-
vated this research. The lattice L2 depicted in Fig. 1 right, is a complemented
lattices, however, some technical problems might occur when constructing a
bicapacity on that lattice because the complement is not involutive. However,
it is possible to define an algebraic structure on the lattice L2 skipping the
lattice-theoretical complement.

Example 3.1. Consider the lattice L2 from Fig. 1 right skipping the com-
plement. Define a partial binary operation ⊕ and a unary operation ¬ such
that 0 ⊕ x = x ⊕ 0 = x and 1 ⊕ x = x ⊕ 1 = 1 for all x ∈ L2 and ¬0 = 1,
¬1 = 0, and results for the set of inputs {a, b, c} is given by Table 1. The al-
gebraic structure (L2,⊕,¬, 0) is not an MV-algebra and neither (L2,∨,∧, 1, 0)
is a complemented lattice with ¬ as the complement.
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⊕ a b c
a a – 1
b – 1 –
c 1 – c

¬ a b c
c b a

Table 1: Operation ⊕ (left) and ¬ (right) on the set {a, b, c}

It is possible to define a dual operation to ⊕, �, defined for any pair (x, y) ∈
L2 × L2 whenever ⊕ is defined for (x, y), by

(3.1) x� y = ¬(¬x⊕ ¬y).

Then the following holds for ¬:

(3.2) x⊕ ¬x = 1, x� ¬x = 0.

This means that formula (2.1) a lattice-theoretical complement is ’mimicked’
by ¬ (cf. formula (3.2)) in the corresponding algebraic structure, just with
respect to ⊕ and �.

Remark 3.2. From now on, mentioning an algebraic structure (A,⊕,¬) it will
be assumed that formula (3.2) is fulfilled, where � is given by formula (3.1).

Definition 3.3. Let (A,⊕,¬) be an algebraic structure. Then (A,⊕,¬) will
denote the dual algebraic structure, i.e., the algebraic structure with the re-
verted order.

When no confusion may occur, A will denote also the algebraic structure
itself and A its dual algebraic structure. By x an element of A will be denoted.

Definition 3.4. Let (A,⊕,¬, 0) be an algebraic structure. A monotone func-
tion µ : A → [0, 1] is said to be a capacity if µ(0) = 0, µ(1) = 1, where
1 = ¬ 0.

Definition 3.5. Denote Q(A) = {(C1, C2) ∈ A × A;C2 ≤ ¬C1)} for an al-
gebraic structure A. A function H : Q(A) → A ∪ Ā will be called a bipolar
capacity if the following properties are fulfilled

(B1) H is increasing in the first variable,

(B2) H is decreasing in the second variable,

(B3) H((1, 0) = 1, H(0, 1) = 1̄, H(0, 0) = 0.

For a construction of a bipolar capacity on A, two capacities, µ : A→ [0, 1]
and ν : A→ [0, 1] can be used.

Example 3.6. Let A be an algebraic structure and µ and ν two capacities on
A. The following formula defines a bipolar capacity

H(C1, C2) =


C1 if µ(C1) > ν(C2),

C2 if ν(C2) > µ(C1),

0 if µ(C1) = ν(C2).
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Definition 3.7. A bipolar capacity H is dual to H if the following holds for
all (C1, C2) ∈ Q(A)

(3.3) H(C2, C1) = H(C1, C2).

H is said to be self-dual to H if H = H.

Assume a bipolar capacity H is used in solving a decision-making problem.
Then self-duality of H means that the preference for positive neither for nega-
tive evaluations is used. Particularly, the bipolar capacity H in Example 3.6 is
self-dual if µ = ν.

Definition 3.8. Let A be an algebraic structure containing finitely many el-
ements. A is said to be atomic if every element x ∈ A can be decomposed as
follows

(3.4) x =

k⊕
i=1

ai,

where ai are elements such that b ≤ ai implies b = 0 or b = ai, Elements ai are
said to be atoms.

The expression of an element x as the sum of atoms is not necessarily
unique.

Theorem 3.9. Let A be an atomic algebraic structure. Let all atoms be enu-
merated by numbers from N = {1, 2, . . . , n}. Assume that for all x ∈ A, if

(3.5) x =

k⊕
i−1

ai =

m⊕
j=1

bj

are two different decompositions into sets of atoms, then k = m. Then

(3.6) H(C1, C2) =



n1−n2⊕
i=1

ai if n1 > n2,

n2−n1⊕
i=1

ai if n1 < n2,

0 if n1 = n2,

is a bipolar capacity, where n1 and n2 are numbers of atoms of decompositions of
C1 and C2, respectively. The atoms ai, ai are chosen in such a way that always
atoms with smaller enumeration numbers are taken. Moreover, the bipolar
capacity H is additive with respect to ⊕.

4. Conclusions

The paper is an announcement of preliminary results of bipolar capacities
on lattices (and algebraic structures). The bipolar capacities have been defined
and a special case that led to additive bipolar capacities, was shown in Theorem
3.9.
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