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Abstract. In this paper we investigate stability of an axially loaded
nano beam that is clamped at one end and elastically restrained against
rotation on the other. We analyze elastically buckling nano beam based
on Eringen’s nonlocal elasticity theory. The Euler method of adjacent
equilibrium configuration is used to derive the nonlinear governing equa-
tions. The critical axial force and postbuckling shape are obtained for
the beam with the unit cross-sectional area. New numerical results are
obtained. The numerical analysis includes the influence of the charac-
teristic parameter of the small scale length on the critical load and the
postbuckling shape.
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1. Introduction

Recently, there has been significant research attention on structures at very
small length scales. Nano rods, nano beams, and nano plates have particularly
attracted interest due to their technical applications as nanoactuators, nanosen-
sors, and electrochemical sensors. The classical local continuum theory is not
entirely applicable to microstructures, especially nanostructures. In particular
in cases where the influence of small-scale effects becomes more significant and
cannot be ignored. The nonlocal continuum theory was introduced by Eringen
[1] to incorporate an internal length scale. According to this theory, the stress
tensor at a reference point in an elastic continuum depends on the strain field
at all points within the domain. Peddieson et al. [2] developed a nonlocal
Euler-Bernoulli beam model in their research. The nonlocal continuum theory
has been utilized in numerous studies to model nano beams ([3], [4], [5], [6],
[7]).

Researchers have developed various nonlocal beam models to investigate
the behavior of nano beams. Wang and Lee [8] formulated the nonlocal theory
for both Timoshenko and Euler-Bernoulli beams. Their results provided the
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first insights into the influence of nonlocal elasticity on the bending of nano
beams, considering concentrated loads as Dirac delta functions. Additionally,
Tuna and Kirca [9] derived the exact solution of the integral form of Eringen’s
nonlocal model for bending analysis of Euler-Bernoulli and Timoshenko beams.
In [10], the static deflection and critical buckling load of nano beams were
studied for different boundary conditions, taking into account varying nonlocal
and material-distribution parameters.

The influence of nonlocal parameters on critical load levels, post-critical
shapes, and the effect of various boundary conditions on the stability of nano
beams under conservative loading was analyzed in studies conducted by [11].

The aim of this research is to analyze the stability and determine the post-
critical shape of a nano beam with nonsymmetrical boundary conditions which
have not been used before. The beam is clamped on one end and elastically
restrained against rotation on the other end.

2. Mathematical formulation

Consider a straight nano beam of length L loaded by an axial force F with
the action line coinciding with the x axis of a rectangular coordinate system
x − B − y (see Fig. 1). The beam is clamped at one end and elastically
restrained against rotation on the other end (linear rotational spring), with the
end C having the possibility of sliding along the x -axis. At the end C the
beam is loaded by a compressive force F .
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Figure 1: Coordinate system and load configuration

Equilibrium equations for the beam are (see [12])

(2.1)
dH

dS
= 0,

dV

dS
= 0,

dM

dS
= −V cos θ +H sin θ,

where H and V are components of the contact force (i.e. the resultant force in
an arbitrary cross-section) along x and y axes, respectively, M is the bending
moment, θ is the angle between the tangent to the column axis and the x- axis
of a rectangular Cartesian coordinate system x − B − y, S is the arc-length
of the column axis measured from the origin of the coordinate system B. We
adjoin to (2.1) the geometrical equations

(2.2)
dx̄

dS
= cos θ,

dȳ

dS
= sin θ,

and the constitutive equation for nonlocal beam theory

(2.3) M − l2 d
2M

dS2
= EI

dθ

dS
.
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where l is an additional length scale specific to nonlocal constitutive law, that
is, to a specific material. The value of l can be identified from the Born–Kármán
model of lattice dynamics (see [1]). It can be observed from the experimental
interpolations that l ≤ 2 nm (nanometers). In (2.3) E is the modulus of
elasticity and I is the moment of inertia of the cross section. In Equations
(2.2) we used x̄ and ȳ to denote coordinates of an arbitrary point on the bear
axis in the coordinate system x−B − y. If l=0 Equation (2.3) corresponds to
the classical Bernoulli-Euler rod theory.

The boundary conditions for the column shown in Fig. 1 are
(2.4)
x̄ (0) = 0, ȳ (0) = ȳ (L) = 0, θ (0) = 0, M (L) = −cθ (L) , H (L) = −F.

where c is a spring constant of the support and c 6= ∞. Solving (2.1)1 and by
using (2.4)5, we obtain H = −F. By introducing the dimensionless quantities
(2.5)

t =
S

L
, ζ =

x̄

L
, η =

ȳ

L
, k =

l

L
, λ =

FL2

EI
, v =

V L2

EI
, m =

ML

EI
, b =

cL

EI

we obtain from (2.1)-(2.3)

(2.6) v̇ = 0, ṁ = −v cos θ−λ sin θ, ζ̇ = cos θ, η̇ = sin θ, θ̇ = m−k2m̈,

subject to

(2.7) η (0) = η (1) = 0, θ (0) = 0, m (1) = −bθ (1) ,

where
.

(·) = d
dt (·) .

The trivial solution for the systems (2.6), (2.7) in which the axis of the rod
remains straight for any value of and the dimensionless load parameter is

(2.8) θ0 = v0 = η0 = 0, ζ0 = t.

Euler method is used to examine stability of the trivial configuration defined
by Equations (2.8) (see [12]). In order to obtain nontrivial solution to (2.6),
(2.7) and determine λ ∈ R for it, it is assumed that

(2.9) θ = θ0 + ∆θ, v = v0 + ∆v, η = η0 + ∆η, ζ = ζ0 + ∆ζ,

where ∆θ, ...,∆ζ are perturbations. After substituting this in Equations (2.6)
and (2.7) and by neglecting the higher order terms in perturbations, Equations
(2.6) become (omitting ∆ in front of variables) linearized equations describing
relative equilibrium of the beam

(2.10) v̇ = 0, ṁ = −v − λθ, ζ̇ = 1, η̇ = θ, θ̇ = m− k2m̈,

subject to (2.7).
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3. Critical values of load parameter

In this section we will determine the critical loads (λ) of the beam for which
the beam loses its stability, e.i. when system (2.6), (2.7) has nontrivial solution.
A necessary condition for this to occur is that the linearized systems (2.10),
(2.7) have a nontrivial solution.

The system (2.10) can be reduced, so it can be written as

(3.1)
....
η +

λ

1− k2λ
..
η = 0

Then the solution of Equations (3.1) is

(3.2) η = C1 cos (βζ) + C2 sin (βζ) + C3ζ + C4,

where Cj , j = 1, 2, 3, 4are arbitrary constants and

(3.3) β =

√
λ

1− k2λ
.

The boundary conditions subjected to Equations (3.2) are

(3.4) η (0) = η (1) = 0, η̇ (0) = 0, η̈ (1) = −bη̇ (1) .

By using boundary conditions (3.4) the following condition for the existence
of non-trivial solutions is derived

(3.5) 2b−
(
β2 + 2b

)
cosβ + (β − bβ) sinβ = 0.

The necessary condition for the existence of solutions of the Equations (3.5)
is k2λ ≤ 1.

4. Numerical results

The critical (smallest positive root of (3.5)) value of the axial force for
several values of k and b is determined from Equations (3.5) and shown in
Table 1. Case when parameter b=∞ represents the nano beam that is clamped
on the both ends.

Table 1. Critical values of λ for different values of k and parameter b

b 0 0.5 50 500
k = 0 20.19072856 21.65942569 29.57476388 39.32098463
k = 0.05 19.22053695 20.54684361 27.5386418 35.80159929
k = 0.1 16.79890687 17.80332726 22.82447831 28.22330372
k = 0.2 11.1697295 11.60506445 13.54782035 19.07257867

The value of critical axial force increases for the increasing value of spring
constant b and constant value of k. When the nonlocal parameter (k) increases
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Figure 2: Postbuckling modes λ = 22, b = 0.5

than value of critical axial force also increases for constant value of b. For
the case when b = ∞ and k = 0 (Bernoulli–Euler clamped beam) we have
λ = 4π2 = 39.4784176 (see [12]).

The postbuckling shapes of first modes for chosen λ = 22, b = 0.5 and
several values of k are shown in Fig. 2. Equations (2.6) and (2.7) are used for
determining postbuckling shapes.

5. Conclusions

In this paper we analyzed the stability for an elastic nano beam. The beam
is clamped on one end and elastically restrained against rotation on the other
end. The characteristic equation (3.5) that determins critical loads for the
nano beam with constant cross-section is derived. By using the characteristic
equation we determined the lowest value of λ for several values of parameters
b and k (nonlocal parameter). Numerical analysis demonstrates that the value
of spring constant and nonlocal parameters have an impact on critical value of
axial force. The postbuckling shapes of first modes for chosen values of λ and
b and several values of parametar k is determined.
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