
The 9th Conference on Mathematics in Engineering: Theory and Applications
Novi Sad, May 31st–June 2nd 2024

A COMPOSITIONAL ENCODING OF π-CALCULUS
INTO Cπ-CALCULUS

Ivan Prokić 1

https://doi.org/10.24867/META.2024.20 Original scientific paper

Abstract. Recently, a fragment of the π-calculus, named Cπ-calculus,
has been introduced as a model for confidential name passing in concur-
rent systems. The key feature of the Cπ-calculus is disabling forwarding
in name passing. It has been shown that even being a fragment of the π-
calculus, it is possible to recover the full π-expressivity in this fragment.
This was done via an encoding of π-processes into the Cπ-processes and
showing that such an encoding satisfies some desired properties. How-
ever, one property this encoding does not satisfy is compositionality. In
this paper, we propose a new encoding that satisfies this property. We
evaluate the encoding with an example and leave the proof of operational
correspondence for future work.

AMS Mathematics Subject Classification (2020): 68Q85

Key words and phrases: process calculi, π-calculus, expressiveness, en-
codings

1. Introduction

The π-calculus is a well-known and well-developed model for expressing
mobile and concurrent systems [1]. In the process algebra community, it is
frequently considered the algebra for concurrent computation in the same way
that λ-calculus is viewed as the model for sequential computation. In the past
decades, great work has been conducted in proposing variants of the π-calculus,
mostly by extending its syntax and semantics with many new constructs that
allow for a direct expression of several distinguished features of concurrent
systems. On the other hand, a few works spotted that to get some features of
concurrent systems, instead of extending the π-calculus, one can consider only
its fragment. The most important work in this direction is the modeling of
asynchronous communications [2], but also the modeling of internal mobility
[3], and locality [4].

Recently, another fragment of the π-calculus, called Cπ-calculus, appeared
[5] that allows for the modeling of confidential name passing in concurrent
systems. This model makes a simple syntactic restriction that disallows one
of the key features of the π-calculus - the forwarding, in such a way making

1Department of Fundamental Sciences, Faculty of Technical Sciences, University of Novi
Sad, e-mail: prokic@ftn.uns.ac.rs

120

https://orcid.org/0000-0001-5420-1527
https://doi.org/10.24867/META.2024.20
mailto:prokic@ftn.uns.ac.rs

Ivan Prokić

π ::= Prefixes
a!k output

| a?x input
| [a = b]π matching

P ::= Process terms
0 termination

| π.P prefix
| P | P parallel composition
| (νk)P name restriction
| !P replication

Table 1: Syntax of Cπ

it possible to model confidential communications directly. However, the same
paper showed that the full expressivity of the π-calculus is not compromised
in this fragment, since it is possible to encode it in the Cπ. The encoding
presented in [5] is shown correct through operational correspondence. However,
this encoding comes with one limitation - it relies on the specific “handler”
processes that make the encoding non-compositional. In this paper, we give
another encoding that is compositional by the definition. Here, we only define
the encoding and provide an example. Proof of the operational correspondence
for this encoding will be our future work.

2. The syntax and semantics

The syntax of the Cπ-calculus is given in Table 1. It consists of three
prefixes: output, input, and matching. The prefixes are then used to build
prefixed processes, which can also be terminated, a parallel composition, name
restriction, and replication. All of the process constructs are explained in more
detail later in the operational semantics. The syntax of processes relies on the
notion of free and bound names. All names in processes are said to be free
except for names in name restriction construct (k) and placeholder names in
input (x) - these are called bound. The syntax of the π-calculus is the same
as in Table 1, with only one distinction. In Cπ we have a restriction that the
name to be sent in output prefix (k) cannot be bound as a placeholder in the
input prefix latter - thus preventing forwarding. For instance, a?x.a!x.0 is not
a Cπ process, but it is a valid π process.

The semantics of the Cπ-calculus is given in terms of reduction relation
in Table 3, which relies on the structural congruence relation given in Table
2. The first three rules of the structural congruence relation define the set of
processes with respect to the parallel operator being a commutative monoid.
The following three rules deal with name restriction, they allow for garbage
collection, scope extrusion, and name swapping. The last two rules allow for
removing matching if the matched names coincide, and the final allows for
replication. The first reduction rule defines how two processes working in par-

121

A Compositional Encoding of π-calculus into Cπ-calculus

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) (νk)0 ≡ 0

P | (νk)Q ≡ (νk)(P | Q) if k /∈ fn(P) (νk)(νl)P ≡ (νl)(νk)P

[a = a]π.P ≡ π.P !P ≡ P | !P

Table 2: Structural congruence.

(r-comm)

k!l.P | k?x.Q→ P | Q{l/x}

(r-par)

P → Q

P | R→ Q | R

(r-res)

P → Q

(νk)P → (νk)Q

(r-stru)

P ≡ P ′ → Q′ ≡ Q
P → Q

Table 3: Reduction relation.

allel can establish communication. The left process is output prefixed, it is
ready to send l over name k. The right process is input prefixed, it is ready
to receive a name over the same name k. Then, the synchronization of the
output and the input happens and we obtain the processes where the prefixes
have been consumed and the name l, that has been received in the inputting
process is substituted for the placeholder x. The following three rules close the
reduction relation under parallel composition, name restriction, and structural
congruence relation. We remark that the semantics for the π-calculus is the
same.

3. The encoding

Our new encoding from π-calulus terms into the Cπ-calculus terms is given
in Table 4. The encoding is presented as a function J·K. The encoding function
is parameterized with a set of pairs of names ρ, whose purpose is to collect the
names x bound in inputs (i.e. the placeholders) and pair them with mx that
are used as placeholders for name handlers for the received names (as explained
later). Also, our target terms for our encoding are the polyadic Cπ-processes.
This is only for the simpler definition of the encoding, the polyadic Cπ can be
directly encoded into the one presented in the previous section in the standard
way.

Our encoding distinguishes between the two types of output prefixes: ones
that send the name directly (as in a!k) and those that forward the received
name (as in a?x.a!x) The first send prefix is encoded in the scope of three fresh
names mk, e1, and e2. Name mk is the name of the handler process, and the
other two names are used only for blocking and synchronization of the sending
and receiving processes. The matching construct does not change, but in the
continuation, we have sending on name a fresh names e1 and e2 - first is going

122

Ivan Prokić

J[c̃ = d̃]a!k.P Kρ = (νmk, e1, e2)([c̃ = d̃]a!(e1, e2).mk!(e1).e2!().JP Kρ
| !mk?(x).x!(k,mk).0)

J[c̃ = d̃]a!x.P Kρ,(x,mx) = (νe1, e2)[c̃ = d̃]a!(e1, e2).mx!(e1).e2!().JP Kρ,(x,mx)

J[c̃ = d̃]a?x.P Kρ = [c̃ = d̃]a?(y, z).y?(x,mx).z?().JP Kρ,(x,mx)

J(νk)P Kρ = (νk)JP Kρ

JP1 | P2Kρ = JP1Kρ | JP2Kρ

J!P Kρ = !JP Kρ

J0Kρ = 0

Table 4: Encoding of π processes into Cπ processes.

to be used in the receiving process to communicate with the handler process,
and the second to synchronize unlocking the encoding of the continuation of
sending and receiving processes. Then, we have sending e1 on mk - that is
to the handler process, and sending on e2 - to synchronize unlocking directly
with the receiving process. Finally, the encoding of the continuation process P
follows. In parallel we have the handler process: it is ready to receive on mk

repeatedly and reply along the received name with k and mk.
Encoding of the other sending prefix (the one that represents forwarding)

goes as follows. First in ρ we find pair (x,mx). Then the rest is the same as
for the other send prefix, except that now we do not have the handler process
(since x is only a placeholder), and that instead of sending to the name handler
(in the previous case mk) here we have only its placeholder mx.

The encoding of the receiving process goes as follows. The matching con-
struct remains the same. Receiving happened along a with two names. The first
(see e1 in the encoding of output) is then used to receive from the handler, and,
finally, the second name (see e2 in the encoding of output) is used to synchro-
nize with the sending process and to unlock the continuation. The encoding is
homomorphism for the name restriction, parallel composition, replication, and
inactive process.

Directly from the definition we have the compositionally result.

Theorem 3.1. For all π-calculus processes P1 and P2 it holds that

JP1 | P2Kρ = JP1Kρ | JP2Kρ

As noted earlier, the proof of the operational correspondence is left for
future work. Here we give an example of how our encoding works.

Example 3.2. Consider the π-calculus process

P = a!k.0 | a?x1.b!x1.0 | b?x2.0
123

A Compositional Encoding of π-calculus into Cπ-calculus

where in parallel we have the left process sending k along a, the middle process
receiving the name and forwarding it to the right process along name b. Hence,
we have the following reductions

P → b!k.0 | b?x2.0→ 0

Following the encoding introduced in this paper we have

JP K∅ = (νmk, e1, e2)(a!(e1, e2).mk!(e1).e2!().0 | !mk?(x).x!(k,mk).0)
| a?(y, z).y?(x1,mx1

).z?().(νe′1, e
′
2)b!(e′1, e

′
2).mx1

!(e′1).e′2!().0
| b?(y, z).y?(x2,mx2).z?().0

Now we can see the encoding at work by showing the reductions step by step.
The first synchronization is on name a, and the resulting process is

(νmk, e1, e2)(mk!(e1).e2!().0 | !mk?(x).x!(k,mk).0
| e1?(x1,mx1).e2?().(νe′1, e

′
2)b!(e′1, e

′
2).mx1 !(e′1).e′2!().0)

| b?(y, z).y?(x2,mx2
).z?().0

Here, the scope of namesmk, e1, and e2 is now extruded to the receiving process,
which is now ready to receive along e1. But, before that, the sending process
has to activate the handler process on mk, which leads to

(νmk, e1, e2)(e2!().0 | e1!(k,mk).0 | !mk?(x).x!(k,mk).0
| e1?(x1,mx1

).e2?().(νe′1, e
′
2)b!(e′1, e

′
2).mx1

!(e′1).e′2!().0)
| b?(y, z).y?(x2,mx2).z?().0

The receiving process (in the middle line) can receive the name k, along with
the name of the handler mk, reducing to

(νmk, e1, e2)(e2!().0 | !mk?(x).x!(k,mk).0
| e2?().(νe′1, e

′
2)b!(e′1, e

′
2).mk!(e′1).e′2!().0)

| b?(y, z).y?(x2,mx2
).z?().0

The unlocking along e2 happens, and we end up with

(νmk, e1, e2)(!mk?(x).x!(k,mk).0
| (νe′1, e′2)b!(e′1, e

′
2).mk!(e′1).e′2!().0)

| b?(y, z).y?(x2,mx2).z?().0

Now the communication along name b takes place

(νmk, e1, e2)(!mk?(x).x!(k,mk).0
| (νe′1, e′2)(mk!(e′1).e′2!().0
| e′1?(x2,mx2).e′1?().0))

Because of our parameterized encoding, name mk is now in place in the process
in the middle line, hence it can connect with the handler process, which in turn
sends k and mk to the process in the last line. Hence, in two reduction steps,
we end up with

(νmk, e1, e2)(!mk?(x).x!(k,mk).0
| (νe′1, e′2)(e′2!().0
| e′1?().0))

124

Ivan Prokić

Now the unlocking happens and we finally obtain (using the structural congru-
ence) only the restricted handler process

(νmk)!mk?(x).x!(k,mk).0

Since the handler process starts with sending along a restricted name it is
behaviorally equivalent to the terminated process 0.

When compared with the encoding given in [5], our encoding has the fol-
lowing differences:

• it does not rely on the global handler processes and does not use outer
and inner encodings, instead

• it introduces handler processes for each sending prefix (that is not for-
warding).

For these reasons, we believe encoding from this paper is more natural -
confirmed by the compositionality result obtained here. However, consider-
ing the proof of operational correspondence, we predict certain complications,
since in the approach presented here the handler processes can appear under
replication. In [5] this was not the case, since there the handler processes were
introduced at the top level.

Acknowledgement

The author acknowledges the financial support of the Department of Fun-
damentals Sciences, Faculty of Technical Sciences, University of Novi Sad, in
the frame of Project “Improving the teaching process in the English language
in fundamental disciplines”.

References

[1] D. Sangiorgi and D. Walker, The Pi-Calculus - a theory of mobile processes,
Cambridge University Press, 2001.

[2] K. Honda and M. Tokoro, ”An Object Calculus for Asynchronous Com-
munication”, ECOOP’91 European Conference on Object-Oriented Pro-
gramming, Geneva, Switzerland, July 15-19, 1991.

[3] D. Sangiorgi, ”pi-Calculus, Internal Mobility, and Agent-Passing Calculi”,
Theoretical Computer Science, vol. 167, pp. 235–274, 1996.

[4] M. Merro and D. Sangiorgi, ”On asynchrony in name-passing calculi”,
Mathematical Structures in Computer Science, vol. 14, pp. 715–767, 2004.

[5] I. Prokić and H. T. Vieira, ”The Cπ-calculus: A model for confidential
name passing”, Journal of Logical and Algebraic Methods in Programming,
vol. 119, 2021.

125

	Introduction
	The syntax and semantics
	The encoding

