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Abstract. Uncertainty quantification seeks to provide a quantitative
means to understand complex systems that are impacted by parametric
uncertainty. The generalized polynomial chaos (gPC), see[3] and [2], as a
tool of stochastic Galerkin method, is used for numerical solving of those
complex systems which are described by stochastic ordinary differential
equations (SODE) and stochastic partial differential equations (SPDE).
We take transport equation as an example, and show that the Galerkin
procedure results in a system of deterministic partial differential equa-
tions whose solving require an additional effort. Moreover, taking as a
model various examples of SPDEs, numerical results with appropriate
errors and deviations from exact solutions are presented. To show these
results in a clearly visible manner, we used a number of figures, obtained
using programming language Matlab.
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1. General approach

Let us consider general form of prominent transport stochastic partial differential
equation, given by

(1.1)
du(x, t, Z)

dt
= C(Z)

du(x, t, Z)

dx
+ f(x, t, Z), x ∈ (−1, 1), t > 0,

with initial condition,

(1.2) u(x, 0, Z) = u0(x, Z).

and boundary conditions

u(1, t, Z) =u+(t, Z), C(Z) > 0,

u(−1, t, Z) =u−(t, Z), C(Z) < 0.
(1.3)

It is important for further work to say that x is spatial variable, t is time, and
C(Z) ∈ L2(Ω) is an arbitrary function in terms of a random variable Z.
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By theory of generalized polynomial chaos(gPC) and Galerkin method(see [1] and
[4]), approximation of solution of the governing equation has following form,

(1.4) u(x, t, Z) ≈ vN (x, t, Z) =

P∑
k=0

vk(x, t)Φk(Z), P =

(
N + d

N

)
,

where N is order of gPC expansion, and {Φk} is d-variate gPC basis of orthogonal
polynomials.
By substituting (1.4) into the governing equation, and taking projection of

(1.5)
dvN (x, t, Z)

dt
= C(Z)

dvN (x, t, Z)

dx
+ f(x, t, Z),

onto space spanned by {Φk(Z)}, we get

(1.6)
dvk(x, t)

dt
=

P∑
i=0

aik
dvi(x, t)

dx
+ fk(x, t), k = 0, 1, . . . , P,

where

(1.7) aik = E[c(Z)Φi(Z)Φk(Z)], fk(x, t) = E[f(x, t, Z)Φk(Z)] 0 ≤ i, k ≤ P.

We have obtained a coupled system of (P + 1) × (P + 1) deterministic transport
equations, whose notation can be simplified into a matrix form, i.e.

(1.8)
dv(x, t)

dt
= A

dv(x, t)

dx
+ f,

where v = (v0, v1, . . . , vP )T , f = (f0, f1, . . . , fP ) and A is (P + 1) × (P + 1) matrix
whose entries are aik. Note, by definition aik = aki, so that A is a symmetric matrix,
i.e. AT = A.

Theorem 1.1. Consider the deterministic system (1.8) where the coefficients are
defined in (1.7). Then if C(z) ≥ 0 (resp. C(z) ≤ 0) for all z ∈ R, then the eigenvalues
of A are all non-negative (resp. non-positive); if C(z) changes sign, then A has both
positive and negative eigenvalues for sufficiently large P .

Therefore, the obtained system (1.8) is symmetric, so there exists an orthogonal
matrix Q (QT = Q−1), such that QTAQ = Λ or equivalently A = QΛQT , where
Λ is diagonal matrix with eigenvalues of A, i.e.,

Λ = diag(λ0, . . . , λj+ , . . . , λj− , . . . , λN ).

Entries λ0, . . . λj− are booked for negative eigenvalues and λj+ , . . . , λN are for posi-

tive, the rest, if they exist, are for zeros. If we multiply (1.8) with QT by left side, and
denote r = (r0, r1, . . . , rP ) = QTv, f̂ = (f̂0, f̂1, . . . , f̂P ) = QT f, we obtain following
diagonal system

(1.9)
dr(x, t)

dt
= Λ

dr(x, t)

dx
+ f̂,

with initial condition,

(1.10) r(x, 0) = QT v(x, 0).
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In order to impose boundary conditions to diagonal deterministic system (1.9)-(1.10)
we ought to use sign of eigenvalues, i.e.,

rj(1, t) =

P∑
k=0

qkjvk(1, t), j = 0, . . . , j−,

rj(−1, t) =

P∑
k=0

qkjvk(−1, t), j = j+, . . . , P,

(1.11)

where qjk are entries of matrix Q. Coefficients vk(1, t) are obtained using gPC ex-
pansion of functions u+(t, Z), and u−(t, Z),

u+(t, Z) =

P∑
k=0

vk(1, t)Φk(Z),

u−(t, Z) =

P∑
k=0

vk(−1, t)Φk(Z).

(1.12)

2. Numerical simulations

Example 2.1. Now, we present some numerical examples to support the elaborated
theory. We are going to use different random variables, as well as initial and boundary
conditions. First, we consider

du(x, t, Z)

dt
=Z

du(x, t, Z)

dx
, − 1 < x < 1, t ≥ 0,

u(x, 0, Z) = cosx, − 1 < x < 1,

(2.1)

where Z ∼ U(−1, 1) is uniformly distributed random variable, with PDF ρ(z) = 1/2
and suitable Legendre polynomials. The exact solution is

uexact = cos(x− Zt).

We suppose that solution of (2.1) has form

uapprox(x, t, Z) =

N∑
k=0

uk(x, t)Φk(Z).

There are two ways to obtain coefficients uk(x, t), namely, first one is to use exact so-
lution uexact where in every step we have to find expectation uk(x, t) = E[uexactΦk].
Second way is to use described gPC Galerkin method and obtain system of determin-
istic equations, whose solutions are uk(x, t).
Figure 1, shows these mentioned methods. Namely, on both graphs we see that for
fixed x = x0, obtained approximations are accurate up to some point in time. Ob-
viously, it depends on height of gPC order which is employed. As the order of poly-
nomial chaos increases, accuracy in time is longer and better. Nevertheless, graphs
are not the same, on the left one we see that after losing accuracy solutions converge
to zero, whereas, on the right one, solutions continue to diverge. Obviously, the first
method is inapplicable when the exact solution is unknown.
Accuracy will be measured by the mean-square error

em(N, t) = max
x

(E[(uexact − uapprox)2])1/2,
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(a) Direct method
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(b) Galerkin method

Figure 1: Solution of PDE (2.1) for x = 0, with Z ∼ U(−1, 1)
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Figure 2: Mean-square error for Z ∼ U(−1, 1) and different t

and results which are presented in Figure 2, shows exponential convergence of error
in each time moment.

Also, we consider equation (2.1) for gamma and normal distributions. The ob-
tained numerical results are presented in Figures 3 and 4. Conclusions for these
two distributions are same as in previous case, but we notice that higher orders are
required for the same length in time as were needed for uniform distribution.

Example 2.2. Now, let us consider following example with boundary conditions,
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Figure 3: Solution of PDE (2.1), for x = 0, with Z ∼ Γ(3, 1)
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Figure 4: Solution of PDE (2.1), for x = 0, with Z ∼ N (0, 1)

and discontinuity in random space.

ut(x, t, Z) =C(Z)ux(x, t, Z), − 1 ≤ x ≤ 1, t > 0

u(x, 0, Z) =kZ sin(kx), − 1 ≤ x ≤ 1, Z > 0

u(x, 0, Z) =2kZ sin(2kx), − 1 ≤ x ≤ 1, Z < 0.

(2.2)

Here, C(Z) = σZ, where 0 < σ < 1, controlling the variability of random input and
k > 0 is a real constant. We give boundary conditions as

u(1, t, Z) = kZ sin(k(1 + C(Z)t)), Z > 0,

u(−1, t, Z) = 2kZ sin(2k(−1 + C(Z)t)), Z < 0.
(2.3)

Exact solution of (2.2)-(2.3) is ue = sin(k(x + C(Z)t)) for Z > 0, and
ue = sin(2k(x + C(Z)t)) for Z < 0. The numerical solutions are solved with
σ = 0.5 and k = 1. The boundary conditions are implemented via the eigenvalue
analysis explained in theoretical part of section. We can see exponential convergence
of the mean-square error from 100 to 10−12 in only few steps, in Figure 5b. Obviously,
discontinuity in random space is not a problem for Galerkin method, because we
obtain continuous functions in spatial and time domain.
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(a) Solutions for different orders of PCE
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Figure 5: Numerical solution of (2.2)-(2.3), for x = 0, with Z ∼ U(−1, 1)

Nevertheless, we notice in Figure 6 that the exact solution has some kind of
discontinuity around point y = 0, where approximation has oscillations which are
consequence of Gibbs phenomena. Problem (2.2)-(2.3) can be solved by taking other
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Figure 6: Approximation of u(x, t, Z) for x = 0.453 and (a) t = 0 and (b)
t = 1.2

types of distribution for random input Z. Such an extension is more-less straightfor-
ward, because all we need is to use suitable type of gPC basis of polynomials, and
follow the described steps.
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