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1 Funkcije rastojanja, metrike i norme

2 Pomoćna tvrđenja i nizovi
Navedena tvrđenja se mogu naći u [1, 2, 3].

Lema 2.1 (Bernoulli-jeva nejednakost) Za svako n ∈ {0}∪N i svaki realan
broj h > −1 važi

(1 + h)
n ≥ 1 + nh. (1)

▹

Dokaz: Dokaz sledi primenom principa matematičke indukcije.
- Za n = 0 očigledno dobijamo (1 + h)

0
= 1 ≥ 1 + 0.

- Pretpostavimo da za n = k ∈ {0} ∪ N važi (1 + h)
k

[∗]
≥ 1 + kh.

- Koristeći induktivnu pretpostavku, za n = k + 1 dobijamo

(1 + h)
k+1

= (1 + h)
k
(1 + h)

[∗]
≥ (1 + kh) (1 + h) = 1 + (k + 1)h+ kh2

≥ 1 + (k + 1)h. 2

Sledeća teorema je poznata kao Stolz–ova ili Stolz–Cesáro-va teorema, vidi [1,
2, 3]. Ona za realne nizove predstavlja analogon L’Hospital-ove teoreme. Najpre
slede opštije verzije, a na kraju verzija Stolz–ove teoreme koja je najpoznatija u
literaturi i koja se često primenjuje pri izračunavanju graničnih vrednosti nizova.

Theorema 2.1 (Stolz–ova teorema) Neka je ai, i ∈ N proizvoljan niz re-
alnih brojeva, i neka je bi, i ∈ N niz pozitivnih realnih brojeva za koji važi
∞∑
i=1

bi = ∞.

(a) Za nizove ai, i ∈ N i bi, i ∈ N važe nejednakosti

lim sup
n→∞

n∑
i=1

ai

n∑
i=1

bi

≤ lim sup
i→∞

ai
bi

(2)
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lim inf
n→∞

n∑
i=1

ai

n∑
i=1

bi

≥ lim inf
i→∞

ai
bi

(3)

(b) Dodatno, ukoliko postoji lim
i→∞

ai
bi

, tada je

lim
i→∞

ai
bi

= lim
n→∞

n∑
i=1

ai

n∑
i=1

bi

(4)

▹

Dokaz:

(a) Dokazujemo redom nejednakosti (2) i (3).

(1) Za svako m ∈ N označimo Am =

m∑
i=1

ai i Bm =

m∑
i=1

bi.

U slučaju kada je lim sup
i→∞

ai
bi

= ∞, nejednakost (2) je trivijalno za-

dovoljena. Neka je G = lim sup
i→∞

ai
bi

∈ R ∪ {−∞}. Posmatrajmo

proizvoljno g > G. Po definiciji vrednosti lim sup postoji n0 ∈ N
takvo da je

an
bn

< g za sve n > n0, odnosno an < gbn za sve n > n0

(članovi niza bi, i ∈ N su pozitivni realni brojevi). Koristeći poslednje
nejednakosti, za svako n > n0 dobijamo
An = a1 + · · ·+ an0 + an0+1 + · · ·+ an

≤ a1 + · · ·+ an0 + gbn0+1 + · · ·+ gbn

= a1 + · · ·+ an0 + g (bn0+1 + · · ·+ bn)

= An0 + g (Bn −Bn0).
Kako su svi članovi niza bi, i ∈ N pozitivni, sledi da je i Bm > 0 za
sve m ∈ N, te iz poslednje nejednakosti An ≤ An0 + g (Bn −Bn0),
n > n0 dalje dobijamo
An

Bn
≤ An0 + g (Bn −Bn0)

Bn
=

gBn +An0 − gBn0

Bn
= g +

An0 − gBn0

Bn

Za fiksno n0 ∈ N je An0 −gBn0 ∈ R (konačan broj) a po pretpostavci

je lim
n→∞

Bn = lim
n→∞

∞∑
i=1

bi = ∞, te primenom lim sup
n→∞

na poslednju

nejednakost dobijamo da je

lim sup
n→∞

An

Bn
≤ lim sup

n→∞

(
g +

An0 − gBn0

Bn

)
= g + lim sup

n→∞

(
An0 − gBn0

Bn

)
= g + 0 = g
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Kako ova nejednakost lim sup
n→∞

n∑
i=1

ai

n∑
i=1

bi

= lim sup
n→∞

An

Bn
≤ g važi za svako

g > G, sledi da je

lim sup
n→∞

n∑
i=1

ai

n∑
i=1

bi

≤ G = lim sup
i→∞

ai
bi

što je i trebalo dokazati.

(2) Slučaj lim inf
i→∞

ai
bi

= −∞ je trivijalan, a u slučaju lim inf
i→∞

ai
bi

∈ R∪{∞}
dokaz nejednakosti (3) izvodimo primenom nejednakosti (2). Naime,
ako u nejednakosti (2) umesto niza ai, i ∈ N posmatramo niz −ai,
i ∈ N, dobijamo

lim sup
n→∞

n∑
i=1

(−ai)

n∑
i=1

bi

≤ lim sup
i→∞

−ai
bi

⇒ lim sup
n→∞

−

n∑
i=1

ai

n∑
i=1

bi

 ≤ lim sup
i→∞

(
−ai
bi

)

⇒ − lim inf
n→∞

n∑
i=1

ai

n∑
i=1

bi

≤ − lim inf
i→∞

ai
bi

⇒ lim inf
n→∞

n∑
i=1

ai

n∑
i=1

bi

≥ lim inf
i→∞

ai
bi

.

(b) Dokaz sledi iz nejednakosti (2) i (3).
2

Sledi teorema koja je ekvivalentna teoremi 2.1, a čiji se deo (b), kao i posle-
dica 2.3 često koristi pri izračunavanju graničnih vrednosti nizova.

Theorema 2.2 (Stolz–ova teorema) Neka je ai, i ∈ N proizvoljan niz real-
nih brojeva, i neka je bi, i ∈ N strogo monotono rastući niz realnih brojeva za
koji važi lim

i→∞
bi = ∞.

(a) Za nizove ai, i ∈ N i bi, i ∈ N važe nejednakosti

lim sup
i→∞

ai
bi

≤ lim sup
i→∞

ai+1 − ai
bi+1 − bi

(5)
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lim inf
i→∞

ai
bi

≥ lim inf
i→∞

ai+1 − ai
bi+1 − bi

(6)

(b) Dodatno, ukoliko postoji lim
i→∞

ai+1 − ai
bi+1 − bi

, tada je

lim
i→∞

ai
bi

= lim
i→∞

ai+1 − ai
bi+1 − bi

(7)
▹

Dokaz: Neka su nizovi xi, i ∈ N i yi, i ∈ N definisani sa
x1 = a1, xi = ai − ai−1, i ≥ 2, [1]
y1 = b1, yi = bi − bi−1, i ≥ 2. [2]

Pri tome je tada
n∑

i=1

xi = a1 +
n∑

i=2

(ai − ai−1) = an, [3]

n∑
i=1

yi = b1 +
n∑

i=2

(bi − bi−1) = bn, [4]

za sve n ∈ N. Dodatno, kako je niz bi, i ∈ N strogo monotono rastući, sledi
da je yi = bi − bi−1 > 0 za sve i ≥ 2. Pri tome je i lim

i→∞
bi = ∞ te sa b0 = 0

dobijamo
∞∑
i=1

yi = b1 +
∞∑
i=2

(bi − bi−1) =
∞∑
i=1

(bi − bi−1) = lim
n→∞

n∑
i=1

(bi − bi−1)

= lim
n→∞

(bn − b0) = lim
n→∞

bn − 0 = ∞.

Dakle, xi, i ∈ N je proizvoljan niz realnih brojeva, a yi, i ∈ N je niz pozitivnih

realnih brojeva (osim eventualno prvog člana) za koji važi
∞∑
i=1

yi = ∞. Stoga

se na nizove xi, i ∈ N i yi, i ∈ N može primeniti teorema 2.1.

(a) Primenom nejednakosti (2) dobijamo nejednakost (5):

lim sup
n→∞

n∑
i=1

xi

n∑
i=1

yi

≤ lim sup
i→∞

xi

yi

[3],[4],[1],[2]⇔ lim sup
n→∞

an
bn

≤ lim sup
i→∞

ai − ai−1

bi − bi−1
.

Primenom nejednakosti (3) dobijamo nejednakost (6):

lim inf
n→∞

n∑
i=1

xi

n∑
i=1

yi

≥ lim inf
i→∞

xi

yi

[3],[4],[1],[2]⇔ lim inf
n→∞

an
bn

≥ lim inf
i→∞

ai − ai−1

bi − bi−1
.

(b) Ako postoji lim
i→∞

ai+1 − ai
bi+1 − bi

[1],[2]
= lim

i→∞

xi+1

yi+1
, primenom (4) na nizove xi,

i ∈ N i yi, i ∈ N dobijamo (7):
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lim
i→∞

xi

yi
= lim

n→∞

n∑
i=1

xi

n∑
i=1

yi

[1],[2],[3],[4]⇔ lim
i→∞

ai − ai−1

bi − bi−1
= lim

n→∞

an
bn

.
2

Theorema 2.3 (Stolz–ova teorema) Neka je ai, i ∈ N proizvoljan niz real-
nih brojeva, i neka je bi, i ∈ N strogo monotono opadajući niz realnih brojeva
za koji važi lim

n→∞
bi = −∞. Ukoliko postoji granična vrednost lim

n→∞

an+1 − an
bn+1 − bn

,

tada je
lim
n→∞

an
bn

= lim
n→∞

an+1 − an
bn+1 − bn

(8)
▹

Dokaz: Primenom teoreme 2.2 na nizove ai, i ∈ N i bi = −bi, i ∈ N, gde je bi,
i ∈ N strogo monotono rastući niz realnih brojeva za koji važi lim

n→∞
bi = ∞.

2

Kao posledicu teoreme 2.2 sa nizom bi = 1, i ∈ N dobijamo sledeće tvrđenje.

Posledica 2.1 Za svaki niz realnih brojeva ai, i ∈ N važe sledeće relacije:

lim sup
n→∞

n∑
i=1

ai

n
≤ lim sup

i→∞
ai, (9)

lim inf
n→∞

n∑
i=1

ai

n
≥ lim inf

i→∞
ai, (10)

i ukoliko postoji lim
i→∞

ai, tada je

lim
n→∞

n∑
i=1

ai

n
≥ lim

i→∞
ai. (11)

▹

„Multiplikativna” verzija Stolz–ove teoreme je Cesaro-ova teorema.

Theorema 2.4 (Cesaro-ova teorema) Neka je ai, i ∈ N proizvoljan niz po-
zitivnih realnih brojeva. Tada važe nejednakosti

lim sup
n→∞

n

√√√√ n∏
i=1

ai ≤ lim sup
i→∞

ai, (12)

lim inf
n→∞

n

√√√√ n∏
i=1

ai ≥ lim inf
i→∞

ai, (13)
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Dodatno, ukoliko postoji lim
i→∞

ai, tada je

lim
i→∞

ai = lim
n→∞

n

√√√√ n∏
i=1

ai. (14)

▹

Dokaz: Neka je bi = ln ai, i ∈ N. Tada je ai = ebi , i ∈ N i dobijamo

n

√√√√ n∏
i=1

ai =
n

√√√√ n∏
i=1

ebi =
n

√
e

n∑
i=1

bi
= e

n∑
i=1

bi

n .

Primenom teoreme 2.1 na prethodnu jednakost dobijamo redom 12, 13 i
14. 2

Analogno, primenom teoreme 2.2 dobijamo ekvivalentnu verziju teoreme 2.4.

Theorema 2.5 (Cesaro-ova teorema) Neka je ai, i ∈ N proizvoljan niz po-
zitivnih realnih brojeva. Tada važe nejednakosti

lim sup
n→∞

n
√
an ≤ lim sup

i→∞

an
an−1

, (15)

lim inf
n→∞

n
√
an ≥ lim inf

i→∞

an
an−1

, (16)

Dodatno, ukoliko postoji lim
i→∞

ai
ai−1

, tada je

lim
i→∞

i
√
ai = lim

i→∞

ai
ai−1

. (17)
▹
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