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predloga Odluke Saveta za bibliotečku i izdavačku delatnost br. 014-112/30, je
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1, na studijskom programu Računarstvo i automatika.
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Metrički prostori Metrika i metrički prostor

Metrika i metrički prostor

Definicija

Metrika ili rastojanje na nepraznom skupu X je svako preslikavanje
d : X 2 → R+ ∪ {0} za koje važi

(M1) d(x , y) ≥ 0,
(M2) d(x , y) = 0 ⇔ x = y ,
(M3) d(x , y) = d(y , x),
(M4) d(x , y) ≤ d(x , z) + d(z , y) (nejednakost trougla)

Metrički prostor je ureden par (X , d) skupa X i metrike d na X .

Za skup X kažemo da je nosač metričkog prostora (X , d).
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Metrički prostori Metrika i metrički prostor

• Realan broj d(x , y) je rastojanje elemenata (tačaka) x , y ∈ X .

• Metrički prostor (X , d) ćemo nekada kraće označavati istim slovom kao i njegov
nosač X .

• U metričkom prostoru (X , d) važi tzv. nejednakost mnogougla:

d(x1, xn) ≤ d(x1, x2) + d(x2, x3) + · · ·+ d(xn−1, xn), n ∈ N \ {1}.

4 / 569



Metrički prostori Metrika i metrički prostor

Primer

(Rn, d) je metrički prostor, gde je metrika d : Rn × Rn → R definisana sa

d(x , y) =

√
√
√
√

n∑

i=1

(xi − yi )2,

za x = (x1, x2, ..., xn), y = (y1, y2, ..., yn).

• Za metriku d kažemo da je euklidska, a prostor (Rn, d), koji ćemo kraće
obeležavati sa Rn, n−dimenzionalni euklidski prostor.

• Metrika d je uopštenje metrika iz R, R2 i R3.
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Metrički prostori Metrika i metrički prostor

Primer

Ako je X 6= ∅ proizvoljan skup, tada je preslikavanje d : X 2 → R definisano sa

d(x , y) =

{
0, x = y
1, x 6= y

metrika.

• Za (X , d) kažemo da je diskretan metrički prostor.
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Metrički prostori Metrika i metrički prostor

Potprostor metričkog prostora

Neka je (X , d) metrički prostor i neka je ∅ 6= Y ⊂ X . Sa dY obeležimo restrikciju
preslikavanja d nad skupom Y , tj. neka je

dY (x , y) = d(x , y), x , y ∈ Y .

Očigledno dY je metrika na skupu Y , tj. (Y , dY ) je metrički prostor. Kažemo da
je (Y , dY ) potprostor prostora (X , d).

Metriku dY najčešće označavamo takode sa d , pa je reč o potprostoru (Y , d)
prostora (X , d).
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Metrički prostori Metrika i metrički prostor

Ograničenost

Definicija

Za neprazan skup A ⊂ X metričkog prostora (X , d) kažemo da je ograničen ako
je skup {d(a, b) : a, b ∈ A} ograničen u skupu R.

Prazan skup je ograničen skup (po definiciji).

Definicija

Ako je (X , d) metrički prostor i ako je neprazan skup A ⊂ X ograničen, tada
postoji realan broj d(A) = sup{d(a, b) : a, b ∈ A} koji zovemo dijametar skupa
A.

Po definiciji uzimamo da je d(∅) = 0.
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Metrički prostori Metrika i metrički prostor

Definicija

Za preslikavanje f : D → X skupa D u metrički prostor X kažemo da je
ograničeno nad skupom A ⊂ D ako je f (A) ⊂ X ograničen skup u X.

Ako je A = D, tada je preslikavanje f ograničeno.

Ograničeno preslikavanje
f : N1 → X ,

gde je N1 proizvoljan beskonačan podskup skupa prirodnih brojeva je ograničen
niz.
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Metrički prostori Metrika i metrički prostor

Definicija

Neka je (Y ,�) totalno ureden skup. Za funkciju f : X → Y kažemo da je
ograničena sa gornje (donje) strane nad nepraznim podskupom A od X ako je
skup njenih vrednosti f (A) ograničen sa gornje (donje) strane u odnosu na relaciju
�, tj. ako postoji µ ∈ R tako da za sve x ∈ X važi da je f (x) � µ (µ � f (x)).

Reći ćemo da je funkcija f ograničena sa gornje (donje) strane sa µ, a broj µ
zvaćemo gornjim (donjim) ograničenjem ili gornjom (donjom) granicom
funkcije f .

Funkcija f je ograničena ako je ograničena i sa gornje i sa donje strane.

Potreban i dovoljan uslov da je funkcija f : X → R, X ⊂ R ograničena, je da
postoji ν ∈ R+, tako da za svako x ∈ X važi |f (x)| ≤ ν.
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Metrički prostori Topologija u metričkom prostoru

Topologija u metričkom prostoru

Definicija

Neka je (X , d) metrički prostor, a ∈ X i r ∈ R+. Za skup

L(a, r) = {x ∈ X : d(a, x) < r}

kažemo da je otvorena lopta u metričkom prostoru (X , d) sa centrom u tački a
poluprečnika r .

• Kako je d(a, a) = 0 < r , jasno je da otvorena lopta L(a, r) sadrži svoj centar.

• Ako je r1 ≤ r2, očigledno je L(a, r1) ⊂ L(a, r2).
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Metrički prostori Topologija u metričkom prostoru

a) R : L(a, r) = (a− r , a+ r),

b) R2 : L((a,b), r) = {(x , y) :
√

(x − a)2 + (y − b)2 < r},

c) R3 : L((a,b, c), r) = {(x , y , z) :
√

(x − a)2 + (y − b)2 + (z − c)2 < r}.
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Metrički prostori Topologija u metričkom prostoru

Tvrdenje

Ako je L(a, r) otvorena lopta u metričkom prostoru (X , d), tada za svaku tačku
b ∈ L(a, r), postoji s ∈ R+ tako da je L(b, s) ⊂ L(a, r).

Dokaz. Kako b ∈ L(a, r), to je d(a, b) < r , pa možemo uzeti da je

s = r − d(a, b) > 0.

Odatle sledi da je za svaku tačku x ∈ L(b, s)

d(a, x) ≤ d(a, b) + d(b, x) < r ,

što dokazuje da je
L(b, s) ⊂ L(a, r).

�
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Metrički prostori Topologija u metričkom prostoru

Definicija

Za neprazan skup U ⊂ X kažemo da je otvoren u metričkom prostoru (X , d) ako

(∀x ∈ U)(∃r ∈ R+) L(x , r) ⊂ U .

Uzimamo da je ∅ po definiciji otvoren.

• Otvorena lopta jeste otvoren skup u metričkom prostoru.

• Za neprazan skup U ⊂ X koji je otvoren u metričkom prostoru (X , d) za svaku
tačku x ∈ U , postoji rx ∈ R+, tako da je x ∈ L(x , rx) ⊂ U , pa je

U =
⋃

{L(x , rx) : x ∈ U},

tj. sledi da je svaki neprazan otvoren skup u metričkom prostoru (X , d) unija neke
familije otvorenih lopti iz (X , d).
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Metrički prostori Topologija u metričkom prostoru

Familiju τ svih otvorenih skupova metričkog prostora (X , d) zovemo topološka
struktura ili topologija metričkog prostora (X , d).

• Jasno je da je ∅ ∈ τ i da je X ∈ τ.

• Unija svake familije elemenata iz τ je ponovo elemenat iz τ.

• Presek konačno mnogo elemenata iz τ je elemenat iz τ .

Definicija

Za podskup A metričkog prostora X kažemo da je zatvoren ako je
CX (A) = X \ A otvoren skup.

Očigledno je da su ∅ i skup X i zatvoreni skupovi.
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Metrički prostori Pojam okoline tačke

Pojam okoline tačke

Definicija

Neka je X dati metrički prostor i a tačka u X .
Za skup V ⊂ X kažemo da je okolina tačke a u metričkom prostoru X , ako
postoji ε ∈ R+ tako da L(a, ε) ⊂ V .

Ako je V otvoren skup kažemo da je V otvorena okolina tačke a.

Otvorenu loptu L(a, ε) zovemo ε−okolina tačke a.

ε - pozitivan, proizvoljno mali, unapred dat!
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Metrički prostori Pojam okoline tačke

• Okolina tačke a u prostoru X je neki podskup od X koji sadrži ne samo tačku a
već i neku otvorenu loptu sa centrom u tački a.

• Skup X okolina svake svoje tačke u prostoru X .

• Neprazan skup U ⊂ X je otvoren ako i samo ako je U okolina svake svoje tačke.

• Za proizvoljnu tačku a u prostoru (X , d) familiju svih okolina tačke a u X
nazivamo sistem okolina tačke a u prostoru X , u oznaci V(a).

17 / 569



Metrički prostori Pojam okoline tačke

Tvrdenje

Ako je (X , d) metrički prostor, za svake dve različite tačke a i b, postoje
disjunktne otvorene okoline L(a, ε) i L(b, ε), tj. svake dve različite tačke mogu se
odvojiti disjunktnim otvorenim okolinama.

Dokaz. Kako je a 6= b, to možemo uzeti da je ε = 1
2d(a, b) > 0.

Dokažimo da je L(a, ε) ∩ L(b, ε) = ∅. Pretpostavimo suprotno, tj.

L(a, ε) ∩ L(b, ε) 6= ∅,

odnosno da postoji
z ∈ L(a, ε) ∩ L(b, ε).

Tada z ∈ L(a, ε), tj. d(a, z) < ε i z ∈ L(b, ε), tj. d(b, z) < ε,
pa je

0 < d(a, b) ≤ d(a, z) + d(z , b) < ε+ ε = 2ε = d(a, b),

što je kontradikcija, jer je d(a, b) > 0. �
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Metrički prostori Pojam okoline tačke

Napomena

Ako je U okolina tačke a, tada postoji n ∈ N tako da važi L(a, 1
n
) ⊂ U .

Zaista, ako je U okolina tačke a, tada postoji ε ∈ R+ tako da je

a ∈ L(a, ε) ⊂ U .

No kako postoji n ∈ N, tako da je

1

n
< ε,

to je

L

(

a,
1

n

)

⊂ L (a, ε) ⊂ U .
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Metrički prostori Klasifikacija tačaka u metričkom prostoru

Klasifikacija tačaka u metričkom prostoru

Definicija

Neka je A podskup metričkog prostora X . Za tačku a ∈ X kažemo da je
unutrašnja tačka skupa A, ako postoji ε ∈ R+ tako da je L(a, ε) ⊂ A.

Skup A◦ svih unutrašnjih tačaka zovemo unutrašnjost skupa A.

Važe tvrdenja:

• ∅◦ = ∅, X ◦ = X

• Skup A◦ je najveći otvoren skup sadržan u A.

• Skup A je otvoren ako i samo ako je A◦ = A.
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Metrički prostori Klasifikacija tačaka u metričkom prostoru

Definicija

Za tačku a ∈ X kažemo da je spoljašnja tačka podskupa A metričkog prostora X
ako postoji okolina tačke a koja ne sadrži nijednu tačku skupa A.

Skup svih spoljašnjih tačaka zovemo spoljašnjost skupa A.

Očigledno važi tvrdenje

• Ako je a spoljašnja tačka skupa A, tada je a unutrašnja tačka skupa X \ A.
Dakle, spoljašnjost skupa A je skup (X \ A)◦.
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Metrički prostori Klasifikacija tačaka u metričkom prostoru

Definicija

Za tačku a ∈ X kažemo da je rubna tačka skupa A ⊂ X ako

(∀ε ∈ R+)(L(a, ε) ∩ A 6= ∅ ∧ L(a, ε) ∩ CX (A) 6= ∅)

(svaka ε−okolina tačke a ima neprazan presek i sa skupom A i sa njegovim
komplementom).

Skup A∗ svih rubnih tačaka skupa A nazivamo rubom skupa A.

Važe tvrdenja:

• A∗ = (X \ A)∗

• X = A◦ ∪ (X \ A)◦ ∪ A∗
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Metrički prostori Klasifikacija tačaka u metričkom prostoru

Definicija

Tačka a ∈ X je adherentna tačka skupa A ⊂ X ako svaka ε−okolina tačke a ima
neprazan presek sa skupom A, tj.

(∀ε ∈ R+) L(a, ε) ∩ A 6= ∅.

Skup A svih adherentnih tačaka zovemo adherencija ili zatvorenje skupa A.

Važe tvrdenja:

• ∅ = ∅, X = X

• Skup A je najmanji zatvoren skup koji sadrži skup A.

• Skup A je zatvoren ako i samo ako je A = A.

• A∗ = A ∩ (X \ A).
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Metrički prostori Klasifikacija tačaka u metričkom prostoru

Definicija

Za tačku a ∈ X kažemo da je tačka nagomilavanja skupa A ⊂ X ako

(∀ε ∈ R+) L(a, ε) ∩ (A \ {a}) 6= ∅

(svaka ε−okolina tačke a ima neprazan presek sa skupom A \ {a}).

• Skup svih tačaka nagomilavanja skupa A obeležavamo sa A′.

• Svaka tačka nagomilavanja skupa A je adherentna tačka datog skupa, tj. važi
da je A′ ⊂ A.
• Svaka tačka skupa ne mora biti tačka nagomilavanja datog skupa, pa odatle
sledi da svaka adherentna tačka ne mora da bude i tačka nagomilavanja datog
skupa. Na primer, ako je A = (0, 1) ∪ {3, 4}, tada je
A′ = [0, 1], A = [0, 1] ∪ {3, 4}. Dakle, 3 ∈ A, ali 3 6∈ A′.

• Očigledno važi da je A = A ∪ A′.
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Metrički prostori Klasifikacija tačaka u metričkom prostoru

Definicija

Za tačku a ∈ A kažemo da je izolovana tačka skupa A ⊂ X ako

(∃ε ∈ R+) L(a, ε) ∩ A = {a}

(postoji ε−okolina tačke a koja sadrži samo tačku a iz skupa A).
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Metrički prostori Klasifikacija tačaka u metričkom prostoru

Primer

Za skup A = (1, 2] ∪ {3} je
A◦ = (1, 2),
A = [1, 2] ∪ {3},
A′ = [1, 2],
A∗ = {1, 2, 3}.
Tačka 3 je izolovana tačka skupa A.

Za skup B = {1, 2, 3} je
B◦ = ∅,
B = B = B∗,
B ′ = ∅.
Sve tačke skupa B su izolovane tačke.
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Konvergencija nizova u metričkom prostoru

Konvergencija nizova u metričkom prostoru

Definicija

Neka je A prebrojiv podskup skupa prirodnih brojeva (ili skupa N0 = N ∪ {0}) i X
neprazan skup. Preslikavanje a : A → X zovemo nizom u skupu X.

Obično se u definiciji niza uzima da je A = N. Medutim, tada za sledeća
preslikavanja definisana sa

a(n) =
1

n − 2
, a(n) =

1

1 + (−1)n

ne bismo mogli reći da predstavljaju niz. U prvom slučaju oblast definisanosti nije
čitav skup N već N \ {2}, a u drugom slučaju N \ {2n− 1 : n ∈ N}.
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Konvergencija nizova u metričkom prostoru

Bez gubitka opštosti za domen niza se može uzimati skup prirodnih brojeva N, jer
za svaki prebrojiv skup A, A ⊂ N, postoji bijekcija φ : N → A skupa N na skup A
sa osobinom da ako je

n < m,

tada je i
φ(n) < φ(m), za sve n,m ∈ N.

Tada umesto niza a možemo posmatrati niz

a ◦ φ : N → X .

Primetimo da njegov domen jeste skup prirodnih brojeva i da oba preslikavanja
imaju isti skup vrednosti.
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Konvergencija nizova u metričkom prostoru

• Bijekciju φ možemo definisati na sledeći način:

φ(1) = minA,
φ(2) = min(A \ {φ(1)}),

...
φ(n) = min(A \ {φ(1), φ(2), . . . , φ(n − 1)}), za sve n > 1.

• Na primer, bijekcija φ za niz dat sa a(n) =
1

n − 2
preslikava skup N na skup

N \ {2} i data je sa

φ(1) = 1,
φ(n) = n + 1, za sve n > 1.
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Konvergencija nizova u metričkom prostoru

• Neka je a : N → X niz. Elemenat a(n) skupa X (slika prirodnog broja n)
obeležavamo sa an i zovemo ga n-ti član niza a ili opšti član niza a. Dakle,
a(1) = a1 je prvi član niza, a(2) = a2 je drugi član niza, itd.

• Niz a : N → X kraće obeležavamo sa {an}, < an > ili (an). Koristićemo oznaku
{an}.
• Ako je X = R, onda kažemo da je {an} realan niz, a ako je X = C onda
kažemo da je {an} kompleksan niz. Primetimo da svakom kompleksnom nizu

{an} = {xn + iyn}

odgovaraju dva realna niza:

{xn} − niz realnih delova niza {an},
{yn} − niz imaginarnih delova niza {an}.
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Konvergencija nizova u metričkom prostoru

Neka je (X ,�) (totalno) ureden skup i {an} ⊂ X niz u skupu X .

1) Ako postoji M ∈ X , tako da je an � M , za sve n ∈ N, onda kažemo da je niz
{an} ograničen sa gornje strane.

Element M zovemo gornja granica niza (gornje ograničenje).

Najmanja gornja granica niza (ako postoji) koji je ograničen sa gornje strane, zove
se supremum niza (gornja meda), u oznaci sup an.

2) Ako postoji m ∈ X , tako da je m � an, za sve n ∈ N, onda kažemo da je niz
{an} ograničen sa donje strane.

Element m zovemo donja granica niza (donje ograničenje).

Najveća donja granica niza (ako postoji) ograničenog sa donje strane zove se
infimum niza (donja meda), u oznaci inf an.
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Konvergencija nizova u metričkom prostoru

Ako je niz {an} ograničen i sa gornje i sa donje strane, kažemo da je ograničen.

Ako je M = sup an i m = inf an, tada za sve n ∈ N važi da je m � an � M .

Ograničen niz realnih brojeva ima supremum i infimum.

• Realan niz { 1
n
} je ograničen, pri čemu je M = sup 1

n
= 1 prvi član niza, a

m = inf 1
n
= 0 nije član niza.

• Realan niz {n} je ograničen sa donje strane (m = 1), a nije ograničen sa gornje
strane.

• Realan niz {(−1)nn} nije ograničen ni sa gornje ni sa donje strane.
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Konvergencija nizova u metričkom prostoru

Ako za niz {an} važi:

1) (∀n ∈ N) an ≺ an+1 - niz je monotono rastući,

2) (∀n ∈ N) an+1 ≺ an - niz je monotono opadajući,

3) (∀n ∈ N) an � an+1 - niz je monotono neopadajući,

4) (∀n ∈ N) an+1 � an - niz je monotono nerastući.

• Ako niz {an} zadovoljava neki od gornja četiri uslova, kažemo da je monoton.

• Ako niz zadovoljava uslov 1) ili 2) kažemo da je i strogo (striktno) monoton.

Očigledno je da je monotono rastući niz ujedno i monotono neopadajući, a
monotono opadajući niz je ujedno i monotono nerastući.
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Konvergencija nizova u metričkom prostoru

• Kažemo da je niz {an} gotovo monotono rastući, ako postoji n0 ∈ N, tako da
za svako n ∈ N, n ≥ n0, važi an ≺ an+1.

• Slično se definǐsu pojmovi gotovo monotono opadajućeg, gotovo monotono
nerastućeg, gotovo monotono neopadajućeg i gotovo monotonog niza.

Definicija

Ako je {nk} monotono rastući niz prirodnih brojeva, onda za niz {ank} kažemo da
je podniz niza {an}.

Na primer podnizovi niza {an} su nizovi {a2n}, {a3n}, {a2n−1}, itd.
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Konvergencija nizova u metričkom prostoru

Definicija

Neka je (X , d) metrički prostor. Za niz {an} ⊂ X kažemo da ima graničnu
vrednost a ∈ X i pǐsemo da je lim

n→∞
an = a, ako

(∀ε ∈ R+)(∃n0 ∈ N)(∀n ∈ N)(n ≥ n0 ⇒ an ∈ L(a, ε)),

tj.
(∀ε ∈ R+)(∃n0 ∈ N)(∀n ∈ N)(n ≥ n0 ⇒ d(an, a) < ε).
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Konvergencija nizova u metričkom prostoru

Prethodna definicija za prostore R i C je:

• Broj a ∈ R je granična vrednost realnog niza {an} u R ako i samo ako je
ispunjen uslov

(∀ε ∈ R+)(∃n0 ∈ N)(n ≥ n0 ⇒ |an − a| < ε),

odnosno počev od n0 svi članovi niza nalaze se u ε−okolini tačke a, tj. u
otvorenom intervalu (a− ε, a+ ε).

• Broj z ∈ C je granična vrednost kompleksnog niza {zn} u C ako i samo ako je
ispunjen uslov

(∀ε ∈ R+)(∃n0 ∈ N)(n ≥ n0 ⇒ |zn − z | < ε).
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Konvergencija nizova u metričkom prostoru

• Ako niz {an} ima graničnu vrednost a, tada kažemo da niz konvergira ili teži
ka a, odnosno da je niz {an} konvergentan. Za niz koji nije konvergentan
kažemo da divergira, odnosno da je divergentan.

• Broj n0 očigledno zavisi od ε i pokazuje koliko se članova niza {an} nalazi izvan
ε−okoline tačke a. Počev od n0 svi članovi niza se nalaze u otvorenoj lopti L(a, ε)
dok se van nje nalazi najvǐse n0 − 1 članova niza. Kažemo i da su u svakoj okolini
skoro svi članovi niza.

Napomena

Ponekad se umesto lim
n→∞

an = a pǐse an → a, n → ∞ ili kraće an → a.
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Konvergencija nizova u metričkom prostoru

• Ako je (∀n ∈ N \ N1) an = a, gde je N1 ⊂ N konačan skup, onda kažemo da je
niz {an} stacionaran. Kako za stacionaran niz {an} gde je

an = a, za n ∈ N \ N1

važi
d(an, a) = d(a, a) = 0, za n ∈ N \ N1

to sledi da je
lim
n→∞

an = a.

• Slično, ako je {an} konstantan niz, tj. an = a za svako n ∈ N, sledi da je
lim

n→∞
an = a.
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Konvergencija nizova u metričkom prostoru

Primer

Za svako α > 0 u R važi

lim
n→∞

1

nα
= 0.

To je tačno, jer je

∣
∣
∣
∣

1

nα
− 0

∣
∣
∣
∣
< ε⇔ 1

nα
< ε⇔ n >

(
1

ε

)1/α

,

pa za proizvoljno ε > 0, postoji

n0 =

[(
1

ε

)1/α
]

+ 1.

Tako ako je α = 1 i ε = 1
10 , tada je n0 = 11.
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Konvergencija nizova u metričkom prostoru

Ako je {zn}, gde je zn = xn + yni kompleksan niz, granična vrednost niza {zn}
može se odrediti preko graničnih vrednosti realnih nizova {xn} i {yn}. Naime, važi

Tvrdenje

Kompleksan broj z = x + yi je granična vrednost kompleksnog niza {zn},
zn = xn + yni u C ako i samo ako je x granična vrednost niza {xn} u R, a y
granična vrednost niza {yn} u R, tj.

lim
n→∞

zn = z = x + yi ⇔ lim
n→∞

xn = x ∧ lim
n→∞

yn = y .

40 / 569



Konvergencija nizova u metričkom prostoru

Dokaz. (⇒) Pretpostavimo da je lim
n→∞

zn = z = x + yi . Neka je (x − ε1, x + ε1),

ε1−okolina tačke x i (y − ε2, y + ε2), ε2−okolina tačke y . Uzmimo da je
ε = min{ε1, ε2}. Tada

zn ∈ L(z , ε), za n ≥ n0,

pa sledi da

|xn − x | < ε ≤ ε1 i |yn − y | < ε ≤ ε2 za n ≥ n0,

odnosno za nizove {xn} i {yn} važi lim
n→∞

xn = x , lim
n→∞

yn = y .
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Konvergencija nizova u metričkom prostoru

(⇐) Pretpostavimo obrnuto, tj. neka je lim
n→∞

xn = x i lim
n→∞

yn = y , a L(z , ε)

proizvoljna ε okolina tačke z . Upǐsimo u L(z , ε) pravougaonik sa stranicama 2ε1 i
2ε2 čije su stranice paralelne koordinatnim osama. Tada je (x − ε1, x + ε1),
ε1−okolina tačke x i (y − ε2, y + ε2), ε2−okolina tačke y , pa iz

xn ∈ (x − ε1, x + ε1), n ≥ n1 i yn ∈ (y − ε2, y + ε2), n ≥ n2

sledi da zn ∈ L(a, ε) za n ≥ n0 = max{n1, n2}, odnosno lim
n→∞

zn = z .

�
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Konvergencija nizova u metričkom prostoru

Napomena

Slično se može dokazati da niz {(x1n , x2n , ..., xmn )} ⊂ Rm konvergira ka
(a1, a2, ..., am) ∈ Rm u Rm ako i samo ako za svako i = 1, ...,m niz {x in}
konvergira ka ai u R, tj.

lim
n→∞

(x1n , x
2
n , ..., x

m
n ) = (a1, a2, ..., am) ⇔ lim

n→∞
x in = ai , i = 1, ...,m.

Napomena

Niz {an} ⊂ X konvergira ka a ∈ X u metričkom prostoru (X , d) ako i samo ako
niz realnih brojeva {d(an, a)} konvergira ka nuli u R.

Napomena

Ako je k fiksan prirodan broj, tada ako je lim
n→∞

an = a, sledi takode da je

lim
n→∞

an+k = a.
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Konvergencija nizova u metričkom prostoru

Tvrdenje

Ako niz {an} ⊂ X konvergira u metričkom prostoru (X , d), tada je granična
vrednost jednoznačno odredena.

Dokaz. Pretpostavimo da postoje dve granične vrednosti a i b. Kako je X
metrički prostor, to postoje otvorene lopte L(a, ε) i L(b, ε), ε = 1

2d(a, b) koje su
disjunktne. Tada postoje prirodni brojevi n1 i n2 tako da važi

(∀n ∈ N)(n ≥ n1 ⇒ an ∈ L(a, ε)), (∀n ∈ N)(n ≥ n2 ⇒ an ∈ L(b, ε)).

Neka je n0 = max{n1, n2}. Tada sledi da je

(∀n ∈ N)(n ≥ n0 ⇒ an ∈ L(a, ε) ∩ L(b, ε)),

što je nemoguće. Dakle, ako niz ima graničnu vrednost, ona je jednoznačno
odredena. �
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Konvergencija nizova u metričkom prostoru

Tvrdenje

Konvergentan niz u metričkom prostoru (X , d) je ograničen.

Dokaz. Iz toga da je lim
n→∞

an = a, imamo da važi

(∃n0 ∈ N)(∀n ∈ N)(n ≥ n0 ⇒ an ∈ L(a, 1)).

Ako je n0 = 1, tada se svi članovi niza nalaze u otvorenoj lopti L(a, 1), pa je
d(am, an) ≤ d(am, a) + d(a, an) < 1 + 1 = 2, tj. niz je ograničen.
Za n0 > 1, neka je D = max{1, d(a, a1), d(a, a2), . . . , d(a, an0−1)}. Tada je
d(an, am) ≤ d(an, a) + d(a, am) ≤ 2D, pa je

sup{d(an, am) : an, am ∈ {an}} ≤ D + D = 2D.

Dakle, niz {an} je ograničen. �
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Konvergencija nizova u metričkom prostoru

Definicija

Za tačku a ∈ X kažemo da je tačka nagomilavanja niza {an} u metričkom
prostoru (X , d) ako

(∀ε ∈ R+)(∀m ∈ N)(∃n ∈ N)(n ≥ m ∧ an ∈ L(a, ε)).

• Dakle, ako je a tačka nagomilavanja niza {an}, tada svaka ε−okolina tačke a
sadrži bar jedan član datog niza.

Obrnuto nije tačno. Na primer, ako posmatramo realan niz {an} gde je an = 1
n
,

tada L(1, ε) sadrži prvi član niza a1 = 1, ali 1 nije tačka nagomilavanja datog niza
u R.
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Konvergencija nizova u metričkom prostoru

• Tačke nagomilavanja niza {(−1)n} u R su očigledno -1 i 1
(ograničen niz ne mora da bude konvergentan!).

• Tačka nagomilavanja niza {n(−1)n} u R je 0
(nije ograničen i nije konvergentan!)

• Niz {n} nema ni jednu tačku nagomilavanja u R.

Dakle, niz može da nema ni jednu, da ima jednu ili vǐse tačaka nagomilavanja, pa
i beskonačno mnogo.
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Konvergencija nizova u metričkom prostoru

Tvrdenje

Za svaku okolinu V tačke nagomilavanja a niza {an}, postoji beskonačan skup
M ⊂ N tako da je (∀m ∈ M) am ∈ V .

Dokaz. Dokažimo da je skup M = {n ∈ N : am ∈ V } beskonačan. On je neprazan
jer iz same definicije tačke nagomilavanja sledi da postoji prirodan broj n takav da
an ∈ V .
Pretpostavimo da je M konačan skup. Tada postoji n1 = max{n : n ∈ M}. Ako
uzmemo da je

m = n1 + 1,

tada postoji n ≥ m> n1 tako da an ∈ V , pa je n ∈ M tj. n ≤ n1 što je
kontradikcija. Dakle, M je beskonačan. �
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Konvergencija nizova u metričkom prostoru

• Iz definicije tačke nagomilavanja niza {an} sledi da je tačka nagomilavanja niza
adherentna tačka skupa {an : n ∈ N}, ali ne mora da bude tačka nagomilavanja
toga skupa.

Npr. u slučaju niza čiji je opšti član an = (−1)n tačke 1 i −1 su tačke
nagomilavanja niza u R, dok je skup {1,−1} konačan i nema tačke nagomilavanja.

Napomena

Ako niz {an} ⊂ X u metričkom prostoru X konvergira ka a, onda je a jedina tačka
nagomilavanja niza {an}.
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Konvergencija nizova u metričkom prostoru

• Tačka a je tačka nagomilavanja niza {an} ako i samo ako postoji podniz {ank}
niza {an} koji konvergira ka a.

• U metričkom prostoru (X , d), skup A ⊂ X je zatvoren ako i samo ako za svaki
niz {an} elemenata iz A koji konvergira ka a sledi da a ∈ A.

Tvrdenje

Neka je (X , d) metrički prostor. Skup svih tačaka nagomilavanja niza {an} ⊂ X je
zatvoren u (X , d).

50 / 569



Konvergencija nizova u metričkom prostoru

• Pretpostavimo da je skup A tačaka nagomilavanja realnog niza {an} neprazan i
ograničen. Kako je skup tačaka nagomilavanja zatvoren, to sledi da skup A ima
najveći i najmanji element, tj. najveću i najmanju tačku nagomilavanja. Tada

a) najveću tačku nagomilavanja zovemo limes superior datog niza i označavamo
je sa lim sup an ili lim an.

b) najmanju tačku nagomilavanja zovemo limes inferior datog niza i označavamo
je sa lim inf an ili lim an.

• ako su lim inf an i lim sup an različiti, niz ne konvergira, ako konvergira jednaki
su.
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Konvergencija realnih nizova Divergencija realnih nizova

Divergencija realnih nizova

Definicija

Za niz {an} kažemo da teži ∞ kada n → ∞, tj. an → ∞ kada n → ∞ ako

(∀K ∈ R+)(∃n0 ∈ N)(∀n ∈ N)(n ≥ n0 ⇒ an > K ).

Za niz {an} kažemo da teži −∞ kada n → ∞, tj. an → −∞ kada n → ∞ ako

(∀K ∈ R−)(∃n0 ∈ N)(∀n ∈ N)(n ≥ n0 ⇒ an < K ).

Ako niz {an} teži +∞ ili −∞ kažemo da je divergentan u užem smislu. Za niz
koji je divergentan, ali ne u užem smislu, kažemo da je divergentan u širem
smislu.
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Konvergencija realnih nizova Divergencija realnih nizova

Napomena

Umesto an → ∞ (odnosno an → −∞) kada n → ∞ često ćemo pisati
lim

n→∞
an = ∞ (odnosno lim

n→∞
an = −∞).

• Niz {(−1)n} je očigledno divergentan u širem smislu. (Ovaj niz ima dve tačke
nagomilavanja.)

• Niz {n(−1)n} divergira u širem smislu. (Ovaj niz ima samo jednu tačku
nagomilavanja i to realan broj 0.)

• Niz {(−1)nn} je divergentan u širem smislu. (Ovaj niz nema ni jednu tačku
nagomilavanja.)

• Niz {√n} teži ka ∞ kada n → ∞, a niz {−n2} teži ka −∞ kada n → ∞.

53 / 569



Konvergencija realnih nizova Osnovne osobine realnih konvergentnih nizova

Osnovne osobine realnih konvergentnih nizova

1◦ Ako je lim
n→∞

an = a, tada je a jedina tačka nagomilavanja niza {an}.

2◦ Konvergentan niz {an} ima jedinstvenu graničnu vrednost.

3◦ Konvergentan niz je ograničen.

4◦ Ako je realan niz {an} ograničen i ima jednu tačku nagomilavanja, tada je on
konvergentan i njegova granična vrednost je tačka nagomilavanja.
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Konvergencija realnih nizova Osnovne osobine realnih konvergentnih nizova

Naglasimo da ograničen niz sa samo jednom tačkom nagomilavanja ne mora da
bude konvergentan u prostoru (X , d). Na primer, u prostoru (Q, | |),
posmatrajmo niz {an} dat sa

a2n = 1,

aan−1 ∈
(√

5− 1
n
,
√
5 + 1

n

)
∩Q =

(√
5− 1

n
,
√
5 + 1

n

)

Q

• an ∈ (−50, 50) (ograničen je);
• 1 je jedina tačka nagomilavanja u Q, u R ima dve tačke nagomilavanja: 1 i

√
5;

• an 9 1, n → ∞ jer se izvan otvorene lopte L
(
1, 1

n

)

Q
=
(
1− 1

n
, 1 + 1

n

)

Q
nalaze

svi neparni članovi niza, dakle beskonačno mnogo.

55 / 569



Konvergencija realnih nizova Osnovne osobine realnih konvergentnih nizova

5◦ Ako niz {an} konvergira ka broju a, tada je i niz {|an|} konvergentan i
konvergira ka broju |a|, tj.

lim
n→∞

an = a ⇒ lim
n→∞

|an| = |a|.

• Obrnuto nije tačno. Na primer, niz {(−1)n} je divergentan, a niz {|(−1)n|}, tj.
{1} je konvergentan (konvergira ka broju 1).

6◦ Ako niz {|an|} konvergira ka broju 0, tada je i niz {an} konvergentan i
konvergira ka broju 0, tj.

lim
n→∞

|an| = 0 ⇒ lim
n→∞

an = 0.

7◦ Ako su nizovi {an} i {bn} takvi da je an ≤ bn za n ≥ k i ako je lim
n→∞

an = a,

lim
n→∞

bn = b, tada je a ≤ b.
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Konvergencija realnih nizova Osnovne osobine realnih konvergentnih nizova

8◦ Ako su nizovi {an}, {bn} i {cn} takvi da je an ≤ bn ≤ cn za n ≥ k ,
lim

n→∞
an = lim

n→∞
cn = a, onda je i lim

n→∞
bn = a.

Primer

Kako je

n

n3 + n
=

n∑

i=1

1

n3 + n
≤

n∑

i=1

1

n3 + i
≤

n∑

i=1

1

n3 + 1
=

n

n3 + 1
,

to prema osobini 8◦ sledi da je

0 = lim
n→∞

n

n3 + n
≤ lim

n→∞

(
n∑

i=1

1

n3 + i

)

≤ lim
n→∞

n

n3 + 1
= 0,

tj.

lim
n→∞

(
1

n3 + 1
+

1

n3 + 2
+ ...+

1

n3 + n

)

= 0.
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Konvergencija realnih nizova Osnovne osobine realnih konvergentnih nizova

9◦ Neka je {bn} niz prirodnih brojeva za koji važi da je lim
n→∞

bn = ∞. Ako je

lim
n→∞

an = a, tada je i lim
n→∞

abn = a.

10◦ Ako niz {an} konvergira ka a, tada i svaki podniz {ank} niza {an} konvergira
ka a.

Napomena

Poslednje dve osobine važe i u proizvoljnom metričkom prostoru (X , d).

Napomena

Iz lim
n→∞

an = a, lim
n→∞

bn = b i an < bn za n ≥ k, sledi a ≤ b, ali ne uvek i a < b,

što se npr. videti ako se uzme da je an =
n

n+ 1
i bn = 1. Tada je an < bn i

lim
n→∞

an = lim
n→∞

bn = 1.
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Konvergencija realnih nizova Računske operacije sa graničnim vrednostima i primeri

Računske operacije sa graničnim vrednostima i primeri

Tvrdenje (deo tvrdenja pod a) važi i u R i u C)

a) Ako je lim
n→∞

an = a i lim
n→∞

bn = b, tada je

1◦) lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn = a ± b,

2◦) lim
n→∞

(an · bn) = lim
n→∞

an · lim
n→∞

bn = a · b,

3◦) lim
n→∞

(c · an) = c · lim
n→∞

an = c · a,

4◦) za bn 6= 0 i b 6= 0, lim
n→∞

1

bn
=

1

lim
n→∞

bn
=

1

b
,

5◦) za bn 6= 0 i b 6= 0, lim
n→∞

an

bn
=

lim
n→∞

an

lim
n→∞

bn
=

a

b
.
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Konvergencija realnih nizova Računske operacije sa graničnim vrednostima i primeri

Dokaz. Dokazaćemo deo tvrdenja a) 1◦).
Iz konvergencije nizova {an} i {bn} sledi da za proizvoljno ε > 0, postoje prirodni
brojevi n1, n2 ∈ N, tako da je

|an − a| < ε

2
, n ≥ n1 i |bn − b| < ε

2
, n ≥ n2.

Birajući
n0 = max{n1, n2},

imamo da je

|(an ± bn)− (a ± b)| = |(an − a)± (bn − b)|
≤ |an − a|+ |bn − b|
<

ε

2
+
ε

2
= ε, n ≥ n0.
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Konvergencija realnih nizova Računske operacije sa graničnim vrednostima i primeri

Tvrdenje (deo tvrdenja pod b), c), d) važi u R)

b) Ako an → ∞ i bn → b (b ∈ R ∪ {∞}), tada

1◦) (an + bn) → ∞,

2◦) (an · bn) → ∞, za b > 0, odnosno (an · bn) → −∞, za b < 0.

c) Ako an → −∞ i bn → b (b ∈ R ∪ {−∞}), tada

1◦) (an + bn) → −∞,

2◦) (an · bn) → −∞ za b > 0, odnosno (an · bn) → ∞ za b < 0.

d) Neka je {an} niz za koji je an 6= 0, n ∈ N. Tada je

lim
n→∞

|an| = ∞ ⇔ lim
n→∞

1

an
= 0.
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Konvergencija realnih nizova Princip monotonije. Broj e

Princip monotonije

Tvrdenje

Svaki monotono neopadajući (rastući ) niz koji je ograničen sa gornje strane
konvergira svome supremumu, a svaki monotono nerastući (opadajući ) niz
ograničen sa donje strane konvergira svome infimumu.

Dokaz. Pretpostavimo na primer, da je niz {an} ograničen sa gornje strane i
monotono neopadajući. Neka je

(M − ε,M + ε), M = sup an,

ε−okolina tačke M . Tada postoji n1 ∈ N tako da

M − ε < an1 ≤ M .
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Konvergencija realnih nizova Princip monotonije. Broj e

Zaista, ako ne bi postojao takav prirodan broj n1, sledilo bi da za sve članove niza
važi

an ≤ M − ε,

pa bi broj
M − ε < M

bio gornje ograničenje niza, koje je manja od njegovog supremuma M što je
nemoguće.

S obzirom da je {an} monotono neopadajući niz, važi

M − ε < an1 ≤ an1+1 ≤ an1+2 ≤ ... ≤ M < M + ε,

tj. an ∈ (M − ε,M + ε) za n ≥ n1,
pa je M granična vrednost niza {an}. Slično se dokazuje preostali slučaj. �

Posledica

Svaki gotovo monoton i ograničen niz je konvergentan.
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Konvergencija realnih nizova Princip monotonije. Broj e

Broj e

Posmatrajmo nizove {an} i {bn}, gde je an =

(

1 +
1

n

)n

, bn =

(

1 +
1

n

)n+1

.

1) Niz {an} je monotono rastući , jer

an+1

an
=

(1 + 1
n+1 )

n+1

(1 + 1
n
)n

=
( n+2
n+1 )

n+1

( n+1
n
)n

=

(
n(n + 2)

(n+ 1)2

)n+1

· n + 1

n

=

(
n2 + 2n

n2 + 2n+ 1

)n+1

· n + 1

n
=

(

1− 1

(n + 1)2

)n+1

· n + 1

n

i koristeći Bernulijevu nejednakost (1 + h)n > 1 + nh, h > −1, h 6= 0, n > 1
dobijamo da je

an+1

an
>

(

1− 1

n+ 1

)

· n + 1

n
= 1,

tj. an+1 > an.
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Konvergencija realnih nizova Princip monotonije. Broj e

2) Niz {bn} je monotono opadajući, jer iz

bn
bn+1

=
(1 + 1

n
)n+1

(1 + 1
n+1)

n+2
=

( n+1
n
)n+1

( n+2
n+1 )

n+2
=

(
(n + 1)2

n(n + 2)

)n+2

· n

n + 1

=

(

1 +
1

n(n + 2)

)n+2

· n

n + 1
>

(

1 +
1

n(n + 2)
· (n + 2)

)

· n

n+ 1
= 1,

sledi da je bn+1 < bn.

Kako je an < bn, to je a1 ≤ an ≤ bn ≤ b1, tj. nizovi {an} i {bn} su ograničeni, pa
su zbog njihove monotonosti oba niza konvergentna.

65 / 569



Konvergencija realnih nizova Princip monotonije. Broj e

Neka je lim
n→∞

(

1 +
1

n

)n

= e.

Tada je lim
n→∞

bn = lim
n→∞

(

1 +
1

n

)n (

1 +
1

n

)

= e, pa je

(

1 +
1

n

)n

< e <

(

1 +
1

n

)n+1

, (1)

jer je e supremum za niz {an}, a infimum za niz {bn}. Svi članovi nizova an i bn
su racionalni brojevi. Broj e je iracionalan, pa u (1) važi stroga nejednakost.

Napomenimo da je e ≈ 2, 718281828... transcedentan broj, odnosno nije nula
nijednog polinoma sa celobrojnim koeficijentima. Transcedentnost broja e dokazao
je Ermit1 1873. godine.

1Ermit, Č. (Charles Hermite, 1822-1901) francuski matematičar
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Konvergencija realnih nizova Princip monotonije. Broj e

Važe osobine:

1) Ako niz {an}, an > 0 konvergira ka broju a > 0, tada je i niz {ln an},
konvergentan i konvergira ka broju ln a.

2) Ako niz {an} konvergira ka a, tada je i niz {ean}, konvergentan i konvergira ka
ea.

3) Ako niz {an}, an ≥ 0 konvergira ka broju a, tada je i niz { k
√
an}, k ∈ N,

konvergentan i konvergira ka broju k
√
a.

4) Ako je {an} niz takav da an → ∞, tada je

lim
n→∞

(

1 +
1

an

)an

= e.

5) Ako je {an} niz takav da an → −∞, tada je

lim
n→∞

(

1 +
1

an

)an

= e.
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Konvergencija realnih nizova Princip monotonije. Broj e

Primeri nekih graničnih vrednosti nizova su:

Primer

1) a > 0 ⇒ lim
n→∞

n
√
a = 1;

2) lim
n→∞

n
√
n = 1;

3) lim
n→∞

qn =







0, |q| < 1
1, q = 1
∞, q > 1

;

4) α ∈ R, a > 1 ⇒ lim
n→∞

nα

an
= 0;

5) lim
n→∞

an

n!
= 0.
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Konvergencija realnih nizova Niz umetnutih intervala. Bolcano-Vajeřstrasova teorema

Niz umetnutih intervala. Bolcano-Vajeřstrasova teorema

Pod nizom umetnutih intervala podrazumeva se niz zatvorenih intervala
{[an, bn]} za koji važi:

1) [a1, b1] ⊃ [a2, b2] ⊃ ... ⊃ [an, bn] ⊃ ...
(svaki sledeći nalazi se u prethodnom intervalu).

2) lim
n→∞

(bn − an) = 0 (dužina intervala teži ka nuli).
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Konvergencija realnih nizova Niz umetnutih intervala. Bolcano-Vajeřstrasova teorema

Tvrdenje

Neka je dat niz zatvorenih intervala {[an, bn]} za koji važi 1).
Tada je

⋂

n∈N

[an, bn] = {x ∈ R : a ≤ x ≤ b},

gde je
a = sup{an : n ∈ N},
b = inf{bn : n ∈ N}.

Ukoliko je {[an, bn]} niz umetnutih intervala, tj. važi i 2), tada postoji jedan i
samo jedan broj koji pripada svim intervalima.
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Konvergencija realnih nizova Niz umetnutih intervala. Bolcano-Vajeřstrasova teorema

Dokaz. Posmatrajmo nizove {an} i {bn}. Tada očigledno važi:

- niz {an} je monotono neopadajući,

- niz {bn} je monotono nerastući,

- a1 ≤ an ≤ bn ≤ b1, n ∈ N, odnosno nizovi {an} i {bn} su ograničeni.

Dakle, nizovi {an} i {bn} su konvergentni, prema principu monotonije, i

lim
n→∞

an = a = sup{an : n ∈ N}

i
lim
n→∞

bn = b = inf{bn : n ∈ N}.

Takode je a ≤ b (osobina 7◦).

71 / 569



Konvergencija realnih nizova Niz umetnutih intervala. Bolcano-Vajeřstrasova teorema

Iz
lim

n→∞
(bn − an) = lim

n→∞
bn − lim

n→∞
an = b − a = 0

sledi da je a = b. Kako za svako n važi

an ≤ a = b ≤ bn

to je a jedina zajednička tačka za sve intervale.

�
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Konvergencija realnih nizova Niz umetnutih intervala. Bolcano-Vajeřstrasova teorema

Ovu osobinu nema skup racionalnih brojeva Q. Izmedu brojeva

√
2− 1

n
i

√
2− 1

n + 1

uzmimo racionalan broj an, a izmedu brojeva

√
2 +

1

n
i

√
2 +

1

n + 1

racionalan broj bn. Dobijamo niz zatvorenih intervala {[an, bn]} pri čemu
1) an ∈ Q, bn ∈ Q,

2) [a1, b1] ⊃ [a2, b2] ⊃ ... ⊃ [an, bn] ⊃ ...,

3) lim
n→∞

(bn − an) = 0.

To bi bio niz umetnutih intervala u skupu R. U skupu R dati niz ima jednu i samo
jednu zajedničku tačku i to

√
2.
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Konvergencija realnih nizova Niz umetnutih intervala. Bolcano-Vajeřstrasova teorema

Označimo sa [a, b]Q = [a, b] ∩Q. Za niz {[an, bn]Q} važi:

1) [a1, b1]Q ⊃ [a2, b2]Q ⊃ ... ⊃ [an, bn]Q ⊃ ...,

2) lim
n→∞

(bn − an) = 0.

Ne postoji racionalan broj q, tako da za svako n ∈ N, q ∈ [an, bn]Q, jer bi tada niz
{[an, bn]} imao dve zajedničke tačke q i

√
2, što protivureči dokazu prethodne

teoreme.

Dokažimo Bolcano2-Vajeřstrasovu3 teoremu

2Bolcano, B. (Bernhard Bolzano, 1781-1848) - češki matematičar i filozof
3Vajeřstras, K. (Karl Weierstrass, 1815-1897) - nemački matematičar
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Konvergencija realnih nizova Niz umetnutih intervala. Bolcano-Vajeřstrasova teorema

Tvrdenje

Svaki ograničen niz ima bar jednu tačku nagomilavanja.

Dokaz. Neka je niz {an} ograničen i

m = inf an ≤ an ≤ M = sup an.

Ako je m = M , tada je an = m, odnosno niz {an} je konstantan, pa on ima
jedinstvenu tačku nagomilavanja - graničnu vrednost.

Pretpostavimo da je m 6= M . Podelimo interval [m,M ] na dva jednaka dela. U bar
jednom delu, označimo taj interval sa [m1,M1], ima beskonačno mnogo članova
niza i to u smislu da je skup

N1 = {n ∈ N : an ∈ [m1,M1]}

beskonačan.
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Konvergencija realnih nizova Niz umetnutih intervala. Bolcano-Vajeřstrasova teorema

Podelimo [m1,M1] na dva jednaka dela. Sa [m2,M2] označavamo onaj od
podintervala intervala [m1,M1] koji sadrži beskonačno mnogo članova niza.

Nastavljajući dolazimo do niza {[mn,Mn]} zatvorenih intervala za koji važi:

1) [mn,Mn] sadrži beskonačno mnogo članova niza,

2) [m1,M1] ⊃ [m2,M2] ⊃ ... ⊃ [mn,Mn] ⊃ ...,

3) lim
n→∞

(Mn −mn) = lim
n→∞

M −m

2n
= 0.
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Konvergencija realnih nizova Niz umetnutih intervala. Bolcano-Vajeřstrasova teorema

Dakle, postoji jedinstvena tačka a koja pripada svim zatvorenim intervalima.
Dokažimo da je a tačka nagomilavanja niza {an}. Iz

lim
n→∞

mn = a = lim
n→∞

Mn i mn ≤ a ≤ Mn,

sledi da za proizvoljno ε > 0, postoje n1, n2 ∈ N, tako da je

mn ∈ (a − ε, a+ ε) i n ≥ n1

i
Mn ∈ (a − ε, a+ ε) i n ≥ n2,

odnosno

[mn,Mn] ⊂ (a − ε, a+ ε) za n ≥ n0 = max{n1, n2},
pa je a tačka nagomilavanja niza {an} jer [mn,Mn] sadrži beskonačno mnogo
članova datog niza. �

77 / 569



Konvergencija realnih nizova Niz umetnutih intervala. Bolcano-Vajeřstrasova teorema

Posledica

Iz svakog ograničenog niza može se izdvojiti konvergentan podniz.

Dokaz. Neka je {an} ograničen niz. Postoji bar jedna tačka nagomilavanja a tog
niza. Tada postoji monotono rastući niz prirodnih brojeva {nk} tako da za svako
k ∈ N imamo da ank ∈ L(a, 1

k
). Podniz {ank} niza {an}, kako je konstruisan

konvergira ka tački a. �

Napomena

Slična osobina važi i za prostor Rm, tj. iz svakog ograničenog niza {an} ⊂ Rm

može se izdvojiti konvergentan podniz.
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Konvergencija realnih nizova Niz umetnutih intervala. Bolcano-Vajeřstrasova teorema

Posledica

Svaki ograničen niz {an} koji ima samo jednu tačku nagomilavanja, je
konvergentan.

Dokaz. Neka je {an} ograničen niz, tj.

m = inf an ≤ an ≤ M = sup an

i neka je a jedina tačka nagomilavanja niza an.
Dokažimo da je lim

n→∞
an = a. Pretpostavimo suprotno, postoji okolina

(a− ε, a+ ε) izvan koje ima beskonačno mnogo članova niza. Ovi članovi niza
izvan (a− ε, a+ ε), obrazuju novi niz {ank} koji je podniz datog niza. Ovaj niz je
ograničen, pa ima jednu tačku nagomilavanja b. Očigledno je da je b ujedno i
tačka nagomilavanja niza {an} i da b 6∈ (a− ε, a+ ε).

Dakle, niz {an} ima dve tačke nagomilavanja, što je suprotno pretpostavci. Znači
lim

n→∞
an = a. �
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Kompletni metrički prostori

Kompletni metrički prostori

Definicija

Za niz {an} ⊂ X kažemo da je Košijeva niz u metričkom prostoru (X , d) ako

(∀ε ∈ R+)(∃n0 ∈ N)(∀m, n ∈ N)(n ≥ n0 ∧m ≥ n0 ⇒ d(am, an) < ε),

odnosno u ekvivalentnom obliku

(∀ε ∈ R+)(∃n0 ∈ N)(∀n ∈ N)(∀p ∈ N)(n ≥ n0 ⇒ d(an+p , an) < ε).

aKoši, L. A. (Louis Augustin Cauchy, 1789-1857) - francuski matematičar
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Kompletni metrički prostori

Tvrdenje

Ako je niz {an} ⊂ X konvergentan u metričkom prostoru (X , d), tada je {an}
Košijev niz u (X , d).

Dokaz. Ako je a ∈ X granična vrednost niza {an}, tada za svako ε ∈ R+, postoji
n0 ∈ N, tako da za svako n ∈ N, za koje je n ≥ n0, sledi

d(an, a) <
ε

2
.

Takode za svaka dva prirodna broja m, n ≥ n0 važi

d(an, am) ≤ d(an, a) + d(a, am) <
ε

2
+
ε

2
= ε,

pa je niz {an} Košijev. �
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Kompletni metrički prostori

Tvrdenje

Neka je {an} Košijev niz u metričkom prostoru (X , d). Ako neki podniz {ank} niza
{an} konvergira prema a ∈ X u (X , d), tada i niz {an} konvergira ka a u (X , d).

Dokaz. Neka je dato proizvoljno ε > 0. Tada po pretpostavci postoji takav n0 ∈ N

da iz m, n ≥ n0 sledi

d(am, an) <
ε

2
.

Kako je a = lim
k→∞

ank , postoji k ∈ N da je nk ≥ n0 i da je

d(ank , a) <
ε

2
.

Ako je, dakle, n ≥ n0, onda je

d(an, a) ≤ d(an, ank ) + d(ank , a) <
ε

2
+
ε

2
= ε,

pa je teorema dokazana. �
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Kompletni metrički prostori

Tvrdenje

Svaki Košijev niz {an} u metričkom prostoru (X , d) je ograničen u datom prostoru.

Dokaz. Za ε = 1 postoji n0 ∈ N tako da za n ≥ n0 sledi d(an, an0) < 1. Dakle,
{an : n ≥ n0} ⊂ L(an0 , 1).
• Ako je n0 = 1 svi članovi niza su u otvorenoj lopti L(an0 , 1) pa je niz {an}
ograničen.
• Za slučaj da je n0 > 1 uzmimo da je

D = max{1, d(an0 , a1), d(an0 , a2), ..., d(an0 , an0−1)}.

Tada je
d(an, am) ≤ d(an, an0) + d(an0 , am) < 2D,

odnosno niz {an} je ograničen. �
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Kompletni metrički prostori

U svakom metričkom prostoru Košijev niz ne mora konvergirati. Na primer,
posmatrajmo niz {an} ⊂ R \ {1} dat sa

an =
n

n + 1
.

S obzirom da je lim
n→∞

an = 1, to je {an} konvergentan niz u R, pa je u R i Košijev,

odakle sledi da je Košijev i u R \ {1}, ali konvergira ka 1 6∈ R \ {1}.

Dakle, svaki Košijev niz prostora R \ {1} ne konvergira u tom prostoru.

Definicija

Metrički prostor (X , d) je kompletan ukoliko u njemu svaki Košijev niz konvergira.
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Kompletni metrički prostori

Tvrdenje

Metrički prostor R je kompletan.

Dokaz. Neka je {an} Košijev niz. Tada je on u metričkom prostoru i ograničen, pa
ćemo dokazati da on ima samo jednu tačku nagomilavanja, a odatle će slediti da
je konvergentan.

Kako je {an} ograničen niz, to prema Bolcano-Vajeřstrasovoj teoremi sledi da niz
{an} ima bar jednu tačku nagomilavanja a.

Dokažimo da je a jedina tačka nagomilavanja. Pretpostavimo da je b 6= a još
jedna tačka nagomilavanja. Uzmimo da je

ε =
1

3
|b − a|.
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Kompletni metrički prostori

Neka su
an, n ∈ N ′ svi članovi niza za koje važi an ∈ L(a, ε),

am,m ∈ N ′′ svi članovi niza za koje važi am ∈ L(b, ε).

S obzirom da su a i b tačke nagomilavanja, sledi da su N ′ i N ′′ beskonačni
podskupovi skupa N. Tada je

|an − am| > ε,

pa sledi da niz {an} nije Košijev. Kontradikcija! Dakle, niz {an} ima samo jednu
tačku nagomilavanja a. �

• Teorema važi i za metrički prostor Rm, tj. za svako m ∈ N metrički prostor Rm

je kompletan.
• Takode i metrički prostor C je kompletan.

86 / 569



Kompletni metrički prostori

Primer

Niz {an}, gde je

an = 1 +
1

2
+

1

3
+ ...+

1

n

divergira u R.

Da bismo to dokazali, pokazaćemo da niz nije Košijev. Kako je

|a2n − an| =
1

n + 1
+

1

n + 2
+ ...+

1

2n
≥ n

2n
=

1

2
,

to sledi da se |a2n − an| ne može ni za jedno n učiniti manje od 1
2 , odnosno dati

niz nije Košijev, pa samim tim sledi da je niz {an} divergentan.
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Kompletni metrički prostori

Potprostor kompletnog prostora ne mora biti kompletan. Tako prostor Q
racionalnih brojeva nije kompletan, jer za niz {an} ⊂ Q,

an = (1 +
1

n
)n

važi da
lim
n→∞

an = e 6∈ Q.

Prostor Q se može kompletirati, tj. proširiti do najmanjeg prostora koji je
kompletan. Tako možemo doći do skupa R realnih brojeva.

Važi sledeća teorema

Tvrdenje

Zatvoren potprostor kompletnog metričkog prostora je kompletan.
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Kompletni metrički prostori Nepokretna tačka, teorema Banaha

Nepokretna tačka, teorema Banaha

Definicija

Ako je f preslikavanje skupa X u samog sebe, tada za tačku x ∈ X kažemo da je
fiksna (nepokretna) tačka za preslikavanje f ako je f (x) = x.

Definicija

Za preslikavanje f : X → Y metričkog prostora (X , d1) u metrički prostor (Y , d2)
kažemo da vřsi kontrakciju ako postoji realan broj λ ∈ (0, 1) tako da za svako
x1, x2 ∈ X važi

d2(f (x1), f (x2)) ≤ λd1(x1, x2).

Broj λ zovemo koeficijent kontrakcije, a preslikavanje f kontrakcija.
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Kompletni metrički prostori Nepokretna tačka, teorema Banaha

• Važi teorema Banaha4 o fiksnoj tački:

Tvrdenje

Ako je (X , d) kompletan metrički prostor i f : X → X kontrakcija sa koeficijentom
λ, tada postoji jedna i samo jedna fiksna tačka a ∈ X preslikavanja f i važi da je

d(a, an) ≤
λn

1− λ
d(a0, a1),

gde je a0 ∈ X proizvoljna tačka, a ai = f (ai−1), i ∈ N.

(teorema daje i ocenu greške aproksimacije, kada se tačka a aproksimira članom
an formiranog niza)

4Banah, Š. (Stefan Banach, 1892-1945) - poljski matematičar
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Kompletni metrički prostori Nepokretna tačka, teorema Banaha

Napomena

Ako je (X , d) kompletan metrički prostor i za preslikavanje f : X → X važi
d(f (x1), f (x2)) < d(x1, x2), x1 6= x2,

onda u opštem slučaju ne važi da za preslikavanje f postoji fiksna tačka.

Dokaz. Definǐsimo preslikavanje f : R → R sa f (x) =
√
1 + x2.

Za x 6= y važi da je

|f (x)− f (y)| = |
√

1 + x2 −
√

1 + y2| = |x − y ||x + y |√
1 + x2 +

√

1 + y2

< |x − y | |x + y |
|x |+ |y | ≤ |x − y | |x |+ |y |

|x |+ |y | = |x − y |,

tj. |f (x)− f (y)| < |x − y |, dok preslikavanje nema fiksnu tačku.
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Kompletni metrički prostori Nepokretna tačka, teorema Banaha

Napomena

Primetimo da je uslov kompletnosti prostora neophodan!

Zaista, u tu svrhu posmatrajmo prostor X = [− 1
3 ,

1
3 ] \ {0} i funkciju f (x) = x2.

Pokažimo da je f kontrakcija, da prostor X nije kompletan i da funkcija nema
nepokretnu tačku u X .

d(f (x), f (y)) = |x2 − y2| = |x + y ||x − y | ≤ 2

3
|x − y | = 2

3
d(x , y),

za sve x , y ∈ X . Jasno, zbog f (x) = x2 = x ⇔ x = 0 ∨ x = 1, funkcija f nema u
X nepokretnu tačku.

Ako bi (X , d) bio kompletan prostor, na osnovu Banahove teoreme, sledilo bi da
funkcija f : X → X ima nepokretnu tačku, što je kontradikcija.
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Kompletni metrički prostori Nepokretna tačka, teorema Banaha

Primer

Dokazati pomoću Banahove teoreme o fiksnoj tački da jednačina x3 − x − 1 = 0
ima jedinstveno rešenje nad intervalom [1, 2].

Rešenje. Početna jednačina ekvivalentna je sa x = 3
√
x + 1.

Pokažimo da funkcija f (x) = 3
√
x + 1 ima nepokretnu tačku, odnosno da

jednačina f (x) = x ima rešenje u intervalu [1, 2].

Kako je f monotono rastuća funkcija, to za x ∈ [1, 2]

f (x) ∈ [f (1), f (2)] = [
3
√
2,

3
√
3] ⊂ [1, 2],

pa f : [1, 2] → [1, 2].

Skup [1, 2] je zatvoren metrički potprostor kompletnog prostora R, pa je i sam
kompletan.

Pokažimo da je f kontrakcija. Neka su x , y ∈ [1, 2] proizvoljni elementi.
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Kompletni metrički prostori Nepokretna tačka, teorema Banaha

d(f (x), f (y)) = |f (x)− f (y)| =
∣
∣
∣

3
√
x + 1− 3

√

y + 1
∣
∣
∣

=

∣
∣
∣
∣
∣

(
3
√
x + 1− 3

√

y + 1
)

·
3
√

(x + 1)2 + 3
√
x + 1 3

√
y + 1 + 3

√

(y + 1)2

3
√

(x + 1)2 + 3
√
x + 1 3

√
y + 1 + 3

√

(y + 1)2

∣
∣
∣
∣
∣

=
|x − y |

3
√

(x + 1)2 + 3
√
x + 1 3

√
y + 1 + 3

√

(y + 1)2

≤ |x − y |
3
√

(1 + 1)2 + 3
√
1 + 1 3

√
1 + 1 + 3

√

(1 + 1)2

=
1

3 3
√
4
|x − y |

=
1

3 3
√
4
d(x , y)

Kako su ispunjeni uslovi Banahove teoreme, to postoji jedinstveno rešenje
jednačine x = 3

√
x + 1 u intervalu [1, 2].
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Granična vrednost funkcije Definicija granične vrednosti funkcije

Definicija

Neka su dati metrički prostori (X , dX ) i (Y , dY ). Neka je a ∈ X tačka
nagomilavanja za oblast definisanosti D ⊂ X funkcije f : D → Y . Za A ∈ Y
kažemo da je granična vrednost funkcije f u tački a ako

(∀ε > 0)(∃δ > 0) f (L(a, δ) ∩ (D \ {a})) ⊂ L(A, ε),

tj.
(∀ε > 0)(∃δ > 0)(∀x ∈ D \ {a})(dX (a, x) < δ ⇒ dY (A, f (x)) < ε).

Pǐsemo da je lim
x→a

f (x) = A, ili f (x) → A, x → a.
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Granična vrednost funkcije Definicija granične vrednosti funkcije

Dakle, za svaku ε−okolinu tačke
A, postoji δ−okolina tačke a koja
se sva, izuzev tačke a, preslikava u
ε−okolinu tačke A.

Primetimo da u tački a funkci-
ja ne mora da bude definisana, a
ako je i definisana, A ne mora da
bude f (a), jer u definiciji granične
vrednosti isključena je tačka a iz
okoline L(a, δ).
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Granična vrednost funkcije Definicija granične vrednosti funkcije

Napomena

Kod što kod nizova n0 zavisi od ε, tako i ovde δ zavisi od ε. Kako se ε menja tako
se i δ menja.

Napomena

Kao i kod nizova, kada je reč o realnim funkcijama ili funkcijama jedne ili vǐse
realnih promenljivih, uvek ćemo posmatrati metrički prostor R, odnosno Rn i to
posebno nećemo naglašavati.
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Granična vrednost funkcije Definicija granične vrednosti funkcije

• Za graničnu vrednost realne funkcije jedne realne promenljive, tj. gde je
X = Y = R, definiciju lim

x→a
f (x) = A možemo zapisati u obliku

(∀ε > 0)(∃δ > 0)(∀x ∈ D \ {a})(|x − a| < δ ⇒ |f (x)− A| < ε).

• Za graničnu vrednost realne funkcije n realnih promenljivih, tj. gde je X = Rn,
Y = R, definiciju lim

x→a
f (x) = A, x = (x1, x2, ..., xn), a = (a1, a2, ..., an) možemo

zapisati u obliku

(∀ε > 0)(∃δ > 0)(∀x ∈ D \ {a} ⊂ Rn)(d(x , a) < δ ⇒ |f (x)− A| < ε),

gde je d(x , a) =
√

(x1 − a1)2 + ...+ (xn − an)2.
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Granična vrednost funkcije Veza granične vrednosti funkcije i granične vrednosti niza

Važi Hajneova5 teorema (veza granične vrednosti funkcije i granične vrednosti
niza)

Tvrdenje

Neka su (X , dX ) i (Y , dY ) metrički prostori i neka je data funkcija f : D → Y ,
D ⊂ X . Tada f (x) → A ∈ Y , x → a ∈ X ako i samo ako za svaki niz
{xn} ⊂ D \ {a} koji konvergira ka a, sledi da niz {f (xn)}, konvergira ka A.

5Hajne, E. (Eduard Heine, 1821-1881) - nemački matematičar
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Granična vrednost funkcije Veza granične vrednosti funkcije i granične vrednosti niza

Dokaz. (⇒) Pretpostavimo da iz x → a, imamo da f (x) → A. Tada važi:

(∀ε ∈ R+)(∃δ ∈ R+)(∀x ∈ D \ {a})(dX (a, x) < δ ⇒ dY (A, f (x)) < ε).

Ako niz {xn} ⊂ D \ {a} teži ka a, tada

(∃n0 ∈ N)(∀n ≥ n0) dX (a, xn) < δ.

Tada za sve n ≥ n0 važi da je

dY (A, f (xn)) < ε,

pa sledi da niz {f (xn)} teži ka A.
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Granična vrednost funkcije Veza granične vrednosti funkcije i granične vrednosti niza

(⇐) Dokažimo obrnut stav. Pretpostavimo da f (x) ne teži ka A, kada x → a.
Tada

(∃ε ∈ R+)(∀n ∈ N)(∃xn ∈ D \ {a})(xn ∈ L

(

a,
1

n

)

⇒ f (xn) /∈ L(A, ε)).

S obzirom da niz {xn} ∈ D \ {a}, teži ka a to prema pretpostavci sledi da i niz
{f (xn)}, teži ka A, što je nemoguće po konstrukciji samog niza, jer otvorena lopta
L(A, ε) ne sadrži ni jedan član niza {f (xn)}. �
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Granična vrednost funkcije Veza granične vrednosti funkcije i granične vrednosti niza

Na osnovu Hajneove teoreme se može dokazati kao i kod granične
vrednosti nizova, da ako funkcija f : D → Y ima graničnu vrednost A u
tački a, da je ta granična vrednost jednoznačno odredena.
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Granična vrednost funkcije Primeri

Primeri:

1. Ako je f : D → Y konstantna funkcija, tj. f (x) = c , za svako x ∈ D, tada je

lim
x→a

f (x) = c .
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Granična vrednost funkcije Primeri

2.
lim
x→1

(2x + 1) = 3,

jer za proizvoljno ε > 0, birajući δ(ε) = ε
2 , imamo da je

|(2x + 1)− 3| = |2x − 2| = 2|x − 1| < ε⇔ |x − 1| < ε

2
.

U ovom primeru imamo da je funkcija definisana u tački a, tj. f (1) = 3, i postoji
lim
x→1

f (x) = 3 i ta granična vrednost je jednaka baš vrednosti funkcije u toj tački.
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Granična vrednost funkcije Primeri

3. Za funkciju

f (x) =

{
2x + 1, x 6= 1
0, x = 1

je
lim
x→1

f (x) = lim
x→1

(2x + 1) = 3.

Dakle,

- funkcija je definisana u tački 1, tj. f (1) = 0;
- postoji lim

x→1
f (x) = 3;

- granična vrednost nije jednaka vrednosti funkcije u datoj tački.
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Granična vrednost funkcije Primeri

4. Funkcija

f (x) = x sin
1

x

nije definisana u tački 0, a ima graničnu vrednost. Zaista, kako za proizvoljno
ε > 0, birajući δ = ε, imamo

∣
∣
∣
∣
x sin

1

x
− 0

∣
∣
∣
∣
=

∣
∣
∣
∣
x sin

1

x

∣
∣
∣
∣
≤ |x | = |x − 0| < ε,

to važi da je

lim
x→0

x sin
1

x
= 0.
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Granična vrednost funkcije Primeri

5. Neka je

f (x) = sin
1

x
.
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Granična vrednost funkcije Primeri

Funkcija nije definisana za x = 0.
Ne postoji ni lim

x→0
sin 1

x
. Ako bi A bila granična vrednost funkcije f u tački 0, tada

(∀ε ∈ R+)(∃δ ∈ R+)(∀x ∈ R \ {0})(|x | < δ ⇒ |f (x)− A| < ε).

S obzirom da za svako α ∈ R+ ∪ {0} niz {an(α)}, gde je

an(α) =
1

α+ 2nπ

teži ka nuli i
f (an(α)) = sin(α+ 2nπ) = sinα,

pa bi u zavisnosti od α imali različite granične vrednosti, što je nemoguće, jer je
granična vrednost jedinstveno odredena.
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Granična vrednost funkcije Primeri

6. Neka je

f (x) =

{
sin 1

x
, x 6= 0

1, x = 0
.

Tada je funkcija f definisana za x = 0, f (0) = 1, ali ne postoji
lim
x→0

f (x) = lim
x→0

sin 1
x
.
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Granična vrednost funkcije Primeri

7. Funkcija f : R2 → R definisana sa

f (x , y) =

{ xy
x2+y2 , (x , y) 6= (0, 0)

0, (x , y) = (0, 0)
,

nema graničnu vrednost u tački O(0, 0). Posmatrajmo niz

an(k) =

(
1

n
,
k

n

)

.

lim
n→∞

an(k) = (0, 0), a lim
n→∞

f (an(k)) ne postoji jer je

f (an(k)) =
k

1 + k2
.
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Granična vrednost funkcije Granične vrednosti nad skupom

Granične vrednosti nad skupom

8. Za funkciju f datu sa

f (x) =

{
2x + 1, x ≤ 1
−2x + 3, x > 1

,

vidimo da lim
x→1

f (x) ne postoji.

Ovde ima smisla ispitati ponašanje
funkcije za x > 1 i za x < 1, tj.
posmatrati funkciju f i sa leve i sa
desne strane tačke 1.

Vidimo kada x → 1, pri čemu je x > 1, da f (x) → 1, a kada x → 1, pri čemu je
x < 1, da f (x) → 3.
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Granična vrednost funkcije Granične vrednosti nad skupom

9. Ako posmatramo funkciju f : R → R definisanu sa

f (x) =

{
1, x ∈ Q

0, x ∈ R \Q ,

vidimo da funkcija f nema graničnu vrednost ni u jednoj tački a ∈ R. Medutim,
restrikcija fQ funkcije f ima graničnu vrednost u svakoj tački a ∈ R.

Ovi primeri daju nam povod da definǐsemo graničnu vrednost funkcije f u tački a
dok x pripada skupu E , gde je E podskup oblasti definisanosti funkcije f , za koji
je a tačka nagomilavanja.
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Granična vrednost funkcije Granične vrednosti nad skupom

Definicija

Neka su (X , dX ) i (Y , dY ) dati metrički prostori i neka je E neprazan podskup
oblasti definisanosti D funkcije f : D → Y . Ako restrikcija fE funkcije f ima
graničnu vrednost A ∈ Y u tački a ∈ X , onda kažemo da funkcija f ima graničnu
vrednost A u tački nagomilavanja a skupa E dok x ∈ E i pǐsemo da je

lim
x → a
x ∈ E

f (x) = A.
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Granična vrednost funkcije Granične vrednosti nad skupom

Specijalno, ako je

D ⊂ R = X i E = (a,∞) ∩ D (E = (−∞, a) ∩ D)

i ako funkcija f ima graničnu vrednost A u tački a dok x ∈ E , onda kažemo da
funkcija f u tački a ima desnu (levu) graničnu vrednost A i pǐsemo da je

lim
x→a+

f (x) = f (a+) = A ( lim
x→a−

f (x) = f (a−) = A).

Koriste se i oznake

lim
x→a+

f (x) = f (a + 0) ( lim
x→a−

f (x) = f (a− 0)).

Leva, odnosno desna granična vrednost se jednim imenom zovu jednostrane
granične vrednosti.
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Granična vrednost funkcije Granične vrednosti nad skupom

• Ako funkcija f : D → R, D ⊂ R u tački a ima graničnu vrednost A, tada

- postoji bar jedna jednostrana granična vrednost koja je jednaka broju A, tj.
graničnoj vrednosti funkcije f u tački a;

- ako postoje obe jednostrane granične vrednosti, one su jednake graničnoj
vrednosti funkcije u tački a, tj.

lim
x→a−

f (x) = lim
x→a+

f (x) = lim
x→a

f (x) = A.
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Granična vrednost funkcije Granične vrednosti nad skupom

• Ako funkcija f u tački a ima obe jednostrane granične vrednosti, ona će imati
graničnu vrednost samo onda ako su jednostrane granične vrednosti jednake, tj.
lim
x→a

f (x) postoji ako

lim
x→a−

f (x) = lim
x→a+

f (x) = A

i tada je lim
x→a

f (x) = A.

Kao što smo videli u primeru 8. postoji leva granična vrednost u tački x = 1, tj.
lim

x→1−
f (x) = f (1−) = 3, kao i desna granična vrednost u tački x = 1, tj.

lim
x→1+

f (x) = f (1+) = 1, ali one nisu jednake, pa funkcija u tački x = 1 nema

graničnu vrednost.
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Granična vrednost funkcije Granične vrednosti nad skupom

10. Ako posmatramo funkciju

f (x) =

√
x

x − 1
,

vidimo da u tački x = 0 funkcija nema desnu graničnu vrednost, jer nije definisana
nad intervalom (0, 1]. Medutim ovde je

lim
x→0

f (x) = lim
x→0−

f (x) = 0.
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Granična vrednost funkcije Granične vrednosti nad skupom

11. Za funkciju

f (x) = arctg

(

1 +
1

x

)

je

lim
x→0+

f (x) =
π

2
i lim

x→0−
f (x) = −π

2
,

pa funkcija nema graničnu vrednost u tački 0.
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Granična vrednost funkcije Granične vrednosti nad skupom

12. Posmatrajmo funkciju

f (x , y) =

{ xy
x2+y2 , (x , y) 6= (0, 0)

0, (x , y) = (0, 0)
,

iz primera 7. i uzmimo da je E = {(x , 2x) : x ∈ R}. Tada važi

lim
(x , y) → (0, 0)
(x , y) ∈ E

f (x , y) = lim
x→0

2x2

x2 + 4x2
=

2

5
.
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Granična vrednost funkcije Granične vrednosti nad skupom

Tvrdenje

Neka su (X , dX ) i (Y , dY ) metrički prostori i neka je a ∈ X tačka nagomilavanja za

definicioni skup D ⊂ X funkcije f : D → Y . Tada važi

a) Ako funkcija f ima graničnu vrednost A ∈ Y u tački a i ako je a tačka

nagomilavanja za neprazan skup E ⊂ D , tada postoji lim
x → a

x ∈ E

f (x) i važi jednakost

lim
x → a

x ∈ E

f (x) = lim
x→a

f (x).

b) Neka je a tačka nagomilavanja svakog od skupova E1, ...,En ⊂ D koji vřse particiju

skupa D \ {a}. Tada ako postoje granične vrednosti lim
x → a

x ∈ Ei

f (x), za svako

i = 1, ..., n i pri tome su medusobno jednake, tada postoji lim
x→a

f (x) i važi jednakost

lim
x → a

x ∈ Ei

f (x) = lim
x→a

f (x), za i = 1, ..., n.
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Granična vrednost funkcije Granične vrednosti nad skupom

Ako za neko k ∈ R \ {0} uzmemo E = {(x , kx) : x ∈ R}, tada za funkciju f iz
primera 7. važi:

lim
(x , y) → (0, 0)
x ∈ E

f (x , y) =
k

1 + k2
.

S obzirom da za svako k ove granične vrednosti nisu jednake, to ne postoji
lim

(x,y)→(0,0)
f (x , y), kao što smo i pre videli.
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Granična vrednost funkcije Granične vrednosti nad skupom

Definicija

Neka je (X , d) metrički prostor i neka je a ∈ D tačka nagomilavanja za definicioni
skup D ⊂ X , realne funkcije f : D → R. Tada
• funkcija f (x) teži ka ∞, tj. f (x) → ∞, x → a, ako i samo ako

(∀K ∈ R+)(∃δ ∈ R+)(∀x ∈ D\{a})(x ∈ L(a, δ) ⇒ f (x) > K ).

• funkcija f (x) teži ka −∞, tj. f (x) → −∞, x → a, ako i samo ako

(∀K ∈ R−)(∃δ ∈ R+)(∀x ∈ D\{a})(x ∈ L(a, δ) ⇒ f (x) < K ).

Ponekad se pǐse da lim
x→a

f (x) = ∞, odnosno lim
x→a

f (x) = −∞.
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Granična vrednost funkcije Granične vrednosti nad skupom

Ako posmatramo funkciju f (x) = 1
x2
, vidimo da 1

x2
→ ∞, kada x → 0, jer za

svako K > 0, postoji δ = 1√
K
, tako da je

1

x2
> K ⇔ x2 <

1

K
⇔ |x | < 1√

K
.

Za funkciju f (x) = − 1
x2
, imamo da f (x) → −∞, kada x → 0, jer za svako K < 0,

postoji δ = 1√
−K

, tako da je

− 1

x2
< K ⇔ 1

x2
> −K ⇔ x2 < − 1

K
⇔ |x | < 1√

−K
.
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Granična vrednost funkcije Granične vrednosti nad skupom

Ako posmatramo funkciju
f (x) = 1

x
, vidimo da f (x) ne teži

ni ∞, ni −∞, kada x → 0, tj.
ne postoji okolina 0 koja se čitava,
izuzevši 0, preslika, iznad (ispod)
prave y = K , gde je K > 0
(K < 0), jer sa leve strane tačke
x = 0 je f (x) < 0, a sa desne
strane tačke x = 0 je f (x) > 0.
Vidimo da f (x) → ∞, x → 0+, a
f (x) → −∞, x → 0−.
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Granična vrednost funkcije Granične vrednosti nad skupom

Uopšte, ako je a ∈ X tačka nagomilavanja podskupa E , definicionog skupa
D ⊂ X , realne funkcije f : D → R i ako restrikcija fE funkcije f , teži ∞, odnosno
−∞, kada x → a, tada kažemo da f (x) → ∞, odnosno f (x) → −∞, kada x → a,
dok x ∈ E .
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Granična vrednost funkcije Granične vrednosti nad skupom

Specijalno, ako je D ⊂ R, f : D → R, E = (a,∞) ∩ D 6= ∅, tada f (x) → ∞, kad
x → a+ ako

(∀K ∈ R+)(∃δ ∈ R+)(∀x ∈ D)(x ∈ (a, a+ δ) ⇒ f (x) > K ),

odnosno f (x) → −∞, kada x → a+ ako

(∀K ∈ R−)(∃δ ∈ R+)(∀x ∈ D)(x ∈ (a, a+ δ) ⇒ f (x) < K ).

Slično, ako je D ⊂ R, f : D → R, E = (−∞, a) ∩D 6= ∅, tada f (x) → ∞, kada
x → a− ako

(∀K ∈ R+)(∃δ ∈ R+)(∀x ∈ D)(x ∈ (a− δ, a) ⇒ f (x) > K ),

odnosno f (x) → −∞, kada x → a− ako

(∀K ∈ R−)(∃δ ∈ R+)(∀x ∈ D)(x ∈ (a− δ, a) ⇒ f (x) < K ).
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Granična vrednost funkcije Granične vrednosti nad skupom

Primeri:

1. Za funkciju f (x) = e
1
x je

lim
x→0+

e
1
x = +∞, lim

x→0−
e

1
x = 0.

2. g(x) =

{
1
x2

, x ∈ (0,∞) ∩ Q
− 1

x2
, x ∈ (0,∞) ∩ (R \ Q)

3. h(x) =

{
1
x

, x 6= 0
10 , x = 0
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Granična vrednost funkcije Ponašanje funkcije f (x) kada x → ±∞

Ponašanje funkcije f (x) kada x → ±∞

Definicija

Neka je (Y , d) metrički prostor i neka je D ⊂ R definicioni skup funkcije
f : D → Y , za koji važi da je (∀a ∈ R) (a,∞) ∩ D 6= ∅. Tada
1◦) Kažemo da funkcija f (x) ima graničnu vrednost A ∈ Y , kada x → ∞, ako je

(∀ε ∈ R+)(∃∆ ∈ R+)(∀x ∈ D)(x > ∆ ⇒ f (x) ∈ L(A, ε)),

odnosno za Y = R, važi

(∀ε ∈ R+)(∃∆ ∈ R+)(∀x ∈ D)(x > ∆ ⇒ |f (x)− A| < ε).

i to zapisujemo sa lim
x→∞

f (x) = A.
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Granična vrednost funkcije Ponašanje funkcije f (x) kada x → ±∞

Definicija

Neka je (Y , d) metrički prostor i neka je D ⊂ R definicioni skup funkcije
f : D → Y , za koji važi da je (∀a ∈ R) (a,∞) ∩ D 6= ∅. Tada
2◦) Ako je Y = R, kažemo da f (x) → ∞, kada x → ∞ ako

(∀K ∈ R+)(∃∆ ∈ R+)(∀x ∈ D)(x > ∆ ⇒ f (x) > K ).

3◦) Ako je Y = R, kažemo da f (x) → −∞, kada x → ∞, ako

(∀K ∈ R−)(∃∆ ∈ R+)(∀x ∈ D)(x > ∆ ⇒ f (x) < K ).

Ponekad se umesto f (x) → ∞, tj. f (x) → −∞, kada x → ∞,
pǐse

lim
x→∞

f (x) = ∞, odnosno lim
x→∞

f (x) = −∞.
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Granična vrednost funkcije Ponašanje funkcije f (x) kada x → ±∞

Primer

Ako za proizvoljno ε > 0, uzmemo da je ∆ = 1
ε − 1, to za x > 0, važi

∣
∣
∣
∣

x

x + 1
− 1

∣
∣
∣
∣
< ε ⇔ 1

|x + 1| < ε

⇔ |x + 1| > 1

ε

⇔ x + 1 >
1

ε

⇔ x >
1

ε
− 1

,

pa je

lim
x→∞

x

x + 1
= 1.
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Granična vrednost funkcije Ponašanje funkcije f (x) kada x → ±∞

Primer

Za funkciju

f (x) =

(
1

x
,
x − 1

x2 − 1

)

, x ∈ R \ {−1, 0, 1}

je
lim

x→∞
f (x) = (0, 0).
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Granična vrednost funkcije Ponašanje funkcije f (x) kada x → ±∞

Definicija

Neka je (Y , d) metrički prostor i neka je D ⊂ R definicioni skup funkcije
f : D → Y , za koji važi

(∀a ∈ R) (−∞, a) ∩ D 6= ∅.

Tada
1◦) Funkcija f (x) ima graničnu vrednost A ∈ Y kada x → −∞, ako

(∀ε ∈ R+)(∃∆ ∈ R−)(∀x ∈ D)(x < ∆ ⇒ f (x) ∈ L(A, ε)),

odnosno za Y = R, važi

(∀ε ∈ R+)(∃∆ ∈ R−)(∀x ∈ D)(x < ∆ ⇒ |f (x)− A| < ε),

i to zapisujemo sa lim
x→−∞

f (x) = A.
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Granična vrednost funkcije Ponašanje funkcije f (x) kada x → ±∞

Posmatrajmo funkciju

f (x) =

{
1 , x ∈ Q
0 , x ∈ R \ Q .

Da li ona ima graničnu vrednost kada x → ∞, tj. da li postoji lim
x→∞

f (x)?

Da li ona ima graničnu vrednost kada x → ∞, dok x pripada skupu racionalnih
brojeva, tj. da li postoji lim

x→∞,x∈Q
f (x)?
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Granična vrednost funkcije Ponašanje funkcije f (x) kada x → ±∞

Definicija

Neka je (Y , d) metrički prostor i neka je D ⊂ R definicioni skup funkcije
f : D → Y , za koji važi (∀a ∈ R) (−∞, a) ∩ D 6= ∅. Tada
2◦) Ako je Y = R, kažemo da f (x) → ∞, kada x → −∞, ako

(∀K ∈ R+)(∃∆ ∈ R−)(∀x ∈ D)(x < ∆ ⇒ f (x) > K ).

3◦) Ako je Y = R, kažemo da f (x) → −∞, kada x → −∞, ako

(∀K ∈ R−)(∃∆ ∈ R−)(∀x ∈ D)(x < ∆ ⇒ f (x) < K ).

Ponekad se umesto

f (x) → ∞, odnosno f (x) → −∞ kada x → −∞,

pǐse
lim

x→−∞
f (x) = ∞ odnosno lim

x→−∞
f (x) = −∞.
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Granična vrednost funkcije Ponašanje funkcije f (x) kada x → ±∞

I ovde (uvek!) važi Hajneova teorema:

Tvrdenje

Neka su (X , dX ) i (Y , dY ) metrički prostori i neka je data funkcija f : D → Y , D ⊂ X .

Tada važi

a) Ako je Y = R, tada f (x) → ±∞, x → a ako i samo ako za svaki niz

{xn} ⊂ D \ {a}, koji konvergira ka a, sledi da niz {f (xn)} teži ∞, odnosno −∞,

n → ∞.

b) Ako je X = R, tada f (x) → A ∈ Y , x → ±∞ ako i samo ako za svaki niz

{xn} ⊂ D , koji teži ka ±∞, sledi da niz {f (xn)} konvergira ka A.

c) Ako je X = Y = R, tada f (x) → ∞ (f (x) → −∞), x → ±∞ ako i samo ako za

svaki niz {xn} ⊂ D koji teži ±∞, sledi da niz {f (xn)} teži ∞ (−∞), n → ∞.
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Granična vrednost funkcije Ponašanje funkcije f (x) kada x → ±∞

• Može se i ovde pokazati da ako postoji granična vrednost, da je ona
jednoznačno odredena.

• Ako posmatramo funkciju f (x) = cos x , vidimo da
1) f (x) ne teži ni ∞, ni −∞, kada x → ∞ jer −1 ≤ f (x) ≤ 1.
2) Ne postoji lim

x→∞
f (x). Ako bi postojao lim

x→∞
f (x) = A, tada bi po definiciji

granične vrednosti, sledilo da

(∀ε ∈ R+)(∃∆ ∈ R+)(∀x ∈ R)(x > ∆ ⇒ | cos x − A| < ε).

Ako posmatramo niz {an} sa opštim članom an = α+ 2nπ, α ∈ R vidimo da
an → ∞, kada n → ∞, pa u svakom intervalu (a,∞) su skoro svi članovi datog
niza. Kako je cos an = cosα, to bi sledilo da je A = cosα, što je kontradikcija, jer,
ako postoji granična vrednost ona je jednoznačno odredena.
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Granična vrednost funkcije Ponašanje funkcije f (x) kada x → ±∞

Ponekad sa
f (x) → ±∞, kada x → a,

označavamo da
f (x) → ∞ ili f (x) → −∞ kada x → a

i često pǐsemo
lim
x→a

f (x) = ±∞.

Slično, ako
f (x) → A kada x → ∞ ili x → −∞,

često pǐsemo
f (x) → A, x → ±∞,

odnosno
lim

x→±∞
f (x) = A.
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Granična vrednost funkcije Računske operacije sa graničnim vrednostima funkcija

Računske operacije sa graničnim vrednostima funkcija

Tvrdenje

Neka je (X , dX ) metrički prostor i neka je a tačka nagomilavanja za definicioni
skup D ⊂ X funkcija f : D → R(C) i g : D → R(C). Tada važi

a) Ako je lim
x→a

f (x) = A i lim
x→a

g(x) = B, to je

1◦) lim
x→a

(f (x) ± g(x)) = lim
x→a

f (x)± lim
x→a

g(x) = A± B,

2◦) lim
x→a

(f (x) · g(x)) = lim
x→a

f (x) · lim
x→a

g(x) = A · B,

3◦) lim
x→a

(c · f (x)) = c · lim
x→a

f (x) = c · A,

4◦) za g(x) 6= 0 i B 6= 0, lim
x→a

1

g(x)
=

1

lim
x→a

g(x)
=

1

B
,

5◦) za g(x) 6= 0 i B 6= 0, lim
x→a

f (x)

g(x)
=

lim
x→a

f (x)

lim
x→a

g(x)
=

A

B
.
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Granična vrednost funkcije Računske operacije sa graničnim vrednostima funkcija

Tvrdenje

Neka je (X , dX ) metrički prostor i neka je a tačka nagomilavanja za definicioni
skup D ⊂ X funkcija f : D → R i g : D → R. Tada važi

b) Ako f (x) → ∞, kada x → a i g(x) → B (B ∈ R ∪ {∞}), kada x → a, tada

1◦) (f (x) + g(x)) → ∞, kada x → a,

2◦) (f (x) · g(x)) → ∞, za B > 0, odnosno (f (x) · g(x)) → −∞, za B < 0.

c) Ako f (x) → −∞, kada x → a i g(x) → B (B ∈ R ∪ {−∞}), kada x → a,
tada

1◦) (f (x) + g(x)) → −∞, kada x → a,

2◦) (f (x) · g(x)) → −∞, za B > 0, odnosno (f (x) · g(x)) → ∞, za B < 0.

d) Ako je X = R, tada osobine a), b) i c) važe i kada x → ∞, odnosno
x → −∞.
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Granična vrednost funkcije Računske operacije sa graničnim vrednostima funkcija

Dokaz. Dokaz sledi iz Hajneove teoreme i odgovarajućih osobina nizova. Ovde
ćemo ipak, radi ilustracije, dati dokaz da je lim

x→a
(f (x) + g(x)) = A+ B, ne

koristeći Hajneovu teoremu.

S obzirom da je lim
x→a

f (x) = A i lim
x→a

g(x) = B, to za proizvoljno ε ∈ R+, postoje

δf , δg ∈ R+, tako da za sve x ∈ D \ {a}, važi

dX (a, x) < δf ⇒ |f (x)− A| < ε

2
,

dX (a, x) < δg ⇒ |g(x)− B| < ε

2
.

Neka je δf+g = min{δf , δg}. Tada važi:

|(f (x) + g(x))− (A+ B)| ≤ |f (x)− A|+ |g(x)− B| < ε

2
+
ε

2
= ε,

za 0 < dX (a, x) < δf+g , odakle sledi dato tvrdenje. �
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Granična vrednost funkcije Računske operacije sa graničnim vrednostima funkcija

Napomena

U formulaciji teoreme smo pretpostavili da je a tačka nagomilavanja za zajednički
definicioni skup D funkcija f i g , jer iz

lim
x→a

f (x) = A i lim
x→a

g(x) = B,

ne sledi uvek da je
lim
x→a

(f (x) + g(x)) = A+ B,

što se vidi iz sledećeg primera.
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Granična vrednost funkcije Računske operacije sa graničnim vrednostima funkcija

Primer

Neka su date funkcije f i g sa

f (x) =
√
x, g(x) =

√
−x .

Vidi se da je
lim
x→0

f (x) = lim
x→0

g(x) = 0,

a
lim
x→0

(f (x) + g(x))

ne postoji, jer je 0 izolovana tačka, za definicioni skup funkcije f + g .
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Granična vrednost funkcije Računske operacije sa graničnim vrednostima funkcija

Napomena

Tvrdenje teoreme pod a) važi i kada su u pitanju kompleksne funkcije.

Primer

Neka su date funkcije

f (x) =

{
sin2 1

x
, x 6= 0

0, x = 0
,

g(x) =

{
cos2 1

x
, x 6= 0

10, x = 0
.

Njihova granična vrednost u x = 0, ne postoji, dok je

lim
x→0

(f (x) + g(x)) = lim
x→0

1 = 1.
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Granična vrednost funkcije Računske operacije sa graničnim vrednostima funkcija

Tvrdenje

Neka je dat metrički prostor (X , d) i neka je a tačka nagomilavanja za definicioni
skup D ⊂ X funkcija f : D → R i g : D → R. Tada, ako je f (x) ≤ g(x) i

lim
x→a

f (x) = A

i
lim
x→a

g(x) = B,

tada je i A ≤ B.
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Granična vrednost funkcije Računske operacije sa graničnim vrednostima funkcija

Tvrdenje

Neka je dat metrički prostor (X , d) i neka je a tačka nagomilavanja za definicioni
skup D ⊂ X funkcija f : D → R i g : D → R. Tada

a) Ako za funkciju h : D → R, važi

f (x) ≤ h(x) ≤ g(x)

i ako je
lim
x→a

f (x) = lim
x→a

g(x) = A,

to je i
lim
x→a

h(x) = A.

b) Slična osobina važi i za slučaj kada je X = R i kada x → ∞, odnosno
x → −∞.

Dokaz. Sledi iz Hajneove teoreme i slične osobine za nizove. �
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Granična vrednost funkcije Računske operacije sa graničnim vrednostima funkcija

Primer

Na osnovu prethodne i Hajneove teoreme sledi da je

lim
x→∞

(

1 +
1

x

)x

= lim
x→−∞

(

1 +
1

x

)x

= e,

kao i da je

lim
x→0

(1 + x)
1
x = e.

Važi

lim
x→0

sin x

x
= 1
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Granična vrednost funkcije Beskonačno male i beskonačno velike veličine

Beskonačno male i beskonačno velike veličine

Neka je (X , d) metrički prostor i funkcija f : D → R, ∅ 6= D ⊂ X .

Definicija

Za funkciju f (x) kažemo da je beskonačno mala veličina kada x → a, ako je

lim
x→a

f (x) = 0.

Definicija

Za funkciju f (x) kažemo da je beskonačno velika veličina kada x → a, ako

|f (x)| → ∞, kada x → a.

Očigledno je da je recipročna vrednost beskonačno male veličine, beskonačno
velika veličina i obrnuto.
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Granična vrednost funkcije Beskonačno male i beskonačno velike veličine

• Posmatrajmo dve beskonačno male veličine f (x) i g(x) kada x → a, gde
je g(x) 6= 0 u nekoj okolini tačke x = a.

1) Ako je lim
x→a

f (x)
g(x) = 0 ili što je ekvivalentno sa | g(x)

f (x) | → ∞ kada x → a, onda

kažemo da je f (x) beskonačno mala veličina vǐseg reda od g(x) kada x → a,
odnosno da je g(x) beskonačno mala veličina nižeg reda od f (x), kada x → a.
Kažemo još i da f (x) brže teži nuli od g(x) kada x → a, odnosno da g(x)
sporije teži nuli od f (x), kada x → a.

Na primer, funkcija f (x) = 1− cos x brže teži nuli od funkcije g(x) = x , kada
x → 0, jer je

lim
x→0

1− cos x

x
= lim

x→0

2 sin2 x
2

x
= 0.
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Granična vrednost funkcije Beskonačno male i beskonačno velike veličine

2) Ako je lim
x→a

f (x)
g(x) = C 6= 0, onda kažemo da su f (x) i g(x) beskonačno male

veličine istog reda kada x → a.

Specijalno, ako je C = 1, tj. ako je lim
x→a

f (x)
g(x) = 1, onda kažemo da su f (x) i g(x)

ekvivalentne beskonačno male veličine, kada x → a i to zapisujemo sa

f (x) ∼ g(x), kada x → a.

Takode kažemo da se funkcije f (x) i g(x) isto ponašaju, kada x → a.

Primer

Funkcija f (x) = sinαx , α 6= 0 i funkcija g(x) = x su beskonačno male veličine
istog reda, kada x → 0, jer je lim

x→0

sinαx
x

= α. Ako je α = 1, tada je sin x ∼ x ,

kada x → 0.
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Granična vrednost funkcije Beskonačno male i beskonačno velike veličine

3) Ako ne postoji ni lim
x→a

f (x)
g(x) , ni limx→a

g(x)
f (x) , tada se beskonačno male veličine f (x) i

g(x) ne mogu porediti, kada x → a, tj. f (x) i g(x) su neuporedive
beskonačno male veličine, kada x → a.

Na primer, funkcije

f (x) =
1

x
i g(x) =

1

x(2 + sin x)

su neuporedive beskonačno male veličine, kada x → ∞, jer ne postoji ni

lim
x→∞

f (x)

g(x)
= lim

x→∞
(2 + sin x),

ni

lim
x→∞

g(x)

f (x)
= lim

x→∞
1

2 + sin x
.
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Granična vrednost funkcije Beskonačno male i beskonačno velike veličine

• Posmatrajmo dve beskonačno velike veličine f (x) i g(x), kada x → a, tj.
|f (x)| → ∞ i |g(x)| → ∞, kada x → a.

1) Ako je

lim
x→a

f (x)

g(x)
= 0,

odnosno ∣
∣
∣
∣

g(x)

f (x)

∣
∣
∣
∣
→ ∞, kada x → a,

gde je g(x) 6= 0, tada kažemo da je g(x) beskonačno velika veličina vǐseg reda
od f (x), kada x → a, odnosno da je f (x) beskonačno velika veličina nižeg reda
od g(x), kada x → a.
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Granična vrednost funkcije Beskonačno male i beskonačno velike veličine

2) Ako je lim
x→a

f (x)
g(x) = α 6= 0, onda kažemo da su f (x) i g(x) beskonačno velike

veličine istog reda, kada x → a.

Specijalno, ako je α = 1, tj. lim
x→a

f (x)
g(x) = 1, onda kažemo da su f (x) i g(x)

ekvivalentne beskonačno velike veličine, kada x → a ili da su f (x) i g(x)
asimptotski jednake, kada x → a. Tada pǐsemo da je

f (x) ∼ g(x), kada x → a.

Na primer, polinomi

Pn(x) = anx
n + ...+ a1x + a0, Qn(x) = anx

n, an 6= 0, n ∈ N,

su asimptotski jednaki, kada x → ∞, jer je

lim
x→∞

Pn(x)

Qn(x)
= 1.

Kažemo i da se polinom ponaša kao njegov najstariji (vodeći) član kada x → ∞.

152 / 569



Granična vrednost funkcije Beskonačno male i beskonačno velike veličine

3) Ako ne postoji ni lim
x→a

f (x)
g(x) , ni limx→a

g(x)
f (x) , onda kažemo da se beskonačno velike

veličine f (x) i g(x) ne mogu uporediti, kada x → a, odnosno da su f (x) i g(x)
neuporedive beskonačno velike veličine, kada x → a.

Na primer, funkcije f (x) = x i g(x) = x(2 + sin x) su neuporedive beskonačno
velike veličine, kada x → ∞, jer ne postoji ni

lim
x→∞

f (x)

g(x)
= lim

x→∞
1

2 + sin x
,

ni

lim
x→∞

g(x)

f (x)
= lim

x→∞
(2 + sin x).

Napomena

Analogne definicije za beskonačno male i beskonačno velike veličine mogu se dati i
kada x → a+, odnosno kada x → a−.
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Neprekidnost funkcija Definicija neprekidnosti funkcije i primeri

Definicija neprekidnosti funkcije i primeri

Definicija

Neka su dati metrički prostori (X , dX ) , (Y , dY ) i funkcija f : D → Y , D ⊂ X . Za
funkciju f kažemo da je neprekidna u tački a ∈ D ako

(∀ε ∈ R+)(∃δ ∈ R+)(∀x ∈ D)(x ∈ L(a, δ) ⇒ f (x) ∈ L(f (a), ε)),

odnosno

(∀ε ∈ R+)(∃δ ∈ R+)(∀x ∈ D)(dX (a, x) < δ ⇒ dY (f (a), f (x)) < ε).

Ako je X = Y = R(C), tada neprekidnost funkcije f : D → R(C) u tački a
možemo zapisati na sledeći način

(∀ε ∈ R+)(∃δ ∈ R+)(∀x ∈ D)(|x − a| < δ ⇒ |f (x)− f (a)| < ε).
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Neprekidnost funkcija Definicija neprekidnosti funkcije i primeri

Zahtevi za neprekidnost u tački a i postojanje granične vrednost u a se
razlikuju u sledećim činjenicama:

- za graničnu vrednost u tački a
pretpostavka je da je a tačka na-
gomilavanja za D, a kod neprekid-
nosti da a ∈ D, tj. da je funkcija
f definisana u tački a;

- kod neprekidnosti se za-
hteva da funkcija f otvorenu loptu
L(a, δ(ε)) preslika u otvorenu loptu
L(f (a), ε), dok kod granične vred-
nosti je zahtev da funkcija f otvo-
renu loptu L(a, δ(ε)) bez centra a
preslika u otvorenu loptu L(A, ε).
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Neprekidnost funkcija Definicija neprekidnosti funkcije i primeri

Zaključak je sledeći:

- ako je f neprekidna funkcija u tački a ne mora da postoji lim
x→a

f (x) (ako je a ∈ D

izolovana tačka za skup D, tada je f automatski neprekidna u tački a, dok u tom
slučaju ne postoji lim

x→a
f (x)).

- ako postoji lim
x→a

f (x) bez obzira da li je funkcija f definisana u tački a, funkcija

ne mora da bude neprekidna u tački a. Na primer, ako posmatramo funkcije

f (x) =
sin x

x
, g(x) =

{
sin x
x
, x 6= 0

5, x = 0
,

tada važi lim
x→0

f (x) = lim
x→0

g(x) = 1. Ni funkcija f , ni funkcija g nisu neprekidne u

tački 0, jer f nije definisana u tački 0, dok je g(0) = 5 6= 1.
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Neprekidnost funkcija Definicija neprekidnosti funkcije i primeri

Dakle, da bi funkcija f bila neprekidna u tački a treba da važi:

1) a ∈ D, tj. funkcija f je definisana u tački a;

2) ako je a tačka nagomilavanja za D, tada postoji lim
x→a

f (x) i važi jednakost

lim
x→a

f (x) = f (a);

3) ako je a ∈ D izolovana tačka, tada je f neprekidna u tački a.
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Neprekidnost funkcija Definicija neprekidnosti funkcije i primeri

Ako je a ∈ D ⊂ R (a ∈ D ⊂ C) tačka nagomilavanja za definicioni skup D i ako je
Y = R, (Y = C) x = a+∆x ∈ D, ∆x 6= 0 i ∆y = f (a+∆x)− f (a), gde su ∆x
i ∆y redom priraštaji nezavisne i zavisne promenljive, tada neprekidnost realne
funkcije jedne realne promenljive možemo izraziti na sledeći način:

(∀ε ∈ R+)(∃δ ∈ R+)(∀x = a+∆x ∈ D)(|∆x | < δ ⇒ |∆y | < ε),

odnosno
lim

∆x → 0
a+∆x ∈ D

∆y = 0.

Dakle, realna (kompleksna) funkcija jedne realne (kompleksne) promenljive je
neprekidna u tački a iz domena ako priraštaj funkcije ∆y u tački a teži ka nuli
kada priraštaj argumenta ∆x teži ka nuli.
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Neprekidnost funkcija Definicija neprekidnosti funkcije i primeri

Ako funkcija f nije neprekidna u tački a, onda kažemo da je funkcija f prekidna
u tački a, odnosno da funkcija f ima prekid u tački a (tačka a je prekid date
funkcije).

Napomena

Kako je funkcija u izolovanim tačkama neprekidna, to je realni niz (a i svaki
drugi), kao funkcija iz N u R neprekidna funkcija.
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Neprekidnost funkcija Definicija neprekidnosti funkcije i primeri

Definicija

Neka su (X , dX ) i (Y , dY ) metrički prostori i neka je data funkcija f : D → Y ,
D ⊂ X .

• Ako je restrikcija fE funkcije f nad nepraznim skupom E ⊂ D neprekidna u tački
a ∈ E , onda kažemo da je funkcija f neprekidna u tački a dok x ∈ E.

• Ako je fE neprekidna u svakoj tački skupa E , onda kažemo da je f neprekidna
nad skupom E.

• Ako je E = D, tj. ako je funkcija f neprekidna u svakoj tački definicionog skupa
D, onda kažemo da je f neprekidna funkcija.
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Primetimo, da ako je funkcija
f neprekidna nad skupom E , ona
ne mora biti neprekidna u svakoj
tački skupa E . Na primer, ako po-
smatramo funkciju

f (x) =







x , x < 0
1, 0 ≤ x ≤ 2
x , x > 2

vidimo da je ona neprekidna nad
zatvorenim intervalom [0, 2], dok
su krajnje tačke 0 i 2 prekidi date
funkcije.
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Ako je f : D → Y , D ⊂ R i ako je f neprekidna u tački a dok

x ∈ E = D ∩ [a,∞) (x ∈ E = D ∩ (−∞, a]),

tada kažemo da je funkcija f neprekidna u tački a sa desne (leve) strane.

Ako postoji lim
x→a−

f (x), tada je funkcija f neprekidna u tački a sa leve strane ako je

lim
x→a−

f (x) = f (a),

a ako postoji lim
x→a+

f (x), tada je funkcija f neprekidna u tački a sa desne strane

ako je
lim

x→a+
f (x) = f (a).
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Očigledno važi:

1) Funkcija f jedne realne promenljive je neprekidna u tački a ako i samo ako je
neprekidna u tački a i sa leve i sa desne strane.

2) Funkcija jedne realne promenljive je neprekidna nad zatvorenim intervalom
[a, b] ako i samo ako je

- neprekidna u svakoj tački otvorenog intervala (a, b);

- u tački a je neprekidna sa desne strane;

- u tački b je neprekidna sa leve strane.
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Tvrdenje

Ako su realne (kompleksne) funkcije f i g neprekidne u tački a, tada su u tački a
neprekidne i sledeće funkcije:

1) h = f + g ,

2) h = f · g ,
3) h = f

g
, pod uslovom da je g 6= 0 u nekoj okolini tačke a.
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Primeri

1. Konstantna funkcija f (x) = c je neprekidna funkcija, jer je

∆y = c − c = 0,

pa je
lim

∆x→0
∆y = 0.
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2. Funkcija f (x) = sin x je neprekidna za svako x ∈ (−∞,∞). Birajući δ = ε, za
proizvoljno ε > 0, imamo

|∆y | = | sin(x +∆x)− sin x |

= 2

∣
∣
∣
∣
sin

∆x

2
cos

2x +∆x

2

∣
∣
∣
∣

≤ 2

∣
∣
∣
∣

∆x

2

∣
∣
∣
∣

= |∆x | < ε,

tj.
lim

∆x→0
∆y = 0.

166 / 569



Neprekidnost funkcija Definicija neprekidnosti funkcije i primeri

3. Funkcija f (x) = x2 je neprekidna za svako x ∈ (−∞,∞), jer iz

∆y = (x +∆x)2 − x2 = ∆x(2x +∆x),

sledi da je
lim

∆x→0
∆y = 0.

Slično, stepena funkcija f (x) = xn, n ∈ N je neprekidna za svako x ∈ (−∞,∞),
pa kako je i konstantna funkcija neprekidna, iz prethodne teoreme sledi da je svaki
polinom Pn(x) neprekidna funkcija za svako x ∈ (−∞,∞), dok je svaka

racionalna funkcija R(x) =
Pn(x)

Qm(x)
neprekidna funkcija u svakoj tački x0 za koju

je Qm(x0) 6= 0.
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4. Za funkciju

f (x) =

{
x − 1, x ≤ 2
2x , x > 2

je
lim

x→2−
f (x) = lim

x→2−
(x − 1) = 1 = f (2−) = f (2) 6= 4 = lim

x→2+
2x = lim

x→2+
f (x).

Dakle, ne postoji u tački x = 2 granična vrednost, pa je funkcija u tački 2
prekidna.
Za sve ostale vrednosti od x funkcija je neprekidna.
Primetimo da je funkcija f (x) neprekidna u tački 2 sa leve strane.
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5. Za funkciju

f (x) =

{
2x − 3, x 6= 1
0, x = 1

imamo da važi
lim
x→1

f (x) = lim
x→1

(2x − 3) = −1 6= 0 = f (1),

pa je funkcija f u tački 1 prekidna.
Za sve ostale vrednosti od x funkcija je neprekidna.
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6. Funkcija f : R2 → R definisana sa

f (x , y) =

{ xy
x2+y2 , (x , y) 6= (0, 0)

0, (x , y) = (0, 0)

nije neprekidna u tački (0, 0), jer ne postoji

lim
(x,y)→(0,0)

f (x , y).
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7. Funkcija f : R → R data sa

f (x) =

{
1, x ∈ Q

0, x ∈ R \Q

ima prekid za svaki realan broj. Ona je neprekidna nad Q, kao i nad R \Q.
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8. Sabiranje realnih (kompleksnih) brojeva je neprekidna funkcija.

Zaista, zbog:

|(x + y)− (a + b)| ≤ |x − a|+ |y − b| ≤ 2
√

(x − a)2 + (y − b)2,

iz
√

(x − a)2 + (y − b)2 < ε
2 sledi neprekidnost sabiranja realnih brojeva.
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9. Množenje realnih (kompleksnih) brojeva je neprekidna funkcija.

Kako je:

|xy − ab| = |(x − a)(y − b)+ a(y − b)+ b(x − a)| ≤ |x − a||y − b|+ |a||y − b|+ |b||x − a|

i
|x − a| ≤

√

(x − a)2 + (y − b)2, |y − b| ≤
√

(x − a)2 + (y − b)2,

to iz
√

(x − a)2 + (y − b)2 < δ, gde je δ = min{1, ε
1+|a|+|b|}, sledi da je

|xy − ab| < δ2 + δ|a|+ δ|b| ≤ δ(1 + |a|+ |b|) ≤ ε · (1 + |a|+ |b|)
1 + |a|+ |b| = ε,

odakle zaključujemo da je množenje realnih brojeva neprekidna funkcija.
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Iz Hajneove teoreme sledi

Tvrdenje

Funkcija f : D → Y je neprekidna u tački a ∈ D

ako i samo ako

za svaki niz {xn} ⊂ D koji konvergira ka a sledi da niz {f (xn)} ⊂ Y konvergira ka
f (a).
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Vrste tačaka prekida funkcija

Neka su (X , dX ) i (Y , dY ) metrički prostori i a tačka nagomilavanja za definicioni
skup D ⊂ X funkcije f : D → Y .

Pretpostavimo da u tački a funkcija ima prekid.

1◦) Ako postoji lim
x→a

f (x), onda kažemo da funkcija f u tački a ima prividan ili

otklonljiv prekid, odnosno da je a prividan (otklonljiv) prekid.
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a) Funkcija

f (x) =
sin x

x

ima u tački 0 prividan prekid (funkcija u tački 0 nije definisana), jer je

lim
x→0

sin x

x
= 1.

Ako posmatramo funkciju

F (x) =

{
sin x
x
, x 6= 0

1, x = 0
,

vidimo da je ona neprekidna u tački 0, jer smo je u tački 0, definisali baš sa

F (0) = lim
x→0

sin x

x
= 1.
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b) Funkcija

f (x) =

{
2x + 1, x 6= 0
−1, x = 0

ima otklonljiv prekid u tački 0, jer je

lim
x→0

f (x) = lim
x→0

(2x + 1) = 1 6= f (0) = −1.

Medutim, funkcija
F (x) = 2x + 1

je neprekidna u tački 0.
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c) Funkcija

f (x) = e−
√

x
x+1

ima prividan prekid u tački −1 (funkcija nije u datoj tački definisana), jer je

lim
x→−1

e−
√

x
x+1 = 0.

Primetimo da u ovom primeru ne postoji desna granična vrednost date funkcije u
tački −1, jer funkcija nije definisana za x ∈ [−1, 0), pa se granična vrednost
poklapa sa levom graničnom vrednošću u datoj tački. Funkcija

F (x) =

{

e−
√

x
x+1 , x ∈ R \ [−1, 0)

0, x = −1

dobijena iz funkcije f je neprekidna u tački −1.
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2◦) Za X = R, ako postoje leva i desna granična vrednost funkcije f (x) u tački a,
tj. ako postoji

lim
x→a−

f (x) = f (a−)

i
lim

x→a+
f (x) = f (a+),

pri čemu je
f (a−) 6= f (a+),

onda kažemo da funkcija u tački a ima skok, odnosno da je a skok date funkcije.
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a) Kako za funkciju

f (x) = arctg

(

1 +
1

x

)

,

važi
lim

x→0+
f (x) =

π

2
, lim
x→0−

f (x) = −π
2
,

to data funkcija ima skok u tački 0.
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b) Za funkciju

f (x) =

{
2x + 1, x ≤ 1
3x − 1, x > 1

je
lim

x→1−
f (x) = 3 = f (1)

i
lim

x→1+
f (x) = 2,

pa funkcija f u tački 1 ima skok.
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I) Ako u tački a funkcija f ima prividan prekid ili skok, onda kažemo da data
funkcija f u tački a ima prekid prve vrste.

II) Ako je tačka a prekid funkcije koji nije prve vrste, onda kažemo da u tački a
funkcija f ima prekid druge vrste.

Ako je (Y , dY ) metrički prostor, tada za funkciju f : I → Y koja ima konačan broj
prekida prve vrste nad intervalom I ⊂ R, kažemo da je f neprekidna po
delovima nad intervalom I .
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Neprekidnost i granična vrednost složene funkcije

Tvrdenje

Neka su dati metrički prostori (X , dX ), (Y , dY ) i (Z , dZ ) kao i funkcije
g : D → Y , D ⊂ X i f : Y → Z .
Ako je g neprekidna funkcija u tački a, f neprekidna funkcija u tački g(a), tada je
složena funkcija h = f ◦ g neprekidna funkcija u tački a.
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Dokaz. S obzirom da je f neprekidna funkcija u tački g(a) i g neprekidna funkcija
u tački a to važi

(∀ε ∈ R+)(∃δ ∈ R+)(∀u ∈ Y )(u ∈ L(g(a), δ) ⇒ f (u) ∈ L(f (g(a)), ε)),

(∀ε1 ∈ R+)(∃δ1 ∈ R+)(∀x ∈ D)(x ∈ L(a, δ1) ⇒ g(x) ∈ L(g(a), ε1)).

Tada birajući da je ε1 = δ, imamo

(∀ε ∈ R+)(∃δ1 ∈ R+)(∀x ∈ D)(x ∈ L(a, δ1) ⇒ f (g(x)) ∈ L(f (g(a)), ε)),

odakle sledi da je složena funkcija h = f ◦ g neprekidna u tački a.
�
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Posledica

Neka su dati metrički prostori (X , dX ), (Y , dY ) i (Z , dZ ) kao i funkcije
g : D → Y , D ⊂ X i f : Y → Z .
Ako su funkcije g i f neprekidne, tada je i složena funkcija h = f ◦ g neprekidna.

Tvrdenje

Neka su dati metrički prostori (X , dX ), (Y , dY ) i (Z , dZ ) kao i funkcije
g : D → Y , D ⊂ X i f : Y → Z .
Ako je lim

x→a
g(x) = α ∈ Y i f neprekidna funkcija u tački α, tada je

lim
x→a

f (g(x)) = f ( lim
x→a

g(x)) = f (α).
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Dokaz. Funkcija f je neprekidna u tački α, pa je

(∀ε ∈ R+)(∃δ ∈ R+)(∀u ∈ Y )(u ∈ L(α, δ) ⇒ f (u) ∈ L(f (α), ε)).

Kako je lim
x→a

g(x) = α, to je

(∀ε1 ∈ R+)(∃δ1 ∈ R+)(∀x ∈ D \ {a})(x ∈ L(a, δ1) ⇒ g(x) ∈ L(α, ε1)),

a odatle uzimajući ε1 = δ sledi da je

(∀ε ∈ R+)(∀x ∈ D \ {a})(x ∈ L(a, δ1) ⇒ f (g(x)) ∈ L(f (α), ε)),

tj. lim
x→a

f (g(x)) = f (α).
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Ako je lim
x→∞

g(x) = α i X = R, tada važi

(∀ε ∈ R+)(∃∆ ∈ R+)(∀x ∈ D)(x > ∆ ⇒ g(x) ∈ L(α, δ)).

pa sledi da

(∀ε ∈ R+)(∀x ∈ D)(x > ∆ ⇒ f (g(x)) ∈ L(f (α), ε)),

tj. lim
x→∞

f (g(x)) = f (α).

Slično, kao i prethodnom slučaju se dokazuje da iz lim
x→−∞

g(x) = α i X = R, sledi

da je lim
x→−∞

f (g(x)) = f (α). �

Pretpostavka da je f : Y → Z je bitna, jer ako to nije tačno teorema ne mora da
važi što se vidi iz sledećeg primera
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Primer

Posmatrajmo funkcije
f (x) =

√
x , g(x) = −x2.

Iz neprekidnosti u 0 funkcije f (x) i iz toga da je lim
x→0

g(x) = 0 imamo da je

f ( lim
x→0

g(x)) = f (0) = 0.

Kako je

f (g(x)) =
√

−x2,

to je funkcija f (g(x)) definisana samo za x = 0, pa

lim
x→0

f (g(x))

ne postoji.
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Tvrdenje

Neka su dati metrički prostori (X , dX ), (Y , dY ) i (Z , dZ ) kao i funkcije
g : D → Y , D ⊂ X i f : Y → Z . Pretpostavimo da

1) g(x) → α ∈ Y , kada x → a;

2) f (u) → β, kada u → α;

3) a) Ako a ∈ X , (za slučaj X = R, a ∈ R, tj. x ne teži ±∞), onda
(∃δ∗ ∈ R+)(∀x ∈ (D \ {a}) ∩ L(a, δ∗)) g(x) 6= α;

b) Ako je X = R i g(x) → α, kada x → ∞, onda

(∃δ∗ ∈ R+)(∀x ∈ D ∩ (δ∗,∞)) g(x) 6= α;
c) Ako je X = R i g(x) → α, kada x → −∞, onda

(∃δ∗ ∈ R−)(∀x ∈ D ∩ (−∞, δ∗)) g(x) 6= α.

Tada f (g(x)) → β, kada x → a.
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Tvrdenje

Neka su dati metrički prostori (X , dX ) i (Z , dZ ) kao i funkcije g : D → R, D ⊂ X
i f : R → Z . Pretpostavimo da

1) g(x) → ±∞, kada x → a,

2) f (u) → β, kada u → ±∞.

Tada f (g(x)) → β, kada x → a.
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Primer

Neka je u = g(x) = 1
x
, y = f (u) = (1 + 1

u
)u . Kako g(x) → ∞, kada x → 0+ i

f (u) → e, kada u → ∞, to je

lim
x→0+

f (g(x)) = lim
x→0+

f (
1

x
) = lim

x→0+
(1 + x)

1
x = e.

Kako g(x) → −∞, kada x → 0− i f (u) → e, kada u → −∞, to je

lim
x→0−

f (g(x)) = lim
x→0−

f (
1

x
) = lim

x→0−
(1 + x)

1
x = e,

pa je

lim
x→0

(1 + x)
1
x = e.
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Primer

Za u = g(x) =

{
2x + 1, x ≤ 1
3, x > 1

i y = f (u) =

{
1

u+3 , u 6= 3

5, u = 3
imamo da je

f (g(x)) =

{
1

2x+4 , x < 1

5, x ≥ 1
.
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1◦) Iz neprekidnosti funkcije g u tački 2 je

lim
x→2

g(x) = 3, (α = 3)

i

lim
u→3

f (u) =
1

6
, (β =

1

6
),

ne sledi da je

lim
x→2

f (g(x)) =
1

6
,

jer je
lim
x→2

f (g(x)) = lim
x→2

f (3) = 5.

Uslov 3) prethodne teoreme nije ispunjen, jer ne postoji okolina tačke 2 tako da je
za svako x iz te okoline g(x) 6= 3.
2◦) lim

x→1
f (g(x)) ne postoji iako je lim

x→1
g(x) = 3, i lim

u→3
f (u) = 1

6 .
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Primer

Neka je u = g(x) = 1
x
, y = f (u) = (1 + 1

u
)u . Kako g(x) → ∞, kada x → 0+ i

f (u) → e, kada u → ∞, to je

lim
x→0+

f (g(x)) = lim
x→0+

f (
1

x
) = lim

x→0+
(1 + x)

1
x = e.

Kako g(x) → −∞, kada x → 0− i f (u) → e, kada u → −∞, to je

lim
x→0−

f (g(x)) = lim
x→0−

f (
1

x
) = lim

x→0−
(1 + x)

1
x = e,

pa je

lim
x→0

(1 + x)
1
x = e.
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Osobine neprekidnih funkcija

Tvrdenje

Neka su (X , dX ) i (Y , dY ) metrički prostori i neka je data funkcija f : X → Y .
Tada su sledeća tvrdenja ekvivalentna

a) Funkcija f je neprekidna.

b) Inverzna slika svakog otvorenog skupa U ⊂ Y je otvoren skup.

c) Inverzna slika svakog zatvorenog skupa F ⊂ Y je zatvoren skup.
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Tvrdenje

Neka je (X , d) metrički prostor i f : D → R, D ⊂ X funkcija koja je neprekidna u
tački a ∈ D.
Ako je f (a) > c (f (a) < c), tada postoji pozitivan realan broj ε, tako da za sve
x ∈ L(a, ε) ∩ D važi f (x) > c (f (x) < c).

Dokaz. Posmatrajmo slučaj kada je f (a) > c . Analogno se dokazuje i kada je
f (a) < c . Neka je ε = f (a)− c > 0. Kako je f neprekidna funkcija u tački a, to

(∃δ ∈ R+)(∀x ∈ D)(x ∈ L(a, δ) ⇒ |f (x)− f (a)| < ε),

tj. c = f (a)− ε < f (x) < f (a) + ε. Dakle,

(∀x ∈ D)(x ∈ L(a, δ) ⇒ f (x) > c),

što je i trebalo da se dokaže. �
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Ako funkcija f ima prekid u tački a ∈ D, teorema ne mora da važi.

Na primer, ako posmatramo funkciju

f (x) =

{
x + 1, x < 0
2, x ≥ 0

,
vidimo da ne

postoji okolina (−ε, ε) tačke 0, tako da iz x ∈ (−ε, ε) sledi f (x) > 3
2 .

Posledica

Ako je funkcija f : D → R, D ⊂ X , neprekidna u tački a ∈ D i f (a) > 0
(f (a) < 0), tada postoji otvorena lopta L(a, δ), tako da za svako x ∈ D ∩ L(a, δ)
sledi da je f (x) > 0 (f (x) < 0).
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Neprekidnost funkcija Osobine neprekidnih funkcija

Tvrdenje

Ako je funkcija f : [a, b] → Y neprekidna nad zatvorenim intervalom [a, b], onda
je ona nad tim intervalom i ograničena.

Dokaz. Dokaz ćemo dati za slučaj kada je Y = R.

Pretpostavimo da f nije ograničena nad [a, b]. Tada

(∀n ∈ N)(∃xn ∈ [a, b]) |f (xn)| > n. (2)

Posmatrajmo niz {xn}. S obzirom da su svi članovi niza {xn} iz [a, b], to je dati
niz ograničen, pa postoji konvergentan podniz {xnk} datog niza. Neka je
lim

k→∞
xnk = ξ ∈ [a, b].

Kako je f neprekidna funkcija nad [a, b], to je

lim
k→∞

f (xnk ) = f ( lim
k→∞

xnk ) = f (ξ),

odnosno sledi da je niz {f (xnk )} konvergentan, što je u suprotnosti sa (2).

Dakle, funkcija f je ograničena nad [a, b]. �
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Neprekidnost funkcija Osobine neprekidnih funkcija

Obe pretpostavke prethodne teoreme su bitne.

• Ako posmatramo funkciju f (x) = 1
x
, vidimo da je ona neprekidna nad

intervalom (0, 1], ali nad tim intervalom nije ograničena
(ne postoji sup

x∈(0,1]

f (x), dok je inf
x∈(0,1]

f (x) = 1).

• Ako posmatramo funkciju f (x) =

{
1
x
, x ∈ (0, 1]

0, x = 0
, vidimo da ona nije

ograničena nad zatvorenim intervalom [0, 1] (ima prekid u tački 0).
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Neprekidnost funkcija Osobine neprekidnih funkcija

Definicija

Za neprazan skup A ⊂ X kažemo da je kompaktan u metričkom prostoru
(X , dX ), ako za svaki niz {an} ⊂ A postoji tačka nagomilavanja a ∈ A.

Metrički prostor (X , dX ) je kompaktan ako je X kompaktan skup u metričkom
prostoru (X , dX ).

Prethodna teorema važi i kada se zatvoreni interval zameni skupom kompaktnim u
metričkom prostoru (X , dX ) :

Tvrdenje

Neka su (X , dX ) i (Y , dY ) proizvoljni metrički prostori. Ako je f : D → Y , D ⊂ X
neprekidna funkcija i ako je skup D kompaktan u metričkom prostoru (X , dX ),
tada je f ograničena funkcija.
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Neprekidnost funkcija Osobine neprekidnih funkcija

Tvrdenje

Ako je funkcija f : [a, b] → R neprekidna nad [a, b], tada ona bar jednom dostiže
svoju najveću i najmanju vrednost (funkcija f (x) ima maksimum i minumum nad
intervalom [a, b]), tj. postoje realni brojevi α, β ∈ [a, b], takvi da je

m = inf
x∈[a,b]

f (x) = f (α) i M = sup
x∈[a,b]

f (x) = f (β).

I ova teorema važi u opštijem slučaju, tj. važi sledeće tvrdenje:

Tvrdenje

Neka je (X , dX ) metrički prostor i f : D → R, D ⊂ X neprekidna funkcija nad
kompaktnim skupom D. Tada funkcija f dostiže najveću i najmanju vrednost nad
skupom D.
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Neprekidnost funkcija Osobine neprekidnih funkcija

Tvrdenje

Ako je funkcija f : [a, b] → R neprekidna nad intervalom [a, b] i f (a) · f (b) < 0,
tada u intervalu (a, b) postoji bar jedna nula funkcije, tj. postoji tačka ξ ∈ (a, b),
tako da je f (ξ) = 0.

Dokaz. Ako je

f

(
a+ b

2

)

= 0,

tada je

ξ =
a + b

2
∈ (a, b),

pa je teorema dokazana.
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Neprekidnost funkcija Osobine neprekidnih funkcija

Ako je

f

(
a+ b

2

)

6= 0,

tada od podintervala
[

a,
a+ b

2

]

i

[
a+ b

2
, b

]

intervala [a, b] izaberimo onaj, koji ćemo obeležiti sa [a1, b1], kod koga funkcija na
krajevima intervala ima različit znak.
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Neprekidnost funkcija Osobine neprekidnih funkcija

Ponavljajući isti postupak na intervalu [a1, b1] dobićemo da je ili

f

(
a1 + b1

2

)

= 0 ili f

(
a1 + b1

2

)

6= 0.

Ako je

f

(
a1 + b1

2

)

= 0,

tada je

ξ =
a1 + b1

2
∈ (a, b),

pa je teorema dokazana.
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Neprekidnost funkcija Osobine neprekidnih funkcija

Ako je

f

(
a1 + b1

2

)

6= 0,

tada od podintervala

[

a1,
a1 + b1

2

]

i

[
a1 + b1

2
, b1

]

intervala [a1, b1] izaberimo onaj, koji ćemo obeležiti sa [a2, b2], kod koga funkcija
na krajevima intervala ima različit znak.
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Neprekidnost funkcija Osobine neprekidnih funkcija

Nastavljajući taj proces, dobićemo da

1) Posle n koraka, ako je f
(
an+bn

2

)
= 0, tada je ξ = an+bn

2 , pa je teorema
dokazana.

2) Ako je za svako n ∈ N, f ( an+bn
2 ) 6= 0, tada za niz intervala {[an, bn]} važi:

- [a1, b1] ⊃ [a2, b2] ⊃ ... ⊃ [an, bn] ⊃ ...;

- lim
n→∞

(bn − an) = lim
n→∞

b−a
2n = 0;

pa je dati niz, niz umetnutih intervala. Sledi da postoji jedna i samo jedna
zajednička tačka ξ za sve intervale.
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Neprekidnost funkcija Osobine neprekidnih funkcija

Dokazaćemo da je f (ξ) = 0. Pretpostavimo suprotno, tj. da je

f (ξ) > 0 (f (ξ) < 0).

Primetimo pre svega da je funkcija f definisana u tački ξ ∈ (a, b), jer je f
neprekidna nad zatvorenim intervalom [a, b].
Kako je f neprekidna u tački ξ i po pretpostavci je f (ξ) > 0 (f (ξ) < 0), to postoji
pozitivan realan broj δ, tako da za svako x iz skupa

(ξ − δ, ξ + δ) ∩ [a, b]

važi
f (x) > 0 (f (x) < 0).
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Neprekidnost funkcija Osobine neprekidnih funkcija

Kako je
lim

n→∞
an = lim

n→∞
bn = ξ,

to postoji n0 ∈ N tako da je za svako n ≥ n0

[an, bn] ⊂ (ξ − δ, ξ + δ).

Kako je
f (an) · f (bn) < 0,

to funkcija f nije uvek pozitivna (negativna) nad intervalom

(ξ − δ, ξ + δ)

što je kontradikcija.

Dakle, f (ξ) = 0. �
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Neprekidnost funkcija Osobine neprekidnih funkcija

Bitna je pretpostavka teoreme da je funkcija f neprekidna nad datim zatvorenim
intervalom.

Ako funkcija f nije neprekidna nad po-
smatranim zatvorenim intervalom, tada f
ne mora obavezno da ima nulu nad odgo-
varajućim otvorenim intervalom. Na pri-
mer, ako posmatramo funkciju

f (x) =

{
x + 2, x ≤ 2
−x , x > 2

,

vidimo da funkcija f nema nulu u intervalu (0, 3), iako je

f (0) = 2 > 0, f (3) = −3 < 0,

jer funkcija f ima prekid u tački 2.
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Neprekidnost funkcija Osobine neprekidnih funkcija

Tvrdenje

Ako je f : [a, b] → R neprekidna funkcija nad [a, b] i ako je f (a) 6= f (b), ona u
tom intervalu uzima sve vrednosti izmedu f (a) i f (b).

Tvrdenje

Ako je f : [a, b] → R neprekidna funkcija, tada je ili za svako x ∈ [a, b], f (x) = c
ili f ([a, b]) = [c , d ].
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Neprekidnost funkcija Osobine neprekidnih funkcija

Tvrdenje

Ako je f : (a, b) → R neprekidna strogo monotona funkcija nad (a, b), tada je
f ((a, b)) otvoren interval.

Tvrdenje

Ako je f : I → R neprekidna strogo monotona funkcija nad proizvoljnim intervalom
realnih brojeva I , tada je inverzna funkcija f −1 : f (I ) → R neprekidna nad f (I ).
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Neprekidnost funkcija Elementarne funkcije

Elementarne funkcije

Osnovne elementarne funkcije su sledeće funkcije:

• konstantna funkcija y = c , c ∈ R,

• stepena funkcija y = xα, α ∈ R,

• eksponencijalna funkcija y = ax , gde je a > 0 i a 6= 1,

• logaritamska funkcija y = loga x , gde je a > 0 i a 6= 1,

• trigonometrijske funkcije:
y = sin x , y = cos x , y = tg x , y = ctg x ,

• inverzne trigonometrijske funkcije:
y = arcsin x , y = arccos x , y = ctg x , y = arcctg x .

Elementarne funkcije uvodimo sledećom rekurzivnom definicijom.

212 / 569



Neprekidnost funkcija Elementarne funkcije

Definicija

1 Osnovne elementarne funkcije su elementarne funkcije.

2 Ako su f i g elementarne funkcije, g 6= O (O nula funkcija), tada su

elementarne funkcije i f + g , f − g , f · g , f

g
, f ◦ g .

3 Elementarne funkcije se mogu dobiti samo konačnom primenom pravila 1. i
2. ove definicije.

Na primer, elementarne funkcije su: y = 2x2 + 3x + 5,
y = 32x − sin2 x , y = ln(

√
x + 3), y = ln x+5

arctg x+3x , y = ln(arcsin x2).

Na osnovu poslednje teoreme i osobina neprekidnih funkcija sledi da važi sledeća
teorema

Tvrdenje

Elementarne funkcije su neprekidne u oblasti definisanosti.
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Neprekidnost funkcija Uniformna neprekidnost

Uniformna neprekidnost

Definicija

Neka su dati metrički prostori (X , dX ), (Y , dY ) i funkcija f : D → Y , D ⊂ X .
Funkcija f je uniformno neprekidna nad ∅ 6= E ⊂ D ako

(∀ε > 0)(∃δ > 0)(∀x1, x2 ∈ E)(dX (x1, x2) < δ ⇒ dY (f (x1), f (x2)) < ε).

Dakle, možemo reći da je funkcija f uniformno neprekidna nad E ako za svaki
pozitivan realan broj ε, postoji pozitivan realan broj δ, koji zavisi samo od ε ali ne
i od x , tako da ako je rastojanje tačaka x1 i x2 iz E manje od δ, tada je rastojanje
slika manje od ε.
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Neprekidnost funkcija Uniformna neprekidnost

Napomena

Očigledno je, da ako je funkcija f uniformno neprekidna nad skupom E , ona je
nad tim skupom i neprekidna. Da obrnuto nije uvek tačno pokazuje sledeći primer.

Primer

Funkcija f : (0, 1) → R definisana sa

f (x) =
1

x

je nad intervalom (0, 1) neprekidna, ali nije i uniformno neprekidna.
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Neprekidnost funkcija Uniformna neprekidnost

Da bi to pokazali pretpostavimo suprotno, tj. da je data funkcija nad intervalom
(0, 1) uniformno neprekidna. Tada za 0 < ε < 1, postoji δ > 0, tako da je

|x2 − x1| < δ ⇒
∣
∣
∣
∣

1

x2
− 1

x1

∣
∣
∣
∣
< ε.

Primetimo da kako x1, x2 ∈ (0, 1), to je δ < 1.
Neka je

x1 = δ ∈ (0, 1), x2 =
δ

1 + ε
∈ (0, 1).

Tada važi:

|x2 − x1| =
∣

∣

∣

∣

δ

1 + ε
− δ

∣

∣

∣

∣

= δ
ε

1 + ε
< δ ⇒

∣

∣

∣

∣

1

x2
− 1

x1

∣

∣

∣

∣

=

∣

∣

∣

∣

1 + ε

δ
− 1

δ

∣

∣

∣

∣

=
ε

δ
> ε,

što je suprotno pretpostavci da je funkcija f uniformno neprekidna. Dakle, f nije
uniformno neprekidna nad (0, 1).
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Neprekidnost funkcija Uniformna neprekidnost

Tvrdenje

Ako je f : [a, b] → R neprekidna nad [a, b], ona je nad tim intervalom i uniformno
neprekidna.

Primer

Funkcija f : (0, 1] → R definisana sa f (x) = x je nad intervalom (0, 1) neprekidna
i uniformno neprekidna.

Primer

Funkcija f : R → R definisana sa f (x) = x2 je nad intervalom (− 1
3 ,

1
3 ) uniformno

neprekidna.
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Izvod. Interpretacije izvoda Definicija izvoda

Definicija izvoda

Posmatramo realnu funkciju y = f (x), f : D → R, i x ∈ D◦.

∆x 6= 0 - priraštaj argumenta funkcije f (x) u tački x ∈ D◦

ukoliko x +∆x ∈ D◦ tada je

∆y = f (x +∆x)− f (x)

priraštaj funkcije f (x) u tački x ∈ D◦ koji odgovara priraštaju argumenta
∆x

Kako je priraštaj funkcije ∆y = f (x +∆x)− f (x), to količnik
∆y

∆x
nije definisan

za ∆x = 0.
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Izvod. Interpretacije izvoda Definicija izvoda

Da li postoji granična vrednost tog količnika kada ∆x → 0?

Očigledno da je potreban uslov da granična vrednost količnika postoji kada
∆x → 0 taj da i ∆y → 0 tj. da funkcija f (x) treba da bude neprekidna u tački x .

Definicija

Ako postoji granična vrednost

lim
∆x→0

∆y

∆x
= lim

∆x→0

f (x +∆x)− f (x)

∆x

onda se ta granična vrednost zove izvod funkcije f (x) u tački x i označava se sa
f ′(x) ili y′.
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Izvod. Interpretacije izvoda Izvod i neprekidnost. Jednostrani izvod

Izvod i neprekidnost. Jednostrani izvod

Teorema

Ako funkcija ima izvod u nekoj tački x , ona je u toj tački i neprekidna.

Dokaz. lim
∆x→0

∆y = lim
∆x→0

∆y
∆x

·∆x = f ′(x) · 0 = 0. �

Obrnuto ne mora da važi! Primer: f (x) = |x |, neprekidna je za svako x , a nema
izvod u x = 0, jer je

f ′(0) = lim
∆x→0

∆y

∆x
= lim

∆x→0

f (0 + ∆x)− f (0)

∆x
= lim

∆x→0

|∆x |
∆x

,

pri čemu je

lim
∆x→0+

|∆x |
∆x

= lim
∆x→0+

∆x

∆x
= 1, lim

∆x→0−

|∆x |
∆x

= lim
∆x→0−

−∆x

∆x
= −1.
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Izvod. Interpretacije izvoda Izvod i neprekidnost. Jednostrani izvod

Prethodni primer pokazuje da mogu postojati desna i leva granična vrednost,
lim

∆x→0+

∆y
∆x

i lim
∆x→0−

∆y
∆x

koje su različite, pa ima smisla definisati i jednostrane

izvode.

Desni izvod funkcije f (x) nad [x , x + δ), δ > 0 je

f ′+(x) = lim
∆x→0+

f (x +∆x)− f (x)

∆x
, x +∆x ∈ [x , x + δ)

Levi izvod funkcije f (x) nad (x − δ, x ], δ > 0 je

f ′−(x) = lim
∆x→0−

f (x +∆x)− f (x)

∆x
, x +∆x ∈ (x − δ, x ]

f (x) ima izvod u x akko postoje jednostrani izvodi i važi f ′−(x) = f ′+(x) = f ′(x)

221 / 569



Izvod. Interpretacije izvoda Izvod i neprekidnost. Jednostrani izvod

Da iz neprekidnosti funkcije u tački x ne sledi uvek da postoji bar jedan
jednostrani izvod u posmatranoj tački, pokazuje sledeći primer.

Primer

Funkcija f (x) =

{

x sin
1

x
, x 6= 0

0 , x = 0
nema jednostrane izvode u tački x = 0.

Rešenje. Funkcija f (x) je neprekidna za svako x. U tački x = 0 ne postoji ni
jedan jednostrani izvod:

lim
∆x→0+

∆x sin 1
∆x

− 0

∆x
= lim

∆x→0+
sin

1

∆x
ne postoji,

lim
∆x→0−

∆x sin 1
∆x

− 0

∆x
= lim

∆x→0−
sin

1

∆x
ne postoji.
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Izvod. Interpretacije izvoda Izvod i neprekidnost. Jednostrani izvod

Funkcija f (x) ima izvod nad intervalom I1 = [a, b), I2 = (a, b], I3 = [a, b] ako:

funkcija ima izvod u svakoj tački (a, b)

u tački a funkcija ima desni izvod, za intervale I1 i I3, pǐse se da je
f ′(a) = f ′+(a)

u tački b funkcija ima levi izvod, za intervale I2 i I3, pǐse se da je
f ′(b) = f ′−(b)

Primetimo da ako funkcija y = f (x) ima izvod u tački x važi

f ′(x) = lim
∆x→0

∆y

∆x
⇒ ∆y

∆x
= f ′(x) + α, lim

∆x→0
α = 0

⇒ ∆y = f ′(x)∆x + α∆x , lim
∆x→0

α = 0
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Izvod. Interpretacije izvoda Izvod i neprekidnost. Jednostrani izvod

Može se desiti da funkcija ima izvod u svakoj tački intervala (a, b), da u tačakama
a i b nema izvod, a da ima izvod nad zatvorenim intervalom [a, b].

Na primer, funkcija

f (x) =







0 , x < 0
sin x , 0 ≤ x ≤ π

2
2
π x , x > π

2

ima izvod f ′(x) nad intervalom
[
0, π2

]
iako u krajnjim tačkama 0 i π

2 tog intervala
ne postoji izvod, jer je

f ′−(0) = 0, f ′+(0) = 1,

f ′−

(π

2

)

= 0, f ′+

(π

2

)

=
2

π
.
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Izvod. Interpretacije izvoda Geometrijska interpretacija izvoda

Geometrijska interpretacija izvoda

y = f (x) je neprekidna funkcija nad (a, b)

A,B su tačke grafika, prava AB je sečica krive, tgβ = ∆y
∆x

ako B → A prava AB postaje tangenta krive u tački A

ako je α 6= π
2 + kπ, k ∈ Z, ugao koji tangenta zaklapa sa pozitivnim delom

x-ose tada je tgα = lim
∆x→0

f (x +∆x)− f (x)

∆x
= f ′(x).
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Izvod. Interpretacije izvoda Geometrijska interpretacija izvoda

ako je f ′(a) 6= 0, jednačina tangente u tački A(a, f (a)) je

y − f (a) = f ′(a)(x − a),

a jednačina normale u tački A(a, f (a)) je

y − f (a) = − 1

f ′(a)
(x − a)

jednačina desne tangente u tački A(a, f (a)) je

y − f (a) = f ′+(a)(x − a),

a jednačina leve tangente u tački A(a, f (a)) je

y − f (a) = f ′−(a)(x − a),

ako je ako je f ′(a) = 0 jednačina tangente funkcije u tački A(a, f (a)) je
y = f (a), a jednačina normale je x = a.
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Izvod. Interpretacije izvoda Fizička interpretacija izvoda

Fizička interpretacija izvoda - brzina i ubrzanje tačke

Neka se tačka kreće po pravoj tako da je jednačinom s = f (t) data zavisnost
predenog puta od početne tačke A.

U trenutku t neka se tačka nalazi u B, a u trenutku t +∆t u C .
Predeni put do trenutka t je f (t), a do trenutka t +∆t je f (t +∆t).
Srednja brzina vs na putu BC je jednaka

vs =
∆s

∆t
=

f (t +∆t)− f (t)

∆t
.
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Izvod. Interpretacije izvoda Fizička interpretacija izvoda

Prirodno je definisati trenutnu brzinu te tačke u B kao graničnu vrednost srednje
brzine kada C teži B. Drugim rečima, brzina v(t) u B se definǐse kao

v(t) = lim
∆t→0

f (t +∆t)− f (t)

∆t
= f ′(t),

ako ta granična vrednost postoji.

Slično, ako je u trenutku t data brzina v = f (t), a u trenutku t +∆t brzina
v = f (t +∆t), srednje ubrzanje na putu BC je jednako

as =
∆vs
∆t

,

pa je trenutno ubrzanje u tački B jednako

a = lim
∆t→0

∆vs
∆t

= v ′(t),

ako ta granična vrednost postoji.
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Osobine izvoda

Osobine izvoda

Teorema

Ako funkcije u = u(x), v = v(x) imaju izvod u tački x , tada i funkcije u ± v , uv ,
u

v
(v(x) 6= 0 u datoj tački x) i c · u imaju izvod u tački x i važi da je:

1. [u(x)± v(x)]′ = u′(x)± v ′(x),

2. [u(x)v(x)]′ = u′(x)v(x) + u(x)v ′(x),

3.

[
u(x)

v(x)

]′
=

u′(x)v(x) − u(x)v ′(x)

v2(x)
,

4. [c u(x)]′ = c u′(x), c = const.
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Osobine izvoda

Teorema (izvod složene funkcije)

Neka je data složena funkcija y = f (u), u = g(x). Ako g(x) ima izvod u tački x i
f (u) ima izvod u tački u, tada je

(f ◦ g)′ (x) = (f (g(x)))
′
= f ′(u)g ′(x).

Teorema (izvod inverzne funkcije)

Neka je f (x) neprekidna strogo monotona funkcija definisana na intervalu (a, b) i
f −1(x) njena inverzna funkcija. Ako funkcija f (x) ima izvod f ′(x) u tački
x ∈ (a, b) i f ′(x) 6= 0, tada funkcija f −1(x) ima izvod u tački y = f (x) i važi

(
f −1
)′
(y) =

1

f ′(x)
.
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Osobine izvoda

Neka su nad intervalom I ⊂ R definisane realne funkcije

x = ϕ(t), y = ψ(t), t ∈ I ,

pri čemu za funkciju ϕ(t) postoji inverzna funkcija t = ϕ−1(x).

Složena funkcija y = ψ(ϕ−1(x)) = f (x) je definisana nad skupom vrednosti
{ϕ(t) : t ∈ I} funkcije ϕ(t).

Tada je sa x = x(t), y = y(t), t ∈ I funkcija f (x) zadata u parametarskom
obliku i promenljivu t zovemo parametrom.

Teorema (izvod parametarski zadate funkcije)

Neka je data funkcija y = f (x) u parametarskom obliku x = x(t),
y = y(t), t ∈ I . Ako neprekidne funkcije ϕ(t) i ψ(t) imaju izvode u tački
t ∈ (a, b) i ukoliko je ϕ′(t) 6= 0, tada funkcija y = f (x) ima izvod u tački t i važi

f ′(x) =
ψ′(t)

ϕ′(t)
=

ẏ(t)

ẋ(t)
.
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Osobine izvoda

Logaritamski izvod

Neka je data funkcija Neka je y = f (x)g(x), f (x) > 0. Tada je

ln y = g(x) ln f (x),

pa je
y ′

y
= g ′(x) ln f (x) + g(x)

f ′(x)

f (x)
,

odakle je

y ′ = f (x)g(x)
(

g ′(x) ln f (x) + g(x)
f ′(x)

f (x)

)

Primer

Odrediti prvi izvod funkcije y = xx .
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Diferencijabilnost. Diferencijal.

Diferencijabilnost. Diferencijal.

Neka je funkcija f (x) definisana na skupu D i neka x ∈ D◦.
Priraštaj funkcije

∆y = f (x +∆x)− f (x), x +∆x ∈ D◦

zavisi od priraštaja nezavisno promenljive ∆x .

Definicija

Za funkciju f (x) se kaže da je diferencijabilna u tački x ako se ∆y može napisati
u obliku

∆y = D∆x + α∆x ,

pri čemu α→ 0 kada ∆x → 0, dok D ne zavisi od ∆x .
Linearni deo priraštaja funkcije, D∆x , naziva se diferencijal funkcije f (x) i
obeležava se sa dy ili df (x), tj.

dy = df (x) = D∆x .
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Diferencijabilnost. Diferencijal.

Ako je funkcija diferencijabilna u svakoj tački skupa A onda se kaže da je
f (x) diferencijabilna nad skupom A.

Ako funkcija f : D → R, D ⊆ R ima izvod u svakoj tački skupa X1 ⊆ D◦,
tada za funkciju f ′ : x → f ′(x), x ∈ X1 kažemo da je izvodna funkcija
funkcije f .

Primer

Za funkciju f (x) = x2 je
∆y = f (x +∆x)− f (x)

= (x +∆x)2 − x2

= x2 + 2x∆x + (∆x)2 − x2

= 2x
︸︷︷︸

D

∆x + ∆x
︸︷︷︸
α

∆x ,

gde D = 2x ne zavisi od ∆x , a α = ∆x → 0, ∆x → 0, pa je ova funkcija
diferencijabilna.
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Diferencijabilnost. Diferencijal.

Teorema

Potreban i dovoljan uslov da funkcija f (x) bude diferencijabilna u tački x je da
ima izvod u toj tački.

Dokaz. Uslov je potreban. Pretpostavimo da je funkcija f (x) diferencijabilna u
tački x . Tada je

∆y = D∆x + α∆x ,

pri čemu α→ 0 kada ∆x → 0. Sledi da je

lim
∆x→0

∆y

∆x
= lim

∆x→0
(D + α) = D.

Izvod postoji i to je baš D.
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Diferencijabilnost. Diferencijal.

Uslov je dovoljan. Ako f (x) ima izvod u tački, tj. postoji granična vrednost

lim
∆x→0

∆y

∆x
= f ′(x),

tada je količnik
∆y

∆x
= f ′(x) + α, lim

∆x→0
α = 0.

Sledi da je
∆y = f ′(x)∆x + α∆x ,

što znači da je funkcija f (x) diferencijabilna u tački x .

Treba uočiti da f ′(x) ne zavisi od ∆x . �
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Diferencijabilnost. Diferencijal.

Dakle, diferencijal je dat obrascem dy = f ′(x)∆x .

Za funkciju y = x je dy = dx pa se i u opštem slučaju ∆x zamenjuje sa dx ,
pa je

dy = f ′(x)dx ⇒ f ′(x) =
dy

dx

što je Lajbnicova oznaka za izvod.

Izvod složene funkcije je
dy

dx
=

dy

du

du

dx
.

Izvod inverzne funkcije je
dy

dx
=

1
dx
dy

.
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Diferencijabilnost. Diferencijal. Invarijantnost oblika diferencijala

Invarijantnost oblika diferencijala

Ako je y = f (u), u = g(x) složena funkcija, tada je

dy = d(f (g(x))) = (f ◦ g)′(x)dx = f ′(u)g ′(x)dx

odnosno

dy = f ′(u)du

Dakle, diferencijal ima osobinu invarijantnosti oblika, tj. diferencijal ima isti
oblik i kada je u funkcija od x , kao što bi imao da je u nezavisna promenljiva.
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Diferencijabilnost. Diferencijal. Geometrijska interpretacija diferencijala

Geometrijska interpretacija diferencijala

Neka u proizvoljnoj tački M(x , f (x)) kriva y = f (x) ima tangentu. Tada je

dy = f ′(x)∆x = tgα∆x =
PQ

MQ
MQ = PQ,

tj. diferencijal dy je priraštaj ordinate tangente u tački M(x , f (x)) koji
odgovara priraštaju argumenta ∆x .
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Diferencijabilnost. Diferencijal. Osobine diferencijala

Osobine diferencijala

Teorema (osobine diferencijala)

Ako su funkcije u = u(x) i v = v(x) diferencijabilne u tački x tada važi

1. d(u(x)± v(x)) = du(x)± dv(x),

2. d(u(x)v(x)) = v(x)du(x) + u(x)dv(x),

3. d

(
u(x)

v(x)

)

=
v(x)du(x) − u(x)dv(x)

v2(x)
, v(x) 6= 0

4. d(c · u(x)) = c · du(x).
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Diferencijabilnost. Diferencijal. Primena diferencijala

Primena diferencijala

Kako je
∆y = f ′(x)∆x + α∆x ,

pri čemu α→ 0 kada ∆x → 0, u odredenom smislu priraštaj

∆y = f (x +∆x)− f (x)

možemo aproksimirati diferencijalom

dy = f ′(x)∆x = f ′(x)dx

kada ∆x → 0, tj.
∆y ≈ f ′(x)∆x (∆x → 0).

Na osnovu toga sledi da je

f (x +∆x) ≈ f (x) + f ′(x)∆x (∆x → 0).
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Diferencijabilnost. Diferencijal. Primena diferencijala

Primer

Odrediti približno 3
√
8, 01.

Rešenje. Za funkciju f (x) = 3
√
x imamo da je

3
√
x +∆x ≈ 3

√
x +

1

3
3
√
x2

∆x , ∆x → 0, x 6= 0.

Za x = 8 i ∆x = 0, 01 dobijamo

3
√
8 + 0, 01 ≈ 3

√
8 +

1

3 3
√
64

· 0, 01

= 2 +
1

1200
≈ 2 + 0, 00083 = 2, 00083.

242 / 569



Vǐsi izvodi i diferencijali Izvodi vǐseg reda

Izvodi vǐseg reda

Neka funkcija y = f (x) ima izvod u svakoj tački skupa X1 ⊂ D◦.
Njen izvod f ′(x) je funkcija nezavisne promenljive x , x ∈ X1.
Ako ona ima izvod u nekoj tački x ∈ X1 tada njen izvod (f ′(x))′ nazivamo

drugi izvod ili izvod drugog reda funkcije f (x) u tački x .

Slično se definǐsu ostali vǐsi izvodi funkcije y = f (x) :

y
def
= f 0(x),

y ′ = f ′(x),
y ′′ = (f ′(x))′,

...

f (n)(x) = (f (n−1)(x))′.
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Vǐsi izvodi i diferencijali Izvodi vǐseg reda

• za parametarski zadatu funkciju x = ϕ(t), y = ψ(t), t ∈ (a, b) :

y
′′

x =

(

y ′

t

x ′
t

)

′

x

=

(

y ′

t

x ′
t

)

′

t

· t′x =
y ′′

t x
′

t − x ′′

t y
′

t

(x ′
t )2

· 1

x ′
t

=
y ′′

t x
′

t − x ′′

t y
′

t

(x ′
t )3

• za inverznu funkciju x = f −1(y) :

x
′′

y =

(

1

y ′
x

)

′

y

=

(

1

y ′
x

)

′

x

· x ′

y = − y ′′

x

(y ′
x)2

1

y ′
x

= − y ′′

x

(y ′
x )3
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Vǐsi izvodi i diferencijali Diferencijali vǐseg reda

Diferencijali vǐseg reda

Ako je funkcija f (x) dva puta diferencijabilna nad X1 ⊂ D◦ onda se diferencijal
funkcije y = f ′(x)dx označava sa d2y i naziva drugi diferencijal ili diferencijal
drugog reda funkcije f (x).

Shodno tome se dy = f ′(x)dx naziva diferencijal prvog reda ili prvi diferencijal.

• Važi da je d2f = d(f ′(x)dx) = (f ′(x)dx)′dx = f ′′(x)dx2.

• Ako je funkcija f (n−1)(x), n ≥ 2 diferencijabilna, tada se diferencijal funkcije
dn−1y = f (n−1)(x)dxn−1 naziva diferencijal n−tog reda funkcije f (x) i može da se
pokaže da važi dny = f (n)(x)dxn.
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Vǐsi izvodi i diferencijali Diferencijali vǐseg reda

Ako je y = f (u), u = u(x), gde su funkcije y = f (u) i u = u(x) dva puta
diferencijabilne, tada je

d2y = d(dy)

= d(f ′(u)du)

= d(f ′(u))du + f ′(u)d(du)

= d(f ′(u))du + f ′(u)d(u′(x)dx)

= d(f ′(u))du + f ′(u)(u′′(x)dx2)

= f ′′(u)du2 + f ′(u)d2u,

pa diferencijali vǐseg reda ne poseduju osobinu invarijantnosti oblika!
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Osnovne teoreme diferencijalnog računa Rolova teorema

Osnovne teoreme diferencijalnog računa

Rolova teorema

Rolova teorema

Ako je funkcija f : [a, b] → R neprekidna nad zatvorenim intervalom [a, b], ima
izvod nad otvorenim intervalom (a, b) i ako je f (a) = f (b), tada postoji bar jedna
tačka ξ ∈ (a, b) takva da je f ′(ξ) = 0.

Geometrijski smisao: Postoji bar jedna tačka ξ ∈ (a, b) takva da je tangenta krive
y = f (x) u tački A(ξ, f (ξ)) paralelna sa x−osom.

Mehanička interpretacija: Tačka se kreće po pravoj, u trenutku t se nalazi u tački
sa koordinatom x(t).
Neka je x = x(t) neprekidna za t ∈ [α, β] i diferencijabilna za t ∈ (α, β).
Ako je x(α) = x(β) (tj. položaj tačke u trenutku t = α poklapa se sa položajem
tačke u trenutku t = β), tada postoji bar jedna tačka ξ ∈ (a, b) u kojoj je brzina
jednaka nuli.

247 / 569



Osnovne teoreme diferencijalnog računa Rolova teorema

Dokaz Rolove teoreme. Neprekidna funkcija nad zatvorenim intervalom dostiže
bar jednom najmanju vrednost m i najveću vrednost M .

• Ako je m = M , f (x) je konstantna na celom intervalu, pa je f ′(x) = 0 za svako
x ∈ (a, b).

• Neka je m < M .
Pp. da je M > f (a) = f (b) (ukoliko je M = f (a) tada je m < f (a)).

Tada postoji bar jedna tačka ξ ∈ (a, b), takva da je f (ξ) = M . Dokazaćemo da je
f ′(ξ) = 0. Važi

f (ξ +∆x) ≤ f (ξ), za ξ +∆x ∈ [a, b], tj.

f (ξ +∆x)− f (ξ)

∆x
≤ 0,∆x > 0 i

f (ξ +∆x)− f (ξ)

∆x
≥ 0,∆x < 0.

Za tačku ξ, po pretpostavci postoji f ′(ξ), pa je f ′+(ξ) = f ′−(ξ) = f ′(ξ).
Iz f ′+(ξ) ≤ 0, f ′−(ξ) ≥ 0 i f ′+(ξ) = f ′−(ξ) = f ′(ξ) sledi da je f ′(ξ) = 0. �
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Osnovne teoreme diferencijalnog računa Lagranžova teorema

Lagranžova teorema

Lagranžova teorema - teorema o srednjoj vrednosti

Ako je funkcija f : [a, b] → R neprekidna nad zatvorenim intervalom [a, b], ima
izvod nad otvorenim intervalom (a, b), tada postoji bar jedna tačka ξ ∈ (a, b)
takva da je

f (b)− f (a)

b − a
= f ′(ξ).

Geometrijski smisao: Postoji tačka ξ ∈ (a, b) takva da je tangenta u C (ξ, f (ξ))
paralelna pravoj kroz A(a, f (a)) i B(b, f (b)).

Mehanička interpretacija: Kod pravolinijskog kretanja tačke po zakonu x = x(t),
t ∈ [α, β] gde je funkcija x(t) neprekidna za t ∈ [α, β] i diferencijabilna nad (α, β)
postoji tačka ξ ∈ (α, β) u kojoj je trenutna brzina jednaka srednjoj brzini u
posmatranom intervalu.
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Osnovne teoreme diferencijalnog računa Lagranžova teorema

Ako stavimo
ξ − a

b − a
= θ,

tada je ξ = a+ θ(b − a), 0 < θ < 1, pa se tvrdenje

f (b)− f (a)

b − a
= f ′(ξ).

može zapisati u obliku

f (b)− f (a) = f ′(a+ θ(b − a))(b − a), 0 < θ < 1,

a uzimajući a = x i b = x + h dobija se

f (x + h)− f (x) = hf ′(x + θh), 0 < θ < 1.
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Osnovne teoreme diferencijalnog računa Posledice Rolove i Lagranžove teoreme

Posledice Rolove i Lagranžove teoreme

Posledica

(Rolov metod za razdvajanje korena funkcije) Ako za funkciju f : [a, b] → R važi:

a) f (x) je neprekidna nad zatvorenim intervalom [a, b],

b) f (x) je diferencijabilna nad intervalom (a, b) i pri tome je f ′(x) 6= 0 za
x ∈ (a, b),

c) f (a) · f (b) < 0

tada postoji samo jedna nula funkcije nad intervalom (a, b).

Posledica

Ako je funkcija f : [a, b] → R diferencijabilna nad intervalom (a, b) i ako su
c1, c2 ∈ (a, b), c1 < c2 dve uzastopne nule prvog izvoda, tada nad intervalom
(c1, c2) funkcija f (x) ima najvǐse jednu nulu.
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Osnovne teoreme diferencijalnog računa Posledice Rolove i Lagranžove teoreme

Primer

Pokazati da jednačina x3 − 3x + 1
2 = 0 nad intervalom (−1, 1) ima tačno jedno

rešenje.

Rešenje. Posmatrajmo funkciju f (x) = x3 − 3x + 1
2 .

f ′(x) = 3x2 − 3 = 3(x − 1)(x + 1)

f ′(x) = 0 ⇔ x = 1 ∨ x = −1

f (−1) = −1 + 3 +
1

2
> 0, f (1) = 1− 3 +

1

2
< 0

pa na osnovu prethodne teoreme nad intervalom (−1, 1) funkcija f (x) ima tačno
jednu nulu.

252 / 569



Osnovne teoreme diferencijalnog računa Posledice Rolove i Lagranžove teoreme

Posledica

Ako za funkciju f : [a, b] → R važi:

a) f (x) je neprekidna nad [a, b],

b) f (x) je diferencijabilna nad intervalom (a, b) i pri tome je f ′(x) = 0 za svako
x ∈ (a, b),

tada je funkcija f (x) konstantna funkcija nad [a, b].

Posledica

Ako funkcije f (x) i g(x) imaju jednake izvode: f ′(x) = g ′(x), x ∈ I , tada se one
razlikuju za konstantu nad intervalom I .
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Osnovne teoreme diferencijalnog računa Posledice Rolove i Lagranžove teoreme

Primer

Pokazati da je arcsin x + arccos x = π
2 , x ∈ [−1, 1].

Rešenje. Posmatrajmo funkciju f (x) = arcsin x + arccos x .

Ona je neprekidna nad [−1, 1].

Diferencijabilna je nad (−1, 1) i pri tome je

f ′(x) =
1√

1− x2
− 1√

1− x2
= 0, x ∈ (−1, 1)

pa je funkcija f (x) konstantna funkcija nad intervalom [−1, 1], tj. f (x) = c ,
x ∈ [−1, 1].

c =?

arcsin 0 + arccos 0 = 0 +
π

2
=
π

2
= c .
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Osnovne teoreme diferencijalnog računa Posledice Rolove i Lagranžove teoreme

Primer

Da li postoji konstanta c tako da je arcctg 1
x
− arctg x = c , za svako x 6= 0?

Rešenje. Za funkciju f (x) = arctg x je

f ′(x) = 1
1+x2

, x ∈ R.

Za g(x) = arcctg 1
x
je

g ′(x) = − 1

1+( 1
x )

2

(
− 1

x2

)
= 1

1+x2
, x 6= 0.

Za x > 0 je funkcija arcctg 1
x
− arctg x konstantna, pri čemu računajući njenu

vrednost npr. u tački x = 1 dobijamo da je

arcctg 1
x
− arctg x = 0, x > 0

Za x < 0 je funkcija arcctg 1
x
− arctg x konstantna, pri čemu računajući njenu

vrednost npr. u tački x = −1 dobijamo da je

arcctg 1
x
− arctg x = π, x < 0.
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Osnovne teoreme diferencijalnog računa Posledice Rolove i Lagranžove teoreme

Posledica

Neka je funkcija f : [a, b] → R neprekidna nad [a, b] i diferencijabilna nad (a, b).
Ako postoji

lim
x→a+

f ′(x)

(

lim
x→b−

f ′(x)

)

,

tada postoji i f ′+(a) (f ′−(b)) i važi jednakost

lim
x→a+

f ′(x) = f ′+(a)

(

lim
x→b−

f ′(x) = f ′−(b)

)

.

Posledica

Ako funkcija f : I → R ima izvod nad intervalom I , tada izvod f ′(x) ne može
imati prekide prve vrste nad tim intervalom.
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Osnovne teoreme diferencijalnog računa Posledice Rolove i Lagranžove teoreme

Da izvod može imati prekide druge vrste pokazuje sledeći primer.

Primer

Pokazati da za funkciju

f (x) =

{
x2 sin 1

x
, x 6= 0

0 , x = 0

prvi izvod f ′(x) ima prekid druge vrste u tački x = 0.

Rešenje. Kako je f ′(x) = 2x sin 1
x
− cos 1

x
, za x 6= 0 i

f ′(0) = lim
∆x→0

(∆x)2 sin 1
∆x

∆x
= 0,

s obzirom da granične vrednosti lim
x→0+

f ′(x) i lim
x→0−

f ′(x) ne postoje, to funkcija

f ′(x) ima u tački x = 0 prekid druge vrste.
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Osnovne teoreme diferencijalnog računa Košijeva teorema

Košijeva teorema

Darbuova teorema

Ako funkcija f : [a, b] → R ima izvod nad intervalom [a, b] i ako je f ′(a) 6= f ′(b),
onda f ′(x) uzima sve meduvrednosti izmedu f ′(a) i f ′(b).

Košijeva teorema

Ako su funkcije f (x), g(x) neprekidne nad zatvorenim intervalom [a, b], imaju
izvode nad (a, b) i za svako x ∈ (a, b) je g ′(x) 6= 0, tada postoji bar jedna tačka
ξ ∈ (a, b), takva da je

f (b)− f (a)

g(b)− g(a)
=

f ′(ξ)

g ′(ξ)
.
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Osnovne teoreme diferencijalnog računa Košijeva teorema

Dokaz. Primetimo da je g(b)− g(a) 6= 0, jer bi inače funkcija g(x) ispunjavala
uslove Rolove teoreme, pa bi postojala tačka ξ ∈ (a, b) takva da je g ′(ξ) = 0, to
je suprotno uslovu da je g ′(x) 6= 0 za svako x ∈ (a, b).

Funkcija
h(x) = (f (b)− f (a))g(x)− (g(b)− g(a))f (x)

je neprekidna nad intervalom [a, b], ima izvod u svakoj tački x ∈ (a, b) i
h(a) = h(b) = f (b)g(a)− g(b)f (a).

Prema Rolovoj teoremi postoji ξ ∈ (a, b), takvo da je

h′(ξ) = (f (b)− f (a))g ′(ξ)− (g(b)− g(a))f ′(ξ) = 0.

Sledi da je
f (b)− f (a)

g(b)− g(a)
=

f ′(ξ)

g ′(ξ)
,

što je i trebalo dokazati. �

259 / 569



Osnovne teoreme diferencijalnog računa Košijeva teorema

Dokaz Lagranžove teoreme.

Lagranžova teorema je specijalan slučaj Košijeve.

Naime, stavljajući u Košijevu teoremu

g(x) = x ,

dobija se

f (b)− f (a)

b − a
= f ′(ξ).
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Osnovne teoreme diferencijalnog računa Lopitalovo pravilo

Lopitalovo pravilo

f (x)

g(x)
ima neodredeni oblik ”

0

0
” kada x → a ako važi

lim
x→a

f (x) = lim
x→a

g(x) = 0,

f (x)

g(x)
ima neodredeni oblik ”

∞
∞” kada x → a ako važi

f (x) → ±∞, g(x) → ±∞, x → a
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Osnovne teoreme diferencijalnog računa Lopitalovo pravilo

Lopitalova teorema

Neka su funkcije f , g : (a, b) → R diferencijabilne nad (a, b),
g ′(x) 6= 0, x ∈ (a, b) i neka je lim

x→a+
f (x) = lim

x→a+
g(x) = 0

(

lim
x→b−

f (x) = lim
x→b−

g(x) = 0

)

. Tada:

1. Ako postoji lim
x→a+

f ′(x)

g ′(x)
= A

(

lim
x→b−

f ′(x)
g ′(x) = B

)

, tada postoji lim
x→a+

f (x)

g(x)
= A

(

lim
x→b−

f (x)
g(x) = B

)

i važi jednakost

lim
x→a+

f (x)

g(x)
= lim

x→a+

f ′(x)

g ′(x)
= A,

(

lim
x→b−

f (x)

g(x)
= lim

x→b−

f ′(x)

g ′(x)
= B

)

.

2. Ako
f ′(x)

g ′(x)
→ ±∞, x → a+

(
x → b−

)
, tada i

f (x)

g(x)
→ ±∞, kada

x → a+ (x → b−) .
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Osnovne teoreme diferencijalnog računa Lopitalovo pravilo

Dokaz (dela 1. kada x → a+). Za funkcije

F (x) =

{
f (x) , x ∈ (a, b)
0 , x = a

, G(x) =

{
g(x) , x ∈ (a, b)
0 , x = a

važi da su neprekidne nad [a, b),
diferencijabilne nad (a, b) (F ′(x) = f ′(x), G ′(x) = g ′(x) 6= 0),
pa za svako x ∈ (a, b) zadovoljavaju uslove Košijeve teoreme nad intervalom [a, x ].

Sledi da postoji ξ ∈ (a, x) tako da je

f (x)

g(x)
=
F (x)− F (a)

G(x)− G(a)
=

F ′(ξ)

G ′(ξ)
=

f ′(ξ)

g ′(ξ)
.
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Osnovne teoreme diferencijalnog računa Lopitalovo pravilo

Kako je lim
x→a+

f ′(x)

g ′(x)
= A, za svako ε > 0 postoji δ ∈ R+, tako da

a < x < a+ δ < b ⇒
∣
∣
∣
∣

f ′(x)

g ′(x)
− A

∣
∣
∣
∣
< ε.

Za x ∈ (a, a+ δ) na osnovu

∣
∣
∣
∣

f (x)

g(x)
− A

∣
∣
∣
∣
=

∣
∣
∣
∣

f ′(ξ)

g ′(ξ)
− A

∣
∣
∣
∣
< ε

zaključujemo

lim
x→a+

f (x)

g(x)
= lim

x→a+

f ′(x)

g ′(x)
= A.
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Osnovne teoreme diferencijalnog računa Lopitalovo pravilo

Za slučaj da je a = −∞ uvodimo smenu t =
1

x
:

lim
x→−∞

f (x)

g(x)
= lim

t→0−

f
(
1
t

)

g
(
1
t

)

= lim
t→0−

f ′
(
1
t

)
·
(
− 1

t2

)

g ′
(
1
t

)
·
(
− 1

t2

)

= lim
t→0−

f ′
(
1
t

)

g ′ ( 1
t

)

= lim
x→−∞

f ′(x)

g ′(x)
.

�
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Osnovne teoreme diferencijalnog računa Lopitalovo pravilo

Teorema

Neka su funkcije f , g : (a, b) → R diferencijabilne nad (a, b) i g ′(x) 6= 0,
x ∈ (a, b) i neka f (x) → ±∞ i g(x) → ±∞ kada x → a+(f (x) → ±∞ i
g(x) → ±∞ kada x → b−). Tada:

1. Ako postoji lim
x→a+

f ′(x)

g ′(x)
= A

(

lim
x→b−

f ′(x)
g ′(x) = B

)

, tada postoji lim
x→a+

f (x)

g(x)
= A

(

lim
x→b−

f (x)
g(x) = B

)

i važi jednakost

lim
x→a+

f (x)

g(x)
= lim

x→a+

f ′(x)

g ′(x)
= A

(

lim
x→b−

f (x)

g(x)
= lim

x→b−

f ′(x)

g ′(x)
= B

)

.

2. Ako
f ′(x)

g ′(x)
→ ±∞, kada x → a+ (x → b−), tada i

f (x)

g(x)
→ ±∞, kada

x → a+ (x → b−).
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Osnovne teoreme diferencijalnog računa Lopitalovo pravilo

Primer

Odrediti lim
x→∞

x + sin x

x
.

Rešenje. Ovde ne možemo da koristimo Lopitalovo pravilo, jer

lim
x→∞

1 + cos x

1

ne postoji, dok je

lim
x→∞

x + sin x

x
= lim

x→∞

(

1 +
sin x

x

)

= 1.

Dakle, Lopitalova pravila daju dovoljne, ali ne i potrebne uslove za postojanje
granične vrednosti.
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Osnovne teoreme diferencijalnog računa Lopitalovo pravilo

I ostali neodredeni izrazi oblika 0 · ∞,∞−∞, 00,∞0, 1∞ mogu se odredivati
koristeći Lopitalova pravila.

Primer

Odrediti:

a) lim
x→0

x ln x ,

b) lim
x→0

(
1

x
− 1

ex − 1

)

,

c) lim
x→0

xx .
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Osnovne teoreme diferencijalnog računa Tejlorova i Maklorenova teorema

Tejlorova i Maklorenova teorema

Tejlorova teorema

Neka su funkcija f (x) i svi njeni izvodi do (n− 1)-vog reda neprekidni nad [A,B] i
neka f (x) ima n−ti izvod nad (A,B).
Neka je a ∈ [A,B] proizvoljna tačka. Tada:
za svako b ∈ [A,B], b 6= a, postoji bar jedna tačka ξ ∈ (a, b), b > a
(tj. postoji bar jedna tačka ξ ∈ (b, a), a > b),
takva da je

f (b) = f (a) + b−a
1!

f ′(a) + (b−a)2

2!
f ′′(a) + · · ·+ (b−a)n−1

(n−1)!
f (n−1)(a) + Rn,

=
n−1
∑

i=0

f (i)(a)
i !

(b − a)i + Rn,

Rn =
(b − a)n

n!
f
(n)(ξ).
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Osnovne teoreme diferencijalnog računa Tejlorova i Maklorenova teorema

Za b = a + h Tejlorova formula je oblika

f (a+ h) = f (a) +
h

1!
f ′(a) +

h2

2!
f ′′(a) + · · ·+ hn−1

(n − 1)!
f (n−1)(a) + Rn,

Rn(x) =
hn

n!
f (n)(a+ θh), 0 < θ < 1.

Za b = x Tejlorova formula je oblika

f (x) = f (a) +
x − a

1!
f ′(a) +

(x − a)2

2!
f ′′(a) + · · ·+ (x − a)n−1

(n − 1)!
f (n−1)(a) + Rn(x),

Rn(x) =
(x − a)n

n!
f (n)(a+ θ(x − a)), 0 < θ < 1.
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Osnovne teoreme diferencijalnog računa Tejlorova i Maklorenova teorema

Kada je funkcija f (x) predstavljena kao

f (x) =

n−1∑

i=0

f (i)(a)

i !
(x − a)i + Rn(x)

kažemo da je razvijena po Tejlorovoj formuli u tački a.

Tn−1(x) =

n−1∑

i=0

f (i)(a)

i !
(x − a)i Tejlorov polinom

Rn(x) =
(x − a)n

n!
f (n)(a+ θ(x − a)), 0 < θ < 1 ostatak ili greška
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Osnovne teoreme diferencijalnog računa Tejlorova i Maklorenova teorema

U specijalnom slučaju za a = 0 imamo Maklorenovu formulu

f (x) = f (0) +
x

1!
f ′(0) +

x2

2!
f ′′(0) + · · ·+ xn−1

(n − 1)!
f (n−1)(0) + Rn(x),

Rn(x) =
xn

n!
f (n)(θx), 0 < θ < 1.

Mn−1(x) =

n−1∑

i=0

f (i)(0)

i !
x i Maklorenov polinom

Rn(x) ostatak ili greška aproksimacije funkcije Maklorenovim polinomom
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Osnovne teoreme diferencijalnog računa Tejlorova i Maklorenova teorema

Primer

Napisati Maklorenove formule za funkcije:

a) f (x) = ex ,

b) f (x) = sin x ,

c) f (x) = cos x ,

d) f (x) = ln(1 + x),

e) f (x) = (1 + x)α.

Rešenje. a) Kako je f (x) = f ′(x) = · · · = f (n)(x) = ex

i f (0) = f ′(0) = · · · = f (n−1)(0) = e0 = 1, f (n)(θx) = eθx ,
to Maklorenova formula za funkciju f (x) = ex glasi

ex = 1 +
x

1!
+

x2

2!
+ · · ·+ xn−1

(n − 1)!
+ Rn(x),

Rn(x) =
xn

n!
eθx , 0 < θ < 1, x ∈ R.
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Osnovne teoreme diferencijalnog računa Tejlorova i Maklorenova teorema

Primer

Napisati polinom P(x) = 1 + x − 3x2 + 4x3 po stepenima od x − 1.

Rešenje. Kako je

P(x) = P(1) +
x − 1

1!
P ′(1) +

(x − 1)2

2!
P ′′(1) +

(x − 1)3

3!
P ′′′(1),

i pri tome
P(1) = 3,

P ′(x) = 1− 6x + 12x2 ⇒ P ′(1) = 7,
P ′′(x) = −6 + 24x ⇒ P ′′(1) = 18,
P ′′′(x) = 24 ⇒ P ′′′(1) = 24,

to je P(x) = 3 + 7(x − 1) + 9(x − 1)2 + 4(x − 1)3.

274 / 569



Napomena u vezi definicije izvoda

Napomena u vezi definicije izvoda

Pri definiciji izvoda funkcije f : D → R, D ⊂ R, pretpostavka je da je x ∈ D◦.

Mogli smo definisati i izvod u tački x ∈ D, ali uz pretpostavku da je x tačka
nagomilavanja skupa D, jer graničnu vrednost

lim
∆x→0,x+∆x∈D

f (x +∆x)− f (x)

∆x

možemo tražiti bez obzira da li je funkcija definisana u nekoj okolini tačke x .

Na primer, tada bi funkcija f (x) = x2, x ∈ Q, imala ”izvod” u svakoj tački x ∈ Q,
dok ona izvod, onako kako smo ga definisali, nema ni u jednoj tački x ∈ Q.
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Napomena u vezi definicije izvoda

Česta je situacija da funkcija f (x) u tački a ima otklonjiv prekid, tj. postoji
lim
x→a

f (x) = A, pri čemu ili funkcija f (x) nije definisana u tački a, ili ako je

definisana A 6= f (a).
Tada funkcija nema izvod u tački a (morala bi da bude neprekidna u a).

Mogli bismo definisati

f ′(a) = lim
∆x→0

f (a+∆x)− A

∆x
,

ako ta granična vrednost postoji i nazvati je nepravi ili kvazi izvod.

Ako postoji f ′(a), tada postoji i f ′(a) i važi jednakost f ′(a) = f ′(a).
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Napomena u vezi definicije izvoda

Funkcija u tački a može da ima nepravi izvod, a da nema izvod:

Za funkciju f (x) =
sin x

x
ne postoji f ′(0), dok je

f ′(0) = lim
∆x→0

sin∆x
∆x

− 1

∆x
= lim

∆x→0

sin∆x −∆x

(∆x)2

= lim
∆x→0

cos∆x − 1

2∆x
= lim

∆x→0

− sin∆x

2
= 0.

f ′(0) je u stvari izvod funkcije

F (x) =

{
sin x

x
, x 6= 0

1 , x = 0

u nuli, tj. F ′(0) = f ′(0) = 0.
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Napomena u vezi definicije izvoda

Ista je situacija kod jednostranih izvoda. Pretpostavimo da je funkcija
f : (a, b) → R definisana nad intervalom (a, b) i da postoji

lim
x→a+

f (x) = f (a+),

(

lim
x→b−

f (x) = f (b−)

)

.

Ako postoji

lim
∆x→0+

f (a +∆x)− f (a+)

∆x
,

(

lim
∆x→0−

f (b +∆x)− f (b−)

∆x
,

)

onda tu graničnu vrednost možemo nazvati nepravi desni (nepravi levi) izvod u
tački a (b) i obeležiti ga f ′+(a) (f

′
−(b)).

Ne interesuje nas da li je funkcija definisana u datim tačkama, niti, ako je
definisana, da li je neprekidna sa desne (leve) strane.

Nepravi desni i nepravi levi izvod jednim imenom zovemo jednostrani nepravi
izvodi.

278 / 569



Napomena u vezi definicije izvoda

Ako funkcija u tački ima desni (levi) izvod, onda ona ima u toj tački desni nepravi
(levi nepravi) izvod i oni su jednaki.

Obrnuto nije tačno: Funkcija

f (x) =







sin x

x
, x < 0

cos x − 1

x
, x > 0

nije definisana u nuli, pa nema u nuli ni desni ni levi izvod.

Kako je

f (0−) = lim
x→0−

f (x) = lim
x→0−

sin x

x
= 1,

to je

f ′−(0) = lim
∆x→0−

f (∆x) − f (0−)

∆x
= lim

∆x→0−

sin∆x
∆x

− 1

∆x
= 0.
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Napomena u vezi definicije izvoda

Slično, kako je

f (0+) = lim
x→0+

f (x) = lim
x→0+

cos x − 1

x
= 0,

to je

f ′+(0) = lim
∆x→0+

f (∆x) − f (0+)

∆x
= lim

∆x→0+

cos ∆x−1
∆x

∆x
= −1

2
.
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Ispitivanje funkcija Monotonost

Monotonost

Definicija

Funkcija f : D → R, D ⊂ R je nad intervalom I ⊂ R

1. monotono rastuća ako za svake dve tačke x1, x2 ∈ I važi
x1 < x2 ⇒ f (x1) < f (x2),

2. monotono opadajuća ako za svake dve tačke x1, x2 ∈ I važi
x1 < x2 ⇒ f (x1) > f (x2),

3. monotono nerastuća ako za svake dve tačke x1, x2 ∈ I važi
x1 < x2 ⇒ f (x1) ≥ f (x2),

4. monotono neopadajuća ako za svake dve tačke x1, x2 ∈ I važi
x1 < x2 ⇒ f (x1) ≤ f (x2).

U svakom od navedenih slučajeva funkcija je monotona, u slučajevima 1 i 2 je
strogo monotona.
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Ispitivanje funkcija Monotonost

Teorema

Neka funkcija f (x) ima izvod nad intervalom I . Ako je f (x) monotono
neopadajuća funkcija nad intervalom I tada je f ′(x) ≥ 0, za x ∈ I , a ako je
monotono nerastuća funkcija nad intervalom I tada je f ′(x) ≤ 0, za x ∈ I .

Dokaz (za monotono neopadajuću funkciju). Za proizvoljno x ∈ I , s obzirom da je
f (x) monotono neopadajuća funkcija je

f (x +∆x)− f (x)

∆x
≥ 0, x +∆x ∈ I ,

odakle sledi da je

f ′(x) = lim
∆x→0

f (x +∆x)− f (x)

∆x
≥ 0.

�
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Ispitivanje funkcija Monotonost

Teorema

Neka funkcija f (x) ima prvi izvod nad intervalom I . Ako je f ′(x) > 0, funkcija
f (x) je monotono rastuća nad intervalom I , a ako je f ′(x) < 0, funkcija f (x) je
monotono opadajuća nad intervalom I .

Dokaz. Neka je [x1, x2] ⊂ I proizvoljan podinterval intervala I . Funkcija f (x) nad
intervalom [x1, x2] zadovoljava sve uslove Lagranžove teoreme, pa postoji tačka
ξ ∈ (x1, x2) takva da je

f (x2)− f (x1) = f ′(ξ)(x2 − x1).

Ako je f ′(x) > 0, tada je i f ′(ξ) > 0, pa je

f (x2) > f (x1).

Dokaz je sličan kada je f ′(x) < 0. �
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Ispitivanje funkcija Monotonost

Definicija

Neka je funkcija f (x) definisana u nekoj okolini tačke a.
Funkcija je rastuća u tački a ako postoji okolina tačke a u kojoj za svako x iz te
okoline važi

f (x) > f (a) za x > a, f (x) < f (a) za x < a.
Funkcija je opadajuća u tački a ako postoji okolina tačke a u kojoj za svako x iz te
okoline važi

f (x) < f (a) za x > a, f (x) > f (a) za x < a.

Teorema

Ako je funkcija f (x) rastuća (opadajuća) u tački a i ako postoji f ′(a), tada je
f ′(a) ≥ 0, (f ′(a) ≤ 0).

Teorema

Neka funkcija f (x) u tački a ima izvod f ′(a) 6= 0. Ako je f ′(a) > 0, funkcija f(x)
je rastuća u tački a, a ako je f ′(a) < 0 ona je u tački a opadajuća.
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Ispitivanje funkcija Monotonost

Primer

Pokazati da funkcija f (x) =

{
x
2 + x2 sin 1

x
, x 6= 0

0 , x = 0
nije monotona ni u jednoj

okolini nule. Da li je ova funkcija rastuća u nuli?

Rešenje. f ′(x) =

{
1
2 + 2x sin 1

x
− cos 1

x
, x 6= 0

1
2 , x = 0

,

f ′(0) = 1
2 > 0, pa je funkcija rastuća u nuli.

Ako posmatramo nizove sa opštim članovima

an =
1

2nπ
, bn =

1

(2n+ 1)π
, cn = − 1

2nπ
, dn = − 1

(2n+ 1)π
,

možemo primetiti da je lim
n→∞

an = lim
n→∞

bn = lim
n→∞

cn = lim
n→∞

dn = 0,

f ′(an) = f ′(cn) = −1

2
, f ′(bn) = f ′(dn) =

3

2
,

pa ne postoji okolina nule u kojoj je prvi izvod stalnog znaka, te funkcija nije
monotona ni u jednoj okolini nule.
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Ispitivanje funkcija Monotonost

Dovoljan uslov za monotonost:

Teorema

Neka funkcija f (x) ima prvi izvod u okolini tačke a i neka je f ′(x) neprekidna
funkcija u tački a. Ako je f ′(a) > 0, funkcija f (x) je monotono rastuća u nekoj
okolini tačke a, a ako je f ′(a) < 0, funkcija f (x) je monotono opadajuća u nekoj
okolini tačke a.

Darbuova teorema

Ako funkcija f : [a, b] → R ima izvod nad intervalom [a, b] i ako je f ′(a) 6= f ′(b),
onda f ′(x) uzima sve meduvrednosti izmedu f ′(a) i f ′(b).

funkcija f ′(x) ne mora biti neprekidna nad [a, b], f ′(x) može imati prekid
druge vrste
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Ispitivanje funkcija Monotonost

Dokaz. Neka je f ′(a) > f ′(b) i f ′(a) > C > f ′(b).

Posmatrajmo funkciju g(x) = f (x)− Cx .

g ′(x) = f ′(x)− C , pa je

g ′(a) = f ′(a)− C> 0 >f ′(b)− C = g ′(b).

g ′(x) je neprekidna nad [a, b], pa nad njim dostiže svoju najveću vrednost, tj.
postoji ξ ∈ [a, b] da je f (ξ) = max

x∈[a,b]
f (x).

Štavǐse, ξ 6= a jer je g ′(a) > 0 (g(x) je rastuća u a) i ξ 6= b, jer je g ′(b) < 0.

Dakle, ξ ∈ (a, b).

Kako je tu ekstrem, mora biti g ′(ξ) = 0, tj. f ′(ξ) = C . �
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Ekstremne vrednosti funkcija

Definicija

Ako je realna funkcija f (x) definisana u nekoj okolini tačke a ∈ R, tada kažemo da
funkcija f (x) u tački a ima lokalni minimum ako postoji δ > 0 takvo da

x ∈ (a− δ, a) ∪ (a, a+ δ) ⇒ f (x) > f (a),

a lokalni maksimum ako postoji δ > 0 takvo da

x ∈ (a− δ, a) ∪ (a, a+ δ) ⇒ f (x) < f (a).

tačka a je tada lokalna ekstremna vrednost i to je najmanja ili najveća
vrednost funkcije u nekoj okolini tačke a.

ako je za x = a +∆x ∈ (a − δ, a) ∪ (a, a+ δ) priraštaj funkcije
∆y = f (a+∆x)− f (a) > 0 tada funkcija u tački a ima lokalni minimum, a
ako je ∆y < 0 ima lokalni maksimum
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Teorema

Ako funkcija f (x) ima u tački a ekstremnu vrednost i ako postoji f ′(a) tada je
f ′(a) = 0.

uslov je potreban, ne i dovoljan (primer funkcije x3)

stacionarne tačke - tačke u kojima je f ′(x) = 0

funkcija može imati ekstremnu vrednost u x = a, a da f ′(a) ne postoji
(primer funkcije |x |)
kritične tačke

Teorema

Ako je funkcija u tački a neprekidna i postoji δ > 0 takvo da je

f ′(x) > 0 (f ′(x) < 0), za x ∈ (a− δ, a),

a
f ′(x) < 0 (f ′(x) > 0), za x ∈ (a, a+ δ),

onda funkcija u tački a ima ekstremnu vrednost i to maksimum (minimum).
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Dokaz (za maksimum).

Ako za x ∈ (a− δ, a) važi f ′(x) > 0, funkcija je monotono rastuća nad (a− δ, a).

Ako za x ∈ (a, a+ δ) važi f ′(x) < 0, funkcija je monotono opadajuća nad
(a, a+ δ).

Ako bi postojala neka tačka x1 ∈ (a− δ, a) takva da je f (x1) ≥ f (a), sledilo bi da
postoji tačka ξ ∈ (x1, a) takva da je

0 ≥ f (a)− f (x1) = f ′(ξ)(a − x1).

Moralo bi biti f ′(ξ) ≤ 0. Kontradikcija.

Slično se pokazuje da ne postoji tačka x1 ∈ (a, a+ δ) takva da je f (x1) ≥ f (a). �
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Primer

Proveriti da li funkcija f (x) =

{
x2
(
2 + sin 1

x

)
, x 6= 0

0 , x = 0
ima ekstremnu

vrednost u tački x = 0.

Rešenje. Kako je

f ′(x) =

{
4x + 2x sin 1

x
− cos 1

x
, x 6= 0

0 , x = 0
,

f ′′(x) = 4 + 2 sin
1

x
− 2

x
cos

1

x
− 1

x2
sin

1

x
, x 6= 0,

to je f ′(0) = 0, pa je x = 0 stacionarna tačka. f ′′(0) ne postoji.

Pokažimo da ne postoji δ > 0 takvo da je u intervalu (−δ, 0), odnosno u intervalu
(0, δ) prvi izvod istog znaka.
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Ako posmatramo nizove se opštim članovima

an =
1

2nπ
, bn =

1

(2n+ 1)π
, cn = − 1

2nπ
, dn = − 1

(2n+ 1)π
,

vidimo da važi

lim
n→∞

an = lim
n→∞

bn = lim
n→∞

cn = lim
n→∞

dn = 0.

Dakle, u svakoj okolini nule su skoro svi članovi posmatranih nizova.
Kako je

f ′(an) =
2

nπ
− 1 < 0, f ′(bn) =

4

(2n + 1)π
+ 1 > 0,

f ′(cn) = − 2

nπ
− 1 < 0, f ′(dn) = − 4

(2n+ 1)π
+ 1 > 0,

sledi da za svako δ > 0 postoji n0 ∈ N, takav da za svako n ≥ n0

an, bn ∈ (0, δ) ∧ cn, dn ∈ (−δ, 0).
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Dakle, sledi da za svako δ > 0 u intervalima (−δ, 0) i (0, δ) postoje tačke u kojima
je prvi izvod pozitivan i tačke u kojima je prvi izvod negativan. Dakle, prvi izvod
ne menja znak prolazeći kroz tačku x = 0.

Na osnovu do sada utvrdenih kriterijuma ne možemo reći da li funkcija u tački
nula ima ekstremnu vrednost ili ne.

Kako je f (0) = 0 i f (x) > 0 za svako x 6= 0, sledi da funkcija f (x) u tački nula
ima minimum.
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Teorema

Neka je f ′(a) = f ′′(a) = · · · = f (n−1)(a) = 0 i f (n)(a) 6= 0, n ≥ 2. Ako je n paran
broj, funkcija f (x) ima u tački a ekstremnu vrednost i to:

maksimum ako je f (n)(a) < 0 odnosno,

minimum ako je f (n)(a) > 0.

Ako je n neparan broj funkcija f (x) nema ekstremnu vrednost u tački a. U tom
slučaju ako je f (n)(a) > 0 funkcija je u tački a rastuća a ako je f (n)(a) < 0
funkcija je u tački a opadajuća.

Dokaz (za slučaj f (n)(a) > 0): Iz Tejlorove formule

f (a +∆x) = f (a) + ∆x
1 f ′(a) + (∆x)2

2! f ′′(a) + · · ·+ (∆x)n−1

(n−1)! f
(n−1)(a+ θ∆x),

0 < a < 1
i uslova teoreme sledi

f (a +∆x)− f (a) =
(∆x)n−1

(n − 1)!
f (n−1)(a + θ∆x), 0 < a < 1.
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Ako je f (n)(a) > 0 tada je f (n−1)(x) rastuća funkcija u tački a, pa je

f (n−1)(a+ θ∆x) > f (n−1)(a) = 0, ∆x > 0,

f (n−1)(a+ θ∆x) < f (n−1)(a) = 0, ∆x < 0.

Ako je n parno, izraz
(∆x)n−1

(n − 1)!
f (n−1)(a+ θ∆x),

(a onda i priraštaj funkcije) je za svako dovoljno malo ∆x pozitivan, tj. funkcija u
tački a ima minimum.
Ako je n neparno, izraz

(∆x)n−1

(n − 1)!
f (n−1)(a+ θ∆x),

nije stalnog znaka (pozitivan je za ∆x > 0, a negativan za ∆x < 0) i ekstremne
vrednosti u a nema. �
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Ispitivanje funkcija Tangenta i normala krive

Tangenta i normala krive

Videli smo već da ako funkcija f (x) ima izvod u tački a,
jednačina tangente u tački A(a, f (a)) je

y − f (a) = f ′(a)(x − a),

a jednačina normale u tački A(a, f (a)) je

y − f (a) = − 1

f ′(a)
(x − a),

ako je f ′(a) 6= 0, odnosno normala je x = a ako je f ′(a) = 0.
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Ispitivanje funkcija Tangenta i normala krive

• Tangenta funkcije u tački A(a, f (a)) može da bude paralelna sa y -osom, ako
∆y

∆x
→ ∞ ili

∆y

∆x
→ −∞ kada ∆x → 0:

U ovim slučajevima tangenta u tački A(a, f (a)) je prava x = a, a normala je prava
y = f (a).
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Ispitivanje funkcija Tangenta i normala krive

• Može da se desi da ne postoji f ′(a), ali postoji f ′+(a) ili f
′
−(a) :

Ako postoji f ′+(a), prava

y − f (a) = f ′+(a)(x − a)

je tangenta na desnu granu funkcije u
tački A(a, f (a)) (desna tangenta).
Ako postoji f ′−(a), prava

y − f (a) = f ′−(a)(x − a)

je tangenta na levu granu funkcije u tački
A(a, f (a)) (leva tangenta)
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Ispitivanje funkcija Tangenta i normala krive

• ako ∆y
∆x

→ ∞ ili ∆y
∆x

→ −∞ kada ∆x → 0+ prava x = a je tangenta na desnu
granu funkcije u tački A(a, f (a)),

• ako ∆y
∆x

→ ∞ ili ∆y
∆x

→ −∞ kada ∆x → 0− prava x = a je tangenta na levu
granu funkcije u tački A(a, f (a)),

• ako je prava x = a tangenta i na levu i na desnu granu funkcije u tački
A(a, f (a)), prava x = a je tangenta funkcije u tački A(a, f (a)).
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Ispitivanje funkcija Tangenta i normala krive

• Ako ne postoji f ′+(a), a postoji nepravi

desni izvod f
′
+(a) u tački a, prava

y − f (a+) = f
′
+(a)(x − a)

je tangenta na desnu granu funkcije u
tački A(a, f (a)).
• Ako ne postoji f ′−(a), a postoji nepravi

levi izvod f
′
−(a) u tački a, prava

y − f (a−) = f
′
−(a)(x − a)

je tangenta na levu granu funkcije u tački
A(a, f (a)).
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Ispitivanje funkcija Tangenta i normala krive

• ako
f (a+∆x)− f (a+)

∆x
→ ±∞, kada ∆x → 0+, prava x = a je tangenta na

desnu granu funkcije u tački A(a, f (a+))

• ako
f (a+∆x)− f (a−)

∆x
→ ±∞, kada ∆x → 0−, prava x = a je tangenta na

levu granu funkcije u tački B(a, f (a−))
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Ispitivanje funkcija Tangenta i normala krive

Pretpostavimo da funkcija ima izvod u tački a i da je f ′(a) 6= 0.

• deo tangente od tačke A do pre-
seka sa x−osom naziva se dužina
tangente,T , a dužina njene projek-
cije na x−osu naziva se subtan-
genta, ST .
• deo normale od tačke A do pre-
seka sa x−osom naziva se dužina
normale, N , a dužina njene pro-
jekcije na x−osu naziva se subnor-
mala, SN .

Iz |f ′(a)| = | tg α| = |f (a)|
ST

=
SN

|f (a)| sledi

ST =

∣
∣
∣
∣

f (a)

f ′(a)

∣
∣
∣
∣
, T =

√

f 2(a) + S2
T

SN = |f (a)f ′(a)| , N =
√

f 2(a) + S2
N
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Ispitivanje funkcija Konveksnost, konkavnost, prevojne tačke

Konveksnost, konkavnost, prevojne tačke

Definicija

Funkcija f (x) definisana nad intervalom I je konveksna nad I ako za proizvoljne
dve tačke x1, x2 ∈ I , x1 6= x2 za svako x , x1 < x < x2 važi

f (x) < f (x1) +
f (x2)− f (x1)

x2 − x1
(x − x1) =

x2 − x

x2 − x1
f (x1) +

x − x1
x2 − x1

f (x2).

Ako je

f (x) > f (x1) +
f (x2)− f (x1)

x2 − x1
(x − x1)

funkcija je konkavna.
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Ispitivanje funkcija Konveksnost, konkavnost, prevojne tačke

Geometrijska interpretacija: Ako postavimo sečicu kroz tačke A(x1, f (x1)) i
B(x2, f (x2)), x1 < x2 grafik funkcije je uvek ispod sečice nad intervalom (x1, x2) u
slučaju konveksnosti, odnosno iznad sečice u slučaju konkavne funkcije nad
(x1, x2).
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Ispitivanje funkcija Konveksnost, konkavnost, prevojne tačke

Definicija

Neka je funkcija f (x) definisana u nekoj okolini tačke a i neka je u tački a
diferencijabilna. Funkcija f (x) je konveksna (konkavna) u tački a ako postoji
okolina (a − δ, a+ δ) tačke a, takva da je

f (x) > yt(x) (f (x) < yt(x)),

za svako x ∈ (a− δ, a+ δ) \ {a}, gde je

yt(x) = f (a) + f ′(a)(x − a)

jednačina tangente na datu funkciju u tački A(a, f (a)).
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Ispitivanje funkcija Konveksnost, konkavnost, prevojne tačke

Definicija

Za tačku P(a, f (a)) se kaže da je prevojna tačka funkcije f (x) ako postoji okolina
(a− δ, a+ δ) tačke a, takva da je funkcija f (x) nad intervalom (a − δ, a)
konkavna, a nad intervalom (a, a+ δ) konveksna ili obrnuto.
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Ako postoji izvod funkcije f (x) nad intervalom I tada konveksnost i konkavnost
može da se definǐse na dva (ekvivalentna) načina:

Definicija 1

Funkcija f (x) je konveksna nad I ako za svako c ∈ I i x ∈ I \ {c}
f (x) > yt(x), gde je yt = f (c) + f ′(c)(x − c) jednačina tangente na krivu u tački
C (c , f (c)) (u slučaju konkavnosti je f (x) < yt(x .))

Definicija 2

Funkcija f (x) je konveksna (konkavna) nad I ako je f ′(x) monotono rastuća
(opadajuća) funkcija nad I .
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Ispitivanje funkcija Konveksnost, konkavnost, prevojne tačke

Teorema

Ako funkcija ima izvod nad intervalom I , tada su Definicija 1 i Definicija 2
konveksnosti (konkavnosti) ekvivalentne.

Dokaz. Pokažimo da Definicija 1 ⇒ Definicija 2, za slučaj konveksnosti:

Neka je funkcija f (x) konveksna nad intervalom I u smislu Definicije 1. Neka su
x1 i x2, x1 < x2 proizvoljne tačke iz intervala I . Neka su

y1
t = f (x1) + f ′(x1)(x − x1),

y2
t = f (x2) + f ′(x2)(x − x2),

tangente na datu funkciju u tačkama A(x1, f (x1)) i B(x2, f (x2)). Tada važi

f (x2) > f (x1) + f ′(x1)(x2 − x1),

f (x1) > f (x2) + f ′(x2)(x1 − x2).
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Ispitivanje funkcija Konveksnost, konkavnost, prevojne tačke

Sabiranjem ovih nejednakosti dobija se

f (x2) + f (x1) > f (x1) + f (x2) + f ′(x1)(x2 − x1) + f ′(x2)(x1 − x2),

tj.
(f ′(x2)− f ′(x1))(x2 − x1) > 0,

odakle sledi
f ′(x2) > f ′(x1),

pa je f ′(x) monotono rastuća funkcija nad intervalom I .

�
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Ispitivanje funkcija Konveksnost, konkavnost, prevojne tačke

Teorema

Ako je f ′′(x) > 0 (f ′′(x) < 0) nad intervalom I , tada je funkcija f (x) konveksna
(konkavna) nad intervalom I .
Ako postoji f ′′(x) nad I i ako je funkcija f (x) konveksna (konkavna) nad I , tada
je f ′′(x) ≥ 0 (f ′′(x) ≤ 0) nad I .

Dokaz. Ako je
f ′′(x) > 0 (f ′′(x) < 0),

tada je f ′(x) monotono rastuća (opadajuća) funkcija, pa je f (x) konveksna
(konkavna) nad intervalom I .
Ako je je f (x) konveksna (konkavna) nad intervalom I , tada je f ′(x) monotono
rastuća (opadajuća) funkcija nad intervalom I , pa je

f ′′(x) ≥ 0 (f ′′(x) ≤ 0)

nad intervalom I . �
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Ispitivanje funkcija Konveksnost, konkavnost, prevojne tačke

Teorema

Ako je P(a, f (a)) prevojna tačka funkcije f (x) i ako postoji f ′′(a), tada je
f ′′(a) = 0.

Dokaz. f ′(x) ima ekstremnu vrednost u tački a! �

Obrnuto ne mora da važi! Funkcija
f (x) = x4 ima drugi izvod

f ′′(x) = 12x2

za koji je
f ′′(0) = 0,

a tačka O(0, 0) nije prevojna tačka.
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Ispitivanje funkcija Konveksnost, konkavnost, prevojne tačke

Za funkciju f (x) = (x − 1)3 je A(1, 0)
prevojna tačka, jer je

f ′′(x) = 6(x − 1)

pa je
f ′′(x) > 0 za x > 1

f ′′(x) < 0 za x < 1,

a
f ′′(1) = 0.
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Tačka a može da bude prevojna tačka funkcije a da u tački a ne postoji drugi
izvod.

Ako u tački a drugi izvod f ′′(x) menja znak (bez obzira da li postoji f ′′(a) ) i ako
je funkcija f (x) definisana u tački a, tada je P(a, f (a)) prevojna tačka date
funkcije.

Primer je funkcija

f (x) = 3
√
x − 1

za koju je P(1, 0) prevojna tačka,

f ′′(x) =
−2

9 3
√

(x − 1)5

menja znak prolazeći kroz nju, a
f ′′(1) ne postoji.
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Ispitivanje funkcija Konveksnost, konkavnost, prevojne tačke

Teorema

Ako je f ′′(a) > 0 (f ′′(a) < 0), funkcija f (x) je konveksna (konkavna) u tački a.

Ako je f ′′(a) > 0, ne postoji uvek okolina tačke a nad kojom je funkcija konveksna!

Ako f ′′(x) postoji u nekoj okolini tačke a i ako je neprekidan u a, onda iz
f ′′(a) > 0 sledi da postoji okolina tačke a nad kojom je funkcija konveksna.

Teorema

Ako postoji δ > 0 takvo da je u intervalu (a− δ, a) funkcija ispod (iznad) tangente
funkcije f (x) u tački A(a, f (a)), a u intervalu (a, a+ δ) funkcija iznad (ispod)
tangente funkcije f (x) u tački A(a, f (a)) i ako postoji f ′′(a), tada je f ′′(a) = 0.
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Može se desiti da je u intervalu (a − δ, a) funkcija ispod (iznad) tangente, a u
intervalu (a, a+ δ) funkcija iznad (ispod) tangente funkcije f (x) u tački
A(a, f (a)), a tačka A(a, f (a) nije prevojna!

Primer

Ispitati da li je tačka O(0, 0) prevojna tačka funkcije

f (x) =

{
x3(2 + sin 1

x2
) , x 6= 0

0 , x = 0
.

f ′(x) =

{
6x2 + 3x2 sin 1

x2
− 2 cos 1

x2
, x 6= 0

0 , x = 0
,

f ′′(x) = 12x + 6x sin 1
x2

− 6
x
cos 1

x2
− 4

x3
sin 1

x2
, za x 6= 0, a f ′′(0) ne postoji.

Posmatraju se nizovi s opštim članovima
an = 1√

2nπ
, bn = 1√

(2n+1)π
, cn = − 1√

2nπ
, dn = − 1√

(2n+1)π
.
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Ispitivanje funkcija Konveksnost, konkavnost, prevojne tačke

Teorema

Neka je f ′′(a) = f ′′′(a) = · · · = f (n−1)(a) = 0, f (n)(a) 6= 0, n ≥ 3.
Ako je n neparan, tada je P(a, f (a)) prevojna tačka funkcije f (x).
Ako je n paran, tada je funkcija u okolini tačke x = a konveksna za f (n)(a) > 0, a
konkavna za f (n)(a) < 0.

Dokaz. (za prevojnu tačku) Neka je n = 2k + 1, k ∈ N. Kako je

f (2k+1)(a) = (f ′′)(2k−1)(a) 6= 0,

to sledi da je f ′′(x) rastuća funkcija u tački x = a za (f ′′)(2k−1)(a) > 0, a
opadajuća funkcija za (f ′′)(2k−1)(a) < 0.
Sledi da postoji δ > 0 tako da je

f ′′(x) < f ′′(a) = 0 (f ′′(x) > f ′′(a) = 0), za x ∈ (a − δ, a),

f ′′(x) > f ′′(a) = 0 (f ′′(x) < f ′′(a) = 0), za x ∈ (a,+− δ).

Dakle, nad intervalom (a − δ, a) je funkcija konkavna (konveksna), a nad
intervalom (a, a+ δ) konveksna (konkavna), pa je A(a, f (a)) prevojna. �
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Ispitivanje funkcija Asimptote funkcija

Asimptote funkcija

Definicija

Neka je funkcija f (x) definisana nad intervalom (a,∞) ( (−∞, a) ) , a ∈ R.
Funkcija φ(x) je asimptota funkcije f (x) kada x → ∞, ako je

lim
x→∞

[
f (x)− φ(x)

]
= 0.

Slično, funkcija φ(x) je asimptota funkcije f (x) kada x → −∞, ako je

lim
x→−∞

[
f (x)− φ(x)

]
= 0.

f (x) se asimptotski ponaša kao φ(x), kad x → ∞ (tj. x → ∞), što pǐsemo
f (x) ∼ φ(x)

Geometrijski smisao: postoji b ∈ R takav da je razlika ordinata krivih
y = f (x) i y = φ(x) proizvoljno mala za x > b (x < b).
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Ispitivanje funkcija Asimptote funkcija

Ako je asimptota funkcije prava φ(x) = mx + n, tada funkcija y = f (x) ima:

za m 6= 0 ima kosu asimptotu φ(x) = mx + n,

za m = 0 ima horizontalnu asimptotu φ(x) = n.

Po definiciji je za x → ∞

lim
x→∞

[f (x)− (mx + n)] = 0 ili lim
x→∞

[
f (x)

x
−m − n

x

]

= 0,

pa je

m = lim
x→∞

f (x)

x
, n = lim

x→∞
[f (x)−mx ].

Definicija

Funkcija y = f (x) ima vertikalnu asimptotu u tački nagomilavanja x = a
definicionog skupa, ako funkcija bar sa jedne strane tačke a teži ∞ odnosno −∞.
Za pravu x = a kažemo da je vertikalna asimptota funkcije f (x).

318 / 569



Ispitivanje funkcija Ispitivanje toka funkcija

Ispitivanje toka funkcija

Obavezna grupa zahteva:

odredivanje oblasti definisanosti

odredivanje nula funkcije

odredivanje intervala monotonosti i ekstremnih vrednosti

odredivanje intervala konveksnosti, konkavnosti i prevojnih tačaka

odredivanje asimptota funkcije i ispitivanje položaja grafika u odnosu na
asimptote

tangente funkcije u tačkama gde ne postoji f ′(x) i njegovo ponašanje u tim
tačkama

skiciranje grafika funkcije

Neobavezna grupa zahteva:

znak funkcije

parnost i neparnost funkcije

periodičnost funkcije
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Funkcije vise promenljivih

Funkcije n realnih promenljivih

Posmatramo realne funkcije n realnih promenljivih, tj.
f : D → R, D ⊂ Rn, n ∈ N, n > 1

Vrednost funkcije f : D → R u tački X = (x1, x2, . . . , xn) ∈ D

n > 3 z = f (X ) = f (x1, x2, . . . , xn)

n = 3, u = f (X ) = f (x , y , z),

n = 2, z = f (X ) = f (x , y)
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Funkcije vise promenljivih Parcijalni izvodi

Parcijalni izvodi

M(x , y) ∈ D ⊂ R2, f : D → R, z = f (x , y)

ako M ∈ D nije izolovana tačka oblasti definisanosti D funkcije z = f (x , y)
tada je

∆z = f (N)− f (M) = f (x +∆x , y +∆y)− f (x , y),

N(x +∆x , y +∆y) ∈ D, (∆x ,∆y) 6= (0, 0) totalni priraštaj funkcije
z = f (x , y)

ako D1 = D ∩ {(ν, y) : ν ∈ R} nije jednočlan skup tada

∆xz = f (Mx+∆x )− f (M) = f (x +∆x , y)− f (x , y),

Mx+∆x (x +∆x , y) ∈ D1, ∆x 6= 0 je parcijalni priraštaj po promenljivoj x u
tački M ,

ako D2 = D ∩ {(x , ν) : ν ∈ R} nije jednočlan skup tada

∆yz = f (My+∆y )− f (M) = f (x , y +∆y)− f (x , y),

My+∆y (x , y +∆y) ∈ D2, ∆y 6= 0 je parcijalni priraštaj po promenljivoj y u
tački M .

321 / 569



Funkcije vise promenljivih Parcijalni izvodi

M(x1, . . . , xn) ∈ D ⊂ Rn, n ≥ 2, f : D → R, z = f (x1, . . . , xn)

ako M ∈ D nije izolovana tačka oblasti definisanosti D funkcije
z = f (x1, x2, . . . , xn) tada je

∆z = f (N)− f (M)

= f (x1 +∆x1, x2 +∆x2, . . . , xn +∆xn)− f (x1, x2, . . . , xn),

N(x1 +∆x1, x2 +∆x2, . . . , xn +∆xn) ∈ D, (∆x1, . . . ,∆xn) 6= (0, 0, . . . , 0)
totalni priraštaj funkcije z = f (x1, x2, . . . , xn)

ako Di = D ∩ {(x1, . . . , xi−1, ν, xi+1, . . . , xn) : ν ∈ R, i = 1, . . . , n} nije
jednočlan skup tada

∆xi z = f (Mxi+∆xi )− f (M)

= f (x1, . . . , xi−1, xi +∆xi , xi+1, . . . , xn)− f (x1, x2, . . . , xn),

Mxi+∆xi (x1, . . . , xi−1, xi +∆xi , xi+1, . . . , xn) ∈ Di , ∆xi 6= 0 je parcijalni
priraštaj po promenljivoj xi u tački M .
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Funkcije vise promenljivih Parcijalni izvodi

Za svako xi ∈ R, i = 1, . . . , n, posmatrajmo restrikciju fi : Di → R funkcije f nad
skupom Di .

Definicija

Ako funkcija fi (xi ), xi ∈ Di , i ∈ {1, 2, . . . , n} ima izvod u tački
M(x1, x2, . . . , xn) ∈ D◦ onda taj izvod funkcije fi (xi ) zovemo parcijalni izvod
funkcije f (x1, . . . , xn) u tački M po promenljivoj xi . Označavamo ga sa

∂z

∂xi
(M) ili zxi (M)

i važi

∂z

∂xi
= lim

∆xi→0

∆xi z

∆xi

= lim
∆xi→0

f (x1, . . . , xi−1, xi +∆xi , xi+1, . . . , xn)− f (x1, x2 . . . , xn)

∆xi
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Funkcije vise promenljivih Parcijalni izvodi

Ako funkcija fi (xi ), xi ∈ Di , i ∈ {1, 2, . . . , n} ima desni (levi) izvod u tački
M(x1, x2, . . . , xn), onda taj izvod funkcije fi (xi ) zovemo desni (levi) parcijalni
izvod funkcije f (x1, x2 . . . , xn) u tački M po promenljivoj xi i obeležavamo ga sa

∂+z
∂xi

(M) ili z+xi (M)
(

∂−z
∂xi

(M) ili z−xi (M)
)

.

U tom slučaju je

• desni parcijalni izvod funkcije f (x1, x2, . . . , xn) po promenljivoj xi

∂+z
∂xi

= lim
∆xi→0+

∆xi
z

∆xi

• levi parcijalni izvod funkcije f (x1, x2, . . . , xn) po promenljivoj xi je

∂+z
∂xi

= lim
∆xi→0−

∆xi
z

∆xi

Funkcija ima parcijalni izvod po promenljivoj xi , i ∈ {1, 2, . . . , n} u tački M
(unutrašnja!) ako i samo ako ima i levi i desni parcijalni izvod po promenljivoj xi
i ako su oni jednaki.
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Funkcije vise promenljivih Vektorske funkcije

Vektorske funkcije

Sa E označimo skup tačaka tro-
dimenzionalnog prostora. Neka
je O fiksna tačka (koordinatni

početak). Vektor
−→
OP , gde je P

promenljiva tačka iz E , je vektor
položaja tačke P u odnosu na dati
koordinatni sistem.

Označimo sa X0(E ) = {−→OP : P ∈ E}. Preslikavanje f : E → X0(E ) dato sa

f (P) =
−→
OP , P ∈ E je bijekcija. Skup X0(E ) ćemo kraće označavati sa X0.
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Funkcije vise promenljivih Vektorske funkcije

Definicija

Neka je ∅ 6= D ⊂ R i neka su x : D → R, y : D → R, z : D → R tri realne
funkcije realne promenljive. Svako preslikavanje ~r : D → X0 definisano sa

~r(t) = x(t)~i + y(t)~j + z(t)~k , t ∈ D,

zovemo vektorskom funkcijom jedne skalarne promenljive.

Definicija

Ako je ∅ 6= D ⊂ Rn i ako su x : D → R, y : D → R, z : D → R tri realne funkcije
n realnih promenljivih, tada se preslikavanje ~r : D → X0 zadato sa

~r(t) = x(t)~i + y(t)~j + z(t)~k , t ∈ D,

zove vektorska funkcija n realnih promenljivih.
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Funkcije vise promenljivih Vektorske funkcije

Definicija

Ako je a ∈ Rn tačka nagomilavanja oblasti definisanosti ∅ 6= D ⊂ Rn vektorske
funkcije ~r : D → X0, tada za vektor ~c kažemo da je granična vrednost vektorske
funkcije ~r u tački a ako

(∀ε ∈ R+)(∃δ ∈ R+)(∀t ∈ D \ {a})(d(a, t) < δ ⇒ |~r (t)− ~c | < ε).

Pǐsemo da je lim
t→a

~r(t) = ~c .

Iz same definicije granične vrednosti vidimo da je

lim
t→a

~r (t) = lim
t→a

x(t)~i + lim
t→a

y(t)~j + lim
t→a

z(t)~k .
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Funkcije vise promenljivih Vektorske funkcije

Ako oko vrha M vektora ~c
opǐsemo otvorenu loptu L(M , ε)
poluprečnika ε, to sledi da postoji
δ ∈ R+, tako da za svako t ∈
L(a, δ) \ {a}, vrh S vektora ~r(t)

pripada L(M , ε), tj. svi vektori
−→
MS

leže u otvorenoj lopti L(M , ε).

Napomena

Ako je ~c = (c1, c2, c3) i ako za svako t ∈ D sa τ(t) označimo vrh vektora ~r(t),
tada važi

lim
t→a

~r(t) = ~c ⇔ lim
t→a

τ(t) = (c1, c2, c3).
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Funkcije vise promenljivih Vektorske funkcije

Definicija

Za vektorsku funkciju −→r : D → X0, D ⊂ Rn, kažemo da je neprekidna u tački
a ∈ D ako

(∀ε ∈ R+)(∃δ ∈ R+)(∀t ∈ D)(d(a, t) < δ ⇒ |−→r (t)−−→r (a)| < ε).

Vektorska funkcija −→r : D → X0, D ⊂ Rn je neprekidna ako je neprekidna u
svakoj tački a ∈ D.

Iz same definicije neprekidnosti sledi da je funkcija −→r neprekidna u tački a ako i
samo ako su komponente x : D → R, y : D → R, z : D → R funkcije−→r : D → X0 neprekidne u tački a.
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Funkcije vise promenljivih Vektorske funkcije

Kao i kod skalarne funkcije, sledi da je vektorska funkcija −→r neprekidna u tački
nagomilavanja a ∈ D ako i samo ako važi da je

lim
t→a

−→r (t) = −→r (a),

a ako je a ∈ D izolovana tačka definicionog skupa D vektorske funkcije −→r , tada je−→r automatski neprekidna u datoj tački.

Vektorska funkcija −→r : D → X0, D ⊂ Rn, je neprekidna nad skupom E ⊂ D ako
je restrikcija funkcije −→r E (−→r E (t) =

−→r (t), t ∈ E ) neprekidna funkcija za svako
t ∈ E .
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Funkcije vise promenljivih Vektorske funkcije

Definicija

Ako je D = I = [a, b] ⊂ R i ako je −→r : I → X0 neprekidna funkcija, tada skup
tačaka

L = {T (t) : t ∈ I}
zovemo kriva u prostoru, odnosno hodograf vektorske funkcije −→r .

Primetimo da je L kriva ako i samo ako je T : [a, b] → R3 neprekidna funkcija.

Kriva L je parametarski data sa L :







x = x(t)
y = y(t)
z = z(t)

, t ∈ [a, b],

a u vektorskom obliku sa −→r = −→r (t), t ∈ [a, b].
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Funkcije vise promenljivih Vektorske funkcije

Ako je
M((x(a), y(a), z(a)) ≡ N(x(b), y(b), z(b))

za krivu L kažemo da je zatvorena.

Ako sve tačke krive L leže u jednoj ravni, onda kažemo da je L ravna kriva.

Definicija

Ako je (X , d) metrički prostor, spojnicom (lukom) u prostoru X nazivamo svako
neprekidno preslikavanje s : I → X intervala I = [0, 1] ⊂ R u prostor X .

Ako su tačke a = s(0) i b = s(1) različite, tada kažemo da spojnica s povezuje
tačke a i b.
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Funkcije vise promenljivih Vektorske funkcije

Teorema

Skup L ⊂ R3 je kriva ako i samo ako je spojnica.

Dokaz. Ako je L spojnica, očigledno je da je L kriva.
Neka je L = {τ(t) : t ∈ [a, b]} kriva u prostoru. Tada je τ : [a, b] → R3

neprekidna funkcija. Ako posmatramo funkciju h : [0, 1] → [a, b] zadatu sa

h(x) = (b − a)x + a,

vidimo da za nju važi

- h je bijekcija,

- h je neprekidna funkcija nad [0, 1],

- h−1 je neprekidna funkcija nad [a, b].

Preslikavanje f = τ ◦ h je neprekidno preslikavanje zatvorenog intervala [0, 1] na
tačke krive L, pa je L spojnica. �
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Funkcije vise promenljivih Vektorske funkcije

Definicija

Za skup ∅ 6= A ⊂ X kažemo da je povezan (lučno povezan) u metričkom
prostoru (X , d), ako za svake dve različite tačke a, b ∈ A, postoji spojnica
s : I → A koja povezuje tačke a i b.

Ako je skup X povezan u metričkom prostoru (X , d), tada kažemo da je metrički
prostor (X , d) povezan.

Definicija

Ako je skup A ⊂ X istovremeno otvoren i povezan u metričkom prostoru (X , d) i
A1 ⊂ A∗, tada za skup A ∪ A1 kažemo da je oblast. Specijalno, ako je A1 = ∅,
tada se za A kaže i otvorena oblast, a ako je A1 = A∗, tada se za
A ∪ A1 = A ∪ A∗ = A kaže i zatvorena oblast.

334 / 569



Funkcije vise promenljivih Vektorske funkcije

Iz same definicije zatvorene oblasti ne sledi da je svaki neprazan zatvoren skup,
zatvorena oblast.

Primer

Skup A = {(x , x) : x ∈ [0, 1]} je zatvoren, ali nije zatvorena oblast, jer je A◦ = ∅.♦

Definicija

Za skup L ⊂ E = R3 kažemo da je Žordanovaa kriva ili Žordanov luk sa krajevima
ako:
1◦) postoji interval I = [a, b] i preslikavanje τ : I → E , tako da je

L = {τ(t) : t ∈ I};
2◦) τ je bijektivno preslikavanje intervala I na L;
3◦) τ je neprekidno preslikavanje.

Tačke A = τ(a), B = τ(b) zovemo krajevi krive L.

aŽordan, K. (Camil Jordan, 1838-1922) - francuski matematičar
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Funkcije vise promenljivih Vektorske funkcije

Ako umesto 2◦) uzmemo da važi

2∗) τ je bijekcija skupa [a, b) na L i τ(a) = τ(b),
onda kažemo da je L zatvorena Žordanova kriva.

Tvrdenje

Ako je L1 = {M(x , y) : x2 + y2 = 1}, tada je kriva L zatvorena Žordanova kriva
ako i samo ako postoji preslikavanje f : L1 → L, tako da važi

1) f je bijektivno preslikavanje skupa L1 na L;

2) f je neprekidno preslikavanje;

3) f −1 : L → L1 je neprekidno preslikavanje.

336 / 569



Funkcije vise promenljivih Vektorske funkcije

Tvrdenje

Neka je L ⊂ τ = R2 ravna zatvorena Žordanova kriva. Tada

1) R2 \ L = Ω1 ∪Ω2, gde su Ω1 i Ω2 dve disjunktne otvorene oblasti;

2) L = Ω∗
1 = Ω∗

2 ;

3) Jedna od oblasti, npr. uzmimo da je to Ω1, je ograničen skup i nju zovemo
unutrašnjost krive L, dok je druga Ω2 neograničen skup i nju zovemo
spoljašnjost krive L.

Za ravnu oblast G ⊂ τ = R2 kažemo da je jednostruko povezana ako unutrašnjost
svake Žordanove krive L ⊂ G pripada oblasti G .
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Funkcije vise promenljivih Parcijalni izvodi (nastavak)

Funkcija z = f (x1, x2, . . . , xn), f : D → R ima parcijalni izvod po
xi , i ∈ {1, 2, . . . , n} nad E ⊂ D, pri čemu je skup E unija neke otvorene oblasti
E1 i dela njenog ruba ako

1. postoji
∂z

∂xi
(x1, x2, . . . , xn) po prethodnoj definiciji;

2. za rubnu tačku M(x1, x2, . . . , xn) ∈ E ako ne postoji
∂z

∂xi
(M), tada:
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Funkcije vise promenljivih Parcijalni izvodi (nastavak)

a) ako postoji εi > 0 sa osobinom da je

Lεi = {x1, x2, . . . , xi−1, xi − εi , xi+1, . . . , xn} ⊂ E

postoji
∂−z

∂xi
(M).

Ako je za svako εi > 0

Dεi = {x1, x2, . . . , xi−1, xi + εi , xi+1, . . . , xn} 6⊂ E ,

tada je

∂z

∂xi
(M) =

∂−z

∂xi
(M).
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Funkcije vise promenljivih Parcijalni izvodi (nastavak)

b) ako postoji εi > 0 sa osobinom da je

Dεi = {x1, x2, . . . , xi−1, xi + εi , xi+1, . . . , xn} ⊂ E

postoji
∂+z

∂xi
(M).

Ako je za svako εi > 0

Lεi = {x1, x2, . . . , xi−1, xi − εi , xi+1, . . . , xn} 6⊂ E ,

tada je

∂z

∂xi
(M) =

∂+z

∂xi
(M).

340 / 569



Funkcije vise promenljivih Parcijalni izvodi (nastavak)

c) ako za svako εi > 0

Lεi = {x1, x2, . . . , xi−1, xi − εi , xi+1, . . . , xn} 6⊂ E

Dεi = {x1, x2, . . . , xi−1, xi + εi , xi+1, . . . , xn} 6⊂ E ,

tada ako postoji

∂z

∂xi
(N), za svako N ∈ L(M , ε) ∩ E1 = E2 6= ∅, za neko ε > 0,

uzimamo po definiciji da je

∂z

∂xi
(M) = lim

N → M
N ∈ E2

∂z

∂xi
(N),

i = 1, 2, . . . , n.
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Funkcije vise promenljivih Parcijalni izvodi (nastavak)

Napomena

Za funkciju z = f (x , y) =

{

x2 sin
1

x
+ y , x > 0, y ≥ 0

y , x = 0, y ≥ 0
postoji

∂z

∂x
(0, 1) =

∂+z

∂x
(0, 1) = lim

∆x→0

f (∆x , 1)− f (0, 1)

∆x

= lim
∆x→0

(∆x)2 sin 1
∆x

+ 1− 1

∆x
= 0,

a kako je
∂z

∂x
(x , y) = 2x sin

1

x
− cos

1

x
, x > 0, y > 0,

ne postoji lim
(x , y) → (0, 1)
x > 0, y > 0

∂z

∂x
(x , y).
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Funkcije vise promenljivih Parcijalni izvodi (nastavak)

Primer

Naći parcijalne izvode funkcije z =
√

(1− x2 − y2)3.

Funkcija z =
√

(1− x2 − y2)3 je definisana za x2 + y2 ≤ 1.

Za svaku tačku M(x , y) za koju je x2 + y2 < 1 (M je unutrašnja tačka oblasti
definisanosti) je

∂z

∂x
= −3x

√

1− x2 − y2,

∂z

∂y
= −3y

√

1− x2 − y2.
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Funkcije vise promenljivih Parcijalni izvodi (nastavak)

U rubnoj tački M(x , y) za koju je x2 + y2 = 1, x 6= 0, y 6= ±1

∂z

∂x
(M) =

∂−z

∂x
(M)

= lim
∆x→0−

√

(1− (x +∆x)2 − (1− x2))3 − 0

∆x
= 0, za x > 0,

∂z

∂x
(M) =

∂+z

∂x
(M)

= lim
∆x→0+

√

(1− (x +∆x)2 − (1− x2))3 − 0

∆x
= 0, za x < 0.
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Funkcije vise promenljivih Parcijalni izvodi (nastavak)

U tačkama M(0, 1) i N(0,−1) je

∂z

∂x
(M) = lim

(x , y) → (0, 1)
x2 + y2 < 1

−3x
√

1− x2 − y2 = 0,

∂z

∂x
(N) = lim

(x , y) → (0,−1)
x2 + y2 < 1

−3x
√

1− x2 − y2 = 0.

Slično se računaju parcijalni izvodi po y u rubnim tačkama.
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Funkcije vise promenljivih Geometrijska interpretacija parcijalnih izvoda

Geometrijska interpretacija parcijalnih izvoda

Povřs S zadata jednačinom z = f (x , y)

nad skupom D funkcija je neprekidna i ima parcijalne izvode

M0(x0, y0) ∈ D, odgovara tački N0(x0, y0, f (x0, y0)) ∈ S
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Funkcije vise promenljivih Geometrijska interpretacija parcijalnih izvoda

Pri traženju parcijalnog izvoda
∂z

∂x
u tački M0 posmatra se funkcija z = f (x , y)

kao funkcija jedne promenljive x , a y se tretira kao konstanta y = y0, to jest
z = f (x , y0) = f1(x). Funkcijom z = f1(x) definisana je kriva L dobijena presekom
povřsi S i ravni y = y0.

f ′1 (x0) = tg α =
∂z

∂x
(M0),

je koeficijent pravca tangente u tački N0 krive L dobijene presekom ravni y = y0 i
povřsi z = f (x , y).
Slično, funkcijom z = f2(y) = f (x0, y) definisana je kriva L1 dobijena presekom
povřsi S i ravni x = x0, pa je

f ′2 (y0) = tg β =
∂z

∂y
(M0)

koeficijent pravca tangente u tački N0 krive L1 dobijene presekom ravni x = x0 i
povřsi z = f (x , y).
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Funkcije vise promenljivih Diferencijabillnost

Diferencijabilnost

Definicija

Neka je M(x1, . . . , xn) unutrašnja tačka oblasti D ⊂ Rn, n ≥ 2 na kojoj je
definisana funkcija z = f (x1, . . . , xn) = f (X ), X ∈ D. Funkcija f (x1, . . . , xn) je
diferencijabilna u tački M ako se njen totalni priraštaj∆z = f (x1 +∆x1, . . . , xn +∆xn)− f (x1, . . . , xn),

gde N(x1 +∆x1, . . . , xn +∆xn) ∈ D, (∆x1, . . . ,∆xn) 6= (0, . . . , 0)

koji odgovara priraštajima ∆x1, . . . ,∆xn promenljivih x1, . . . , xn može napisati u
obliku ∆z = D1∆x1 + · · ·+ Dn∆xn + α1∆x1 + · · ·+ αn∆xn,

pri čemu Di ne zavise od ∆xi i lim
(∆x1,...,∆xn)→(0,...,0)

αi = 0.

Linearni deo priraštaja je totalni diferencijal funkcije z u tački M , u oznaci
dz(M) = df (M) = D1∆x1 + · · ·+ Dn∆xn.
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Na primer, za funkciju z = x2 + y2 imamo da je

∆z = (x +∆x)2 + (y +∆y)2 − (x2 + y2)
= x2 + 2x∆x + (∆x)2 + y2 + 2y∆y + (∆y)2 − x2 − y2

= 2x
︸︷︷︸

D1

∆x + 2y
︸︷︷︸

D2

∆y + ∆x
︸︷︷︸
α1

∆x + ∆y
︸︷︷︸
α2

∆y .

Teorema

Neka je funkcija z = f (x1, . . . , xn) diferencijabilna u tački M . Tada

a) funkcija f je neprekidna u tački M ,

b) postoje parcijalni izvodi
∂z

∂x1
,
∂z

∂x2
, . . . ,

∂z

∂xn

i važi jednakost D1 =
∂z

∂x1
(M), . . . ,Dn =

∂z

∂xn
(M).
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Dokaz.

a) lim
(∆x1,...∆xn)→(0,...,0)

∆z = lim
(∆x1,...∆xn)→(0,...,0)

n∑

i=1

(Di + αi )∆xi = 0, pa je

funkcija z = f (x1, . . . , xn) neprekidna u tački M .

b) Pokažimo npr. da je D1 =
∂z

∂x1
(M) (ostalo analogno).

Iz diferencijabilnosti funkcije z u tački M je za ∆x1 6= 0,
∆x2 = ∆x3 = · · · = ∆xn = 0,

∆x1z = D1∆x1 + α1∆x1.

Sledi da je

lim
∆x1→0

∆x1z

∆x1
= lim

∆x1→0
(D1 + α1) = D1.

Odavde sledi da
∂z

∂x1
postoji u tački M i da je

∂z

∂x1
(M) = D1. �
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Funkcije vise promenljivih Diferencijabillnost

Kako je dz = dxi = ∆xi za funkciju z = xi , i = 1, . . . , n, to totalni diferencijal
možemo zapisati u obliku

dz =
∂z

∂x1
dx1 +

∂z

∂x2
dx2 + · · ·+ ∂z

∂xn
dxn.

Ako sa
ρ =

√

(∆x1)2 + (∆x2)2 + · · ·+ (∆xn)2 6= 0

označimo rastojanje tačaka

M(x1, x2, . . . , xn) i N(x1 +∆x1, x2 +∆x2, . . . , xn +∆xn)

tada izraz
α1∆x1 + α2∆x2 + · · ·+ αn∆xn

možemo zapisati u obliku

ωρ, gde je ω = α1
∆x1
ρ

+ α2
∆x2
ρ

+ · · ·+ αn

∆xn
ρ
.
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Kako je ∣
∣
∣
∣

∆xi
ρ

∣
∣
∣
∣
≤ 1 za svako i = 1, 2, . . . , n

i kako je
lim

(∆x1,...∆xn)→(0,...,0)
αi = 0,

sledi da je
lim
ρ→0

ω = 0.

Iz tog razloga, da je funkcija z = f (x1, x2, . . . , xn) diferencijabilna možemo
zapisati i u obliku

∆z = D1∆x1 + D2∆x2 + · · ·+ Dn∆xn + ωρ,

gde D1,D2, . . . ,Dn ne zavise od ∆x1,∆x2, . . . ,∆xn, a lim
ρ→0

ω = 0.
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Funkcije vise promenljivih Diferencijabillnost

Suprotan smer prethodne teoreme ne važi uvek - neprekidnost funkcije u tački M i
postojanje njenih parcijalnih izvoda u ovoj tački ne garantuje diferencijabilnost
funkcije u toj tački.

Primer

Funkcija

z = f (x , y) =







x2y

x2 + y2
, (x , y) 6= (0, 0)

0 , (x , y) = (0, 0)

je neprekidna u tački O(0, 0), ima parcijalne izvode u u tački O(0, 0), a nije
diferencijabilna u tački O(0, 0).
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Iz

|f (x , y)− f (0, 0)| =
∣
∣
∣
∣

x2y

x2 + y2

∣
∣
∣
∣
≤ |y | ≤

√

x2 + y2

i √

x2 + y2 < ε = δ

sledi da je
|f (x , y)− f (0, 0)| < ε,

pa je funkcija f (x , y) neprekidna u tački O(0, 0).
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Funkcije vise promenljivih Diferencijabillnost

Funkcija ima parcijalne izvode u tački O(0, 0) :

∂z

∂x
(0, 0) = lim

∆x→0

(∆x)2·0
(∆x)2+02 − 0

∆x
= 0

∂z

∂y
(0, 0) = lim

∆y→0

(0)2·∆y

(0)2+(∆y)2 − 0

∆y
= 0
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Funkcije vise promenljivih Diferencijabillnost

Ona nije diferencijabilna u toj tački. Ako bi bila, njen priraštaj bi mogao da se
napǐse u obliku

∆z =
(∆x)2∆y

(∆x)2 + (∆y)2
− 0 = 0 ·∆x + 0 ·∆y + ω

√

(∆x)2 + (∆y)2,

pri čemu je lim
(∆x,∆y)→(0,0)

ω = 0, što nije tačno, jer za ∆x = ∆y > 0 imamo

ω(∆x ,∆x) =
(∆x)3

(2(∆x)2)∆x
√
2
,

pa je

lim
∆x→0

ω(∆x ,∆x) =
1

2
√
2
,

što je kontradikcija.
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Funkcije vise promenljivih Diferencijabillnost

Teorema

Ako funkcija z = f (x1, . . . , xn) ima parcijalne izvode u nekoj δ−okolini tačke M i
ako su ti izvodi neprekidni u samoj tački M , tada je funkcija diferencijabilna u M .

Neprekidnost parcijalnih izvoda nije potreban uslov za diferencijabilnost:

Primer

Funkcija

z = f (x , y) =







(x2 + y2) sin
1

x2 + y2
, (x , y) 6= (0, 0)

0 , (x , y) = (0, 0)

je diferencijabilna u tački O(0, 0), a oba parcijalna izvoda imaju prekid u tački
O(0, 0).
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∂z

∂x
= 2x sin

1

x2 + y2
− 2x

x2 + y2
cos

1

x2 + y2
, za (x , y) 6= (0, 0),

∂z

∂y
= 2y sin

1

x2 + y2
− 2y

x2 + y2
cos

1

x2 + y2
, za (x , y) 6= (0, 0),

∂z

∂x
(0, 0) = lim

∆x→0

(∆x)2 sin 1
(∆x)2 − 0

∆x
= 0,

∂z

∂y
(0, 0) = lim

∆y→0

(∆y)2 sin 1
(∆y)2 − 0

∆y
= 0,
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Funkcije vise promenljivih Diferencijabillnost

∆z = z(∆x ,∆y) = 0 ·∆x + 0 ·∆y

+

(

∆x sin
1

(∆x)2 + (∆y)2

)

∆x

+

(

∆y sin
1

(∆x)2 + (∆y)2

)

∆y ,

lim
(∆x,∆y)→(0,0)

α = lim
(∆x,∆y)→(0,0)

∆x sin
1

(∆x)2 + (∆y)2
= 0,

lim
(∆x,∆y)→(0,0)

β = lim
(∆x,∆y)→(0,0)

∆y sin
1

(∆x)2 + (∆y)2
= 0,

pa je funkcija diferencijabilna u O(0, 0).

lim
(∆x,∆y)→(0,0)

∂z

∂x
i lim
(∆x,∆y)→(0,0)

∂z

∂y
ne postoje, pa su oba parcijalna izvoda

prekidna u O(0, 0)
(

an =
(

1√
2nπ

, 0
)

→ (0, 0), n → ∞; ∂z
∂x (an) → −∞, n → ∞

)

359 / 569



Funkcije vise promenljivih Diferencijabillnost

funkcija z = f (x1, . . . , xn) je diferencijabilna nad skupom A ⊂ D◦ ako je
diferencijabilna u svakoj tački skupa A

ako funkcija z = f (x1, . . . , xn) ima neprekidne parcijalne izvode u tački
M ⊂ D◦ onda kažemo da je ona neprekidno diferencijabilna u tački M

ako funkcija z = f (x1, . . . , xn) ima neprekidne parcijalne izvode u svim
tačkama skupa A ⊂ D◦ onda kažemo da je ona neprekidno diferencijabilna
nad skupom A

za dovoljno male priraštaje ∆x1,∆x2, . . . ,∆xn važi da je ∆z ≈ dz
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Funkcije vise promenljivih Izvod složene funkcije

Izvod složene funkcije

Neka je dato n funkcija

u1 = ϕ1(x1, . . . , xm),
u2 = ϕ2(x1, . . . , xm),

...
un = ϕn(x1, . . . , xm),

koje preslikavaju skup D1 ⊂ Rm na skup D ⊂ R.
Neka je z = f (u1, . . . , un) definisana nad Dn. Tada je funkcija

z = f (ϕ1(x1, . . . , xm), . . . , ϕn(x1, . . . , xm))

složena funkcija od funkcija
ϕ1, . . . , ϕn i f ,

pri čemu je oblast definisanosti ove funkcije skup D1 ⊂ Rm.
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Funkcije vise promenljivih Izvod složene funkcije

Teorema

Neka funkcije ui = ϕi (x1, . . . , xm), i = 1, . . . , n imaju parcijalne izvode po svim
promenljivama x1, . . . , xm u tački M(x1, . . . , xm).
Ako je funkcija z = f (u1, . . . , un) diferencijabilna u tački

N(ϕ1(x1, . . . , xm), . . . , ϕn(x1, . . . , xm)),

tada složena funkcija z = f (u1, . . . , un) ima sve parcijalne izvode po
promenljivama xi u tački M pri čemu važe jednakosti

∂z

∂x1
=

∂z

∂u1

∂u1
∂x1

+ · · ·+ ∂z

∂un

∂un
∂x1

...
∂z

∂xm
=

∂z

∂u1

∂u1
∂xm

+ · · ·+ ∂z

∂un

∂un
∂xm

.
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Funkcije vise promenljivih Izvod složene funkcije

Dokaz. (za slučaj z = f (u, v), u = u(x , y), v = v(x , y))

Kako je funkcija z diferencijabilna u tački M , to je

∆z =
∂z

∂u
∆u +

∂z

∂v
∆v + α∆u + β∆v , lim

(∆u,∆v)→(0,0)
α = lim

(∆u,∆v)→(0,0)
β = 0.

Za ∆y = 0 i ∆x 6= 0, iz diferencijabilnosti funkcije f sledi

∆xz

∆x
=
∂z

∂u

∆xu

∆x
+
∂z

∂v

∆xv

∆x
+ α

∆xu

∆x
+ β

∆xv

∆x
.

Za ∆x → 0 je i (∆xu,∆xv) → (0, 0), pa je

lim
∆x→0

α = lim
∆x→0

β = 0.
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Funkcije vise promenljivih Izvod složene funkcije

Dakle,
∂z

∂x
= lim

∆x→0

∆xz

∆x

= lim
∆x→0

(
∂z

∂u

∆xu

∆x
+
∂z

∂v

∆xv

∆x
+ α

∆xu

∆x
+ β

∆xv

∆x

)

=
∂z

∂u

∂u

∂x
+
∂z

∂v

∂v

∂x
.

Slično se pokazuje da je
∂z

∂y
=
∂z

∂u

∂u

∂y
+
∂z

∂v

∂v

∂y
.

364 / 569



Funkcije vise promenljivih Izvod vektorske funkcije skalarne promenljive

Izvod vektorske funkcije skalarne promenljive

Definicija

Ako za vektorsku funkciju

~r = ~r(t) = x(t)~i + y(t)~j + z(t)~k , t ∈ D◦

postoji

lim
∆t→0

~r (t +∆t)−~r (t)
∆t

= lim
∆t→0

∆~r(t)

∆t
,

onda kažemo da vektorska funkcija ~r(t) ima izvod u tački t koji se obeležava sa
d~r(t)

dt
ili sa ~̇r(t), tj.

d~r(t)

dt
= ~̇r(t) = lim

∆t→0

~r(t +∆t)−~r(t)
∆t

.

365 / 569



Funkcije vise promenljivih Izvod vektorske funkcije skalarne promenljive

Očigledno je
d~r

dt
=

dx

dt
~i +

dy

dt
~j +

dz

dt
~k = ẋ(t)~i + ẏ(t)~j + ż(t)~k ,

pa važe slična pravila kao kod izvoda realne funkcije jedne realne promenljive:

a)
d

dt
(λ1~r1 + λ2~r2) = λ1

d~r1
dt

+ λ2
d~r2
dt
,

b)
d

dt
(~r1 ·~r2) =

d~r1
dt

·~r2 +
d~r2
dt

·~r1,

c)
d

dt
(~r1 ×~r2) =

d~r1
dt

×~r2 +~r1 ×
d~r2
dt
,

d)
d

dt
(~r(u(t))) =

d~r

du

du

dt
,

e)
d

dt
(u~r ) = u

d~r

dt
+

du

dt
~r .

pri čemu izvodi sa desne strane postoje po pretpostavci.
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Funkcije vise promenljivih Izvod vektorske funkcije skalarne promenljive

Geometrijska interpretacija izvoda:

Pretpostavimo da je
d~r

dt
(t0) = ~̇r0 6= 0.

Tada je ∆~r (t) =
−→
AB .

A je vrh vektora ~r(t0),
B je vrh vektora ~r(t0 +∆t),

pa je
∆~r(t0)

∆t
=

−→
AC .

Granična vrednost

lim
∆t→0

∆~r (t0)

∆t
= ~̇r0

je vektor koji leži na pravoj koja prolazi kroz tačku A koju ćemo definisati kao
tangenta krive L u tački A.

367 / 569



Funkcije vise promenljivih Izvod vektorske funkcije skalarne promenljive

Tangenta krive L u tački A je prava

x − x0
ẋ0

=
y − y0
ẏ0

=
z − z0
ż0

, ṙ0 6= 0,

a ravan
ẋ0(x − x0) = ẏ0(y − y0) = ż0(z − z0),

koja je normalna na p zovemo normalna ravan krive L.

(stavljeno je da je ẋ(t0) = ẋ0, ẏ(t0) = ẏ0, ż(t0) = ż0)

Vektor ~̇r ima smer tamo kuda skalar raste.
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Funkcije vise promenljivih Izvod vektorske funkcije skalarne promenljive

Intenzitet vektora
d~r

dt
zavisi od izbora parametra t.

Ako uzmemo da je t = ατ, α 6= 0, prema d) je tada

∣
∣
∣
∣

d~r

dt

∣
∣
∣
∣
=

∣
∣
∣
∣

d~r

dτ

dτ

dt

∣
∣
∣
∣
=

∣
∣
∣
∣

d~r

dτ

∣
∣
∣
∣

∣
∣
∣
∣

1

α

∣
∣
∣
∣
,

pa možemo izabrati parametar tako da taj intenzitet bude jednak 1.
Obeležićemo tu vrednost parametra sa s.

∣
∣
∣
∣

d~r

ds

∣
∣
∣
∣
=

√
(
dx

ds

)2

+

(
dy

ds

)2

+

(
dz

ds

)2

= 1.

Sledi da je ds =
√

(dx)2 + (dy)2 + (dz)2, tj. s =
b∫

a

√

ẋ2 + ẏ2 + ż2. Dakle, s je

dužina luka krive L od neke fiksne tačke M . Prema geometrijskoj interpretaciji

izvoda sledi da je ~̇r(s) = d~r(s)
ds

= ~t0, ort tangente na krivu L u posmatranoj tački
sa smerom porasta skalara t.
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Za jedinični vektor ~c = ~c(t) je ~c · ~c = 1, odakle sledi da je

d~c

dt
· ~c + d~c

dt
· ~c = 0.

Dakle, izvod jediničnog vektora ~c normalan je na vektor ~c. Za r = r~r0 (~r0 je ort) je

d~r

dt
=

dr

dt
~r0 + r

d~r0
dt
.

Ako je ~r0 konstantan vektor, tada vektor

d~r

dt
=

dr

dt
~r0

ima pravac jediničnog vektora, a ako je ~r konstantnog intenziteta, tada vektor

d~r

dt
= r

d~r0
dt

ima pravac koji je normalan na vektor ~r0.
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Mehanička interpretacija jednostranih izvoda:

Ako materijalna tačka tokom kretanja udari u
prepreku, odbija se i nastavlja kretanje. U tre-
nutku t0 sudara sa preprekom, funkcija ~r nema
izvod, ali postoje desni i levi izvod u tački t0 :

~̇r+(t0) = lim
∆t→0+

~r (t +∆t)−~r (t)
∆t

, ~̇r−(t0) = lim
∆t→0−

~r(t +∆t)−~r(t)
∆t

.

Oni daju brzinu tačke pre i posle udara u prepreku. Odgovaraju im desna i leva
tangenta na krivu L u tački udara A :

x − x0
ẋ0+

=
y − y0
ẏ0+

=
z − z0
ż0+

,
x − x0
ẋ0−

=
y − y0
ẏ0−

=
z − z0
ż0−

.
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Tangentna ravan i normala povřsi

Neka je povřs S data jednačinom F (x , y , z) = 0.

M(x , y , z) je regularna(nesingularna) tačka povřsi S ako postoje sva tri

parcijalna izvoda
∂F

∂x
,
∂F

∂y
,
∂F

∂z
u tački M koji su neprekidni u tački M i

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)

6= (0, 0, 0)

Ako tačka M(x , y , z) nije regularna tačka povřsi S , onda za nju kažemo da je
singularna tačka povřsi S .
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Neka je skup L tačaka povřsi S (u daljem tekstu kriva L u parametarskom obliku)
dat sa

L :







x = ϕ(t)
y = ψ(t), t ∈ [α, β]
z = ̟(t)

ϕ, ψ,̟ imaju neprekidne izvode za svako t ∈ [α, β]

ϕ′2(t) + ψ′2(t) + ω′2(t) 6= 0, za svako t ∈ [α, β]

Tada vektor
~̇r0 = ~̇r0(t0) = ẋ(t0)~i + ẏ(t0)~j + ż(t0)~k

leži na tangenti krive L u tački P(x0, y0, z0).
Tangenta krive L u tački P je tangenta povřsi S u tački P .

373 / 569



Funkcije vise promenljivih Tangentna ravan i normala povřsi

Jednačina povřsi je F (x , y , z) = 0 tj. F (ϕ(t), ψ(t), ω(t)) = 0 jer L leži na S .
Diferenciranjem po t dobijamo

∂F

∂x

dx

dt
+
∂F

∂y

dy

dt
+
∂F

∂z

dz

dt
︸ ︷︷ ︸

~n·~̇r

= 0,

pri čemu je

~n = gradF =
∂F

∂x
~i +

∂F

∂y
~j +

∂F

∂z
~k , ne zavisi od oblika krive, jedino od

koordinata tačke P i funkcije F (x , y , z),

~̇r =
dx

dt
~i +

dy

dt
~j +

dz

dt
~k leži na tangenti krive L u tački P

Kako je P regularna tačka povřsi S , to je

|gradF | = |~n| =
√
(
∂F

∂x

)2

+

(
∂F

∂y

)2

+

(
∂F

∂z

)2

6= 0.
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Iz ~n · ~̇r = 0 sledi da su vektori ~̇r i ~n ortogonalni. Ovo znači da je vektor ~̇r , koji leži
na tangenti krive L u tački P , normalan na vektor ~n u tački P .

Ovo se može primeniti na bilo koju krivu L koja leži na povřsi S i prolazi kroz
tačku P .
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Definicija

Ravan formirana od svih tangenti povřsi S kroz datu regularnu tačku P ∈ S je
tangentna ravan povřsi S u tački P .

Vektor

~n(P) =

(
∂F

∂x
(P),

∂F

∂y
(P),

∂F

∂z
(P)

)

je vektor normale tangentne ravni povřsi F (x , y , z) = 0 u tački P .

Jednačina tangentne ravni u regularnoj tački P0(x0, y0, z0) je

∂F

∂x
(P0)(x − x0) +

∂F

∂y
(P0)(y − y0) +

∂F

∂z
(P0)(z − z0) = 0.
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Ako je povřs S data jednačinom z = f (x , y), možemo da je napǐsemo kao

F (x , y , z) = f (x , y)− z = 0.

Tada je
∂F

∂x
=
∂f

∂x
,

∂F

∂y
=
∂f

∂y
,

∂F

∂z
= −1,

pa je jednačina tangentne ravni u tački P0(x0, y0, z0), z0 = f (x0, y0)

∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0) = z − z0.
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Geometrijska interpretacija totalnog diferencijala
Zamenom x − x0 = ∆x i y − y0 = ∆y , prethodna jednačina tangentne ravni se
svodi na

z − z0 =
∂f

∂x
(x0, y0)∆x +

∂f

∂y
(x0, y0)∆y

=
∂f

∂x
(x0, y0)dx +

∂f

∂y
(x0, y0)dy .

Desna strana gornje jednakosti je totalni diferencijal funkcije z = f (x , y), u tački
M0(x0, y0) ravni xy , pa je

z − z0 = dz .

Sledi da je vrednost totalnog diferencijala funkcije z = f (x , y) u tački M0(x0, y0)
koji odgovara priraštajima ∆x i ∆y jednak priraštaju po aplikati z tangentne ravni
u tački P0(x0, y0, z0) dobijenog pri pomeranju iz tačke M0(x0, y0) u tačku
M(x0 +∆x , y0 +∆y).
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Definicija

Prava koja prolazi kroz tačku P0(x0, y0, z0) povřsi F (x , y , z) = 0 i koja je
normalna na tangentnu ravan povřsi u tački P0 je normala povřsi u tački P0 i data
je jednačinom

x − x0
∂F
∂x (P0)

=
y − y0
∂F
∂y (P0)

=
z − z0
∂F
∂z (P0)

.

Ako je povřs S zadata jednačinom z = f (x , y), jednačina normale povřsi u tački
P0(x0, y0, z0) postaje

x − x0
∂f
∂x (x0, y0)

=
y − y0

∂f
∂y (x0, y0)

=
z − z0
−1

.
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Parcijalni izvodi vǐseg reda

Neka f : D → R, D ⊂ Rn, postoji
∂f

∂xi
za neko i ∈ {1, 2, . . . , n} u svim tačkama

nepraznog podskupa D1 ⊂ D.
∂f

∂xi
je realna funkcija definisana nad skupom D1, tj.

∂f

∂xi
: D1 → R, pa se može

postaviti pitanje postojanja parcijalnog izvoda te funkcije po promenljivoj xj u
nekoj tački M ∈ D1.

Definicija

Ako postoji parcijalni izvod
∂

∂xj

(
∂f

∂xi

)

(M) tada je to drugi parcijalni izvod ili

parcijalni izvod drugog reda funkcije f (x1, x2, . . . , xn) u tački M po promenljivama
xi , xj (tim redom!) i označavamo ga sa

∂2f

∂xi∂xj
(M).
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za i = j je
∂2f

∂xi∂xi
(M) =

∂2f

∂x2i
(M)

za i 6= j je
∂2f

∂xi∂xj
(M) mešoviti parcijalni izvod

u opštem slučaju
∂2f

∂xi∂xj
(M) i

∂2f

∂xj∂xi
(M) mogu imati različite vrednosti

Primer

Funkcija z = f (x , y) =







xy
x2 − y2

x2 + y2
, (x , y) 6= (0, 0)

0 , (x , y) = (0, 0)
ima mešovite parcijalne izvode u svim tačkama, pri čemu oni nisu jednaki u

koordinatnom početku, tj.
∂2f

∂x∂y
(0, 0) 6= ∂2f

∂y∂x
(0, 0).
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Teorema

Ako postoje drugi mešoviti parcijalni izvodi
∂2f

∂xi∂xj
i
∂2f

∂xj∂xi
u nekoj δ−okolini

tačke M(x1, . . . , xn) i ako su oni neprekidni u datoj tački M , onda su oni i jednaki
u toj tački, tj. važi jednakost

∂2f

∂xi∂xj
(M) =

∂2f

∂xj∂xi
(M).

Parcijalni izvodi vǐseg reda definǐsu se induktivno:

parcijalni izvod reda m ili m-tog reda funkcije f (x1, x2, . . . , xn) u tački
M(x1, x2, . . . , xn) po promenljivama xi1 , xi2 , . . . , xim (tim redom!) označava se
sa

∂mf

∂xi1∂xi2 . . . ∂xim
(M),

pri čemu neki od indeksa mogu biti jednaki.
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Redosled traženja parcijalnih izvoda u opštem slučaju utiče na njegovu vrednost.
U slučaju da su izvodi neprekidne funkcije u nekoj tački, na osnovu prethodne
teoreme, redosled vǐse nije bitan.

Cm(D,R) je skup svih funkcija takvih da su svi parcijalni izvodi m-tog reda
neprekidni nad skupom D.

Posledica

Za f ∈ Cm(D,R) se vrednost izraza
∂mf

∂xi1∂xi2 . . . ∂xim
(M) ne menja pri proizvoljnoj

permutaciji indeksa i1, i2, . . . , im.

Funkcije klase Cm(D,R), gde je D otvorena oblast su m puta neprekidno
diferencijabilne. Za m-ti parcijalni izvod takve funkcije koristićemo oznaku

∂mf

∂xα1

1 ∂xα2

2 . . . ∂xαn
n

,

gde α1, . . . , αn ∈ Z, 0 ≤ αi ≤ m, α1 + α2 + · · ·+ αn = m.

383 / 569



Funkcije vise promenljivih Totalni diferencijal vǐseg reda

Totalni diferencijal vǐseg reda

Za diferencijabilnu funkciju z = f (x1, x2, . . . , xn) nad skupom D je totalni
diferencijal prvog reda (prvi totalni diferencijal) funkcije z = f (x1, x2, . . . , xn) u
tački M(x1, x2, . . . , xn) ∈ D koji odgovara priraštajima dx1, dx2, . . . , dxn
promenljivih x1, x2, . . . , xn dat formulom

dz =
∂z

∂x1
dx1 +

∂z

∂x2
dx2 + · · ·+ ∂z

∂xn
dxn,

gde su dxi = ∆xi , i = {1, 2, . . . , n} proizvoljni priraštaji nezavisnih promenljivih,
tj. proizvoljni brojevi nezavisni od xi , i = {1, 2, . . . , n}.

x1, x2, . . . , xn možemo da menjamo tako da pri tome dx1, dx2, . . . , dxn ostanu
konstantni

za date dx1, dx2, . . . , dxn totalni diferencijal dz je funkcija od x1, x2, . . . , xn
koja takode može da bude diferencijabilna
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Definicija

Totalni diferencijal d(dz) u tački M(x1, x2, . . . , xn) koji odgovara priraštajima
nezavisnih promenljivih dx1, . . . , dxn se zove drugi totalni diferencijal (totalni
diferencijal drugog reda) funkcije z = f (x1, x2, . . . , xn) u tački M , u oznaci d2z .

Ako funkcija z = f (x , y) ima neprekidne parcijalne izvode prvog i drugog reda u
otvorenoj oblasti D, tada je totalni diferencijal dz funkcije z = f (x , y)
diferencijabilna funkcija pa u D postoji d2z . Kako su dx i dy konstantni, sledi

d2z = d(dz) = d

(
∂z

∂x
dx +

∂z

∂y
dy

)

=
∂

∂x

(
∂z

∂x
dx +

∂z

∂y
dy

)

dx +
∂

∂y

(
∂z

∂x
dx +

∂z

∂y
dy

)

dy

=
∂2z

∂x2
dx2 +

∂2z

∂y∂x
dxdy +

∂2z

∂x∂y
dxdy +

∂2z

∂y2
dy2
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Ako sa d označimo d =
∂

∂x
dx +

∂

∂y
dy , tada se može pisati

dz =

(
∂

∂x
dx +

∂

∂y
dy

)

z , d2z =

(
∂

∂x
dx +

∂

∂y
dy

)2

z

Opštije,
ako funkcija z = f (x1, x2, . . . , xn) ima neprekidne parcijalne izvode prvog i drugog
reda u otvorenoj oblasti D, tada je totalni diferencijal dz funkcije
z = f (x1, x2, . . . , xn) diferencijabilna funkcija pa u D postoji d2z . Kako su
dx1, dx2, . . . , dxn konstantni, sledi

d2z = d(dz) = d

(
∂z

∂x1
dx1 +

∂z

∂x2
dx2 + · · ·+ ∂z

∂xn
dxn

)

=
∂2z

∂x21
dx21 +

∂2z

∂x22
dx22 + · · ·+ ∂2z

∂x2n
dx2n+

+2

(
∂2z

∂x1∂x2
dx1dx2 + · · ·+ ∂2z

∂xn−1∂xn
dxn−1dxn

)
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Ako sa d označimo

d =
∂

∂x1
dx1 +

∂

∂x2
dx2 + · · ·+ ∂

∂xn
dxn,

prethodna formula se može zapisati kao

d2z =

(
∂

∂x1
dx1 +

∂

∂x2
dx2 + · · ·+ ∂

∂xn
dxn

)2

z ,

a prvi totalni diferencijal možemo zapisati u obliku

dz =

(
∂

∂x1
dx1 +

∂

∂x2
dx2 + · · ·+ ∂

∂xn
dxn

)

z .

totalni diferencijal m-tog reda ili m-ti totalni diferencijal, m ≥ 3, definǐsu se
induktivno

za m-ti totalni diferencijal, m ≥ 2, kažemo da je totalni diferencijal vǐseg reda
ili vǐsi totalni diferencijal
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Teorema

Ako funkcija z = f (x1, x2, . . . , xn) ∈ Cm(D,R), D je otvorena oblast, tada postoji
totalni diferencijal dmz m−tog reda koji je dat obrascem

dmz =

(
∂

∂x1
dx1 +

∂

∂x2
dx2 + · · ·+ ∂

∂xn
dxn

)m

z .
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Lokalni ekstremi

Definicija

Neka je f : D → R, D ⊂ Rn, n ≥ 2 definisana na nekoj okolini L(A, ε) tačke
A ∈ D (sledi da je A ∈ D◦).

Ako je za svaku tačku X ∈ L(A, ε) \ {A} ispunjeno

f (X ) < f (A),

tada funkcija f u tački A ima lokalni maksimum jednak f (A).

Ako je za svaku tačku X ∈ L(A, ε) \ {A} ispunjeno

f (X ) > f (A),

tada funkcija f u tački A ima lokalni minimum jednak f (A).

Lokalne maksimume i lokalne minimume zovemo lokalni ekstremi.
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Drugim rečima, funkcija z = f (x1, x2, . . . , xn) u tački

A(x1, x2, . . . , xn) ∈ D◦

ima lokalni ekstrem ako za svako i ∈ {1, . . . , n} postoje δi > 0 takvi da je

za svako |∆xi | < δi , (∆x1,∆x2, . . . ,∆xn) 6= (0, 0, . . . , 0),

B(x1 +∆x1, . . . , xn +∆xn) ∈ D

priraštaj funkcije

∆z = f (x1 +∆x1, . . . , xn +∆xn)− f (x1, . . . , xn)

u tački A ili pozitivan (lokalni minimum) ili negativan (lokalni maksimum) (o
rubnim ekstremima biće reči kasnije).
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Funkcija z = f (x , y) = x2 + y2 u tački O(0, 0) ima lokalni minimum:
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Funkcija z = f (x , y) = 1− x2 + y2 u tački O(0, 0) ima lokalni maksimum:
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Funkcija

z = f (x , y) =

{
x2 + y2 , x2 + y2 6= 0
1 , x = y = 0

u tački O(0, 0) ima lokalni maksimum:
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Potreban uslov za postojanje lokalnog ekstrema:

Teorema

Neka funkcija f : D → R, D ⊂ Rn, n ≥ 2 u tački A(a1, a2, . . . , an) ∈ D◦ ima sve
parcijalne izvode prvog reda i neka u toj tački ima lokalni ekstrem. Tada je

∂f

∂x1
(A) =

∂f

∂x2
(A) = · · · = ∂f

∂xn
(A) = 0.

Specijalno, ako je f (X ), X ∈ D diferencijabilna funkcija u nekoj okolini tačke
A ∈ D◦, onda je

df (A) = 0, (dx1, dx2, . . . , dxn) 6= (0, 0, . . . , 0).
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Dokaz. Neka je L(a, ε) otvorena lopta u kojoj je definisana funkcija
z = f (x1, x2, . . . , xn) i u kojoj važi da je

f (X ) < f (A) (f (X ) > f (A)) za sve x ∈ L(a, ε) \ {A}.

Za proizvoljno i ∈ {1, 2, . . . , n} posmatrajmo funkciju

fi : (ai − ε, ai + ε) → R

definisanu sa

fi (xi ) = f (a1, a2, . . . , ai−1, xi , ai+1, . . . , an), za xi ∈ (ai − ε, ai + ε).

Ta funkcija jedne promenljive ima lokalni ekstrem u tački ai , pa je

f ′i (ai ) =
∂f

∂xi
(A) = 0.

�
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Navedeni uslov nije i dovoljan za postojanje ekstrema:

Funkcija z = x2 − y2 ima izvode
∂z

∂x
= 2x ,

∂z

∂y
= −2y , koji su jednaki nuli za

x = y = 0.

Kako je f (O) = f (0, 0) = 0, ∆z = f (x , y) − f (0, 0) = x2 − y2, to je

{
∆f > 0 , x 6= 0, y = 0
∆f < 0 , x = 0, y 6= 0

pa ova funkcija nema lokalni ekstrem u tački O(0, 0).
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stacionarne tačke - unutrašnje tačke oblasti definisanosti diferencijabilne
funkcije z = f (x1, x2, . . . , xn) u kojima su svi parcijalni izvodi prvog reda
jednaki nuli

Dovoljni uslovi za postojanje lokalnog ekstrema (2 teoreme):

Teorema

Neka je D ⊂ Rn, n ≥ 2 otvorena oblast i neka A(a1, . . . , an) ∈ D, f ∈ C 2(D,R),
pri čemu je A stacionarna tačka funkcije f (x1, . . . , xn), tj. df (A) = 0 za
(dx1, dx2, . . . , dxn) 6= (0, 0, . . . , 0). Tada

1. Ako je d2f (A) =
(

∂
∂x1

dx1 + · · ·+ ∂
∂xn

dxn

)2

f (a1, . . . an) < 0 za

(dx1, . . . , dxn) 6= (0, . . . , 0), tada f u A ima lokalni maksimum.

2. Ako je d2f (A) > 0 za (dx1, . . . , dxn) 6= (0, . . . , 0), funkcija f u tački A ima
lokalni minimum.

3. Ako d2f (A) menja znak za (dx1, . . . , dxn) 6= (0, . . . , 0), funkcija f u tački A
nema lokalni ekstrem.
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Teorema

Neka je D ⊂ R2 otvorena oblast i neka A(a, b) ∈ D, f ∈ C 2(D,R) i

p =
∂f

∂x
(a, b) = 0, q =

∂f

∂y
(a, b) = 0.

Označimo sa r =
∂2f

∂x2
(a, b), s =

∂2f

∂x∂y
(a, b), t =

∂2f

∂y2
(a, b). Tada:

1. Ako je r > 0(t > 0) i rt − s2 > 0, funkcija f (x , y) u tački A(a, b) ima lokalni
minimum.

2. Ako je r < 0(t < 0) i rt − s2 > 0, funkcija f (x , y) u tački A(a, b) ima lokalni
maksimum.

3. Ako je rt − s2 < 0, f (x , y) u tački A(a, b) nema lokalni ekstrem.

4. Ako je rt − s2 = 0, potrebna su dalja ispitivanja (posmatra se znak priraštaja
funkcije u tački A(a, b)).
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Funkcije vise promenljivih Lokalni ekstremi

Primer

Odrediti ekstremne vrednosti funkcije z = f (x , y) = x2 + 2xy + y2

Iz
∂z

∂x
= 2x + 2y = 0 i

∂z

∂y
= 2x + 2y = 0 dobijamo stacionarne tačke A(x ,−x),

tj. sve tačke prave y = −x su stacionarne tačke. Kako je

∂2z

∂x2
= 2,

∂2z

∂x∂y
= 2,

∂2z

∂y2
= 2,

to je uvek
rt − s2 = 4− 4 = 0

ili
d2f (A) = 2(dx + dy)2 ≥ 0,

pa na osnovu ovih kriterijuma ne možemo zaključiti da li data funkcija u tačkama
A(x ,−x) ima lokalni ekstrem.
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Funkcije vise promenljivih Lokalni ekstremi

U svakoj okolini tačke A(x ,−x) ima i drugih tačaka

B(y ,−y), pri čemu je A 6= B,

pri čemu važi da je
f (B)− f (A) = 0.

Dalje, za sve tačke
X (x , y), gde je x 6= y

je
f (x , y)− f (0, 0) = (x + y)2 > 0,

pa zaključujemo da je f (X )− f (A) ≥ 0, za tačke X ∈ L(A, ε), pa zaključujemo da
funkcija ni u jednoj tački A(x ,−x) nema lokalni ekstrem.
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Vezani (uslovni) ekstremi

Kod odredivanja ekstremnih vrednosti funkcija vǐse promenljivih promenljive mogu
biti vezane nekim dodatnim relacijama (ne mogu slobodno da se menjaju u oblasti
definisanosti funkcije).

Primer

Odrediti ekstremne vrednosti funkcije z = f (x , y) = x2 + y2 pod uslovom da je
x + y = 1.
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Iz date veze sledi da je y = 1− x , pa je u odgovarajućim tačkama

f (x , y) = f (x , 1− x) = 2x2 − 2x + 1 = 2

(

x − 1

2

)2

+
1

2
.

Funkcija f (x , 1− x) ima minimum za x =
1

2
(pa i y =

1

2
).

Minimalna vrednost je
1

2
.

Sama funkcija z = f (x , y) = x2 + y2 u svakoj okolini tačke

(
1

2
,
1

2

)

ima i manjih

vrednosti od
1

2
.

Inače, njena najmanja vrednost je 0.
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Ograničimo razmatranja na funkciju dve promenljive, z = f (x , y). Neka je
f : D → R, definisana na D ⊂ R2 i ϕ : D → R. Neka je

B = {(x , y) ∈ D : ϕ(x , y) = 0}

neprazan skup odreden uslovom ili vezom ϕ(x , y) = 0.

Definicija

Funkcija z = f (x , y) u tački nagomilavanja A(x , y) ∈ B skupa B ima uslovni
(vezani) lokalni maksimum (uslovni (vezani) lokalni minimum) pri uslovu
ϕ(x , y) = 0, ako

(∃ε > 0)(∀X ∈ B ∩ (L(A, ε) \ {A})) f (X ) < f (A) (f (X ) > f (A)).

Uslovni lokalni minimum odnosno uslovni lokalni maksimum jednim imenom
zovemo uslovni ili vezani ekstremi a jednačina ϕ(x , y) = 0 zove se jednačina veze.
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Ako je jednačina krive L : ϕ(x , y) = 0, problem odredivanja uslovnih ekstrema
funkcije z = f (x , y) na krivoj L može se formulisati kao: odrediti uslovne
ekstreme funkcije z = f(x, y) nad skupom D, pod uslovom ϕ(x, y) = 0.

Lagranžov metod za odredivanje uslovnog ekstrema:

Neka je M0 = (x0, y0) potencijalna tačka uslovnog ekstrema funkcije z = f (x , y)
sa jednačinom veze ϕ(x , y) = 0.

Pp. da funkcije f (x , y) i ϕ(x , y) imaju neprekidne parcijalne izvode prvog i drugog
reda u nekoj okolini tačke M0(x0, y0) i da je bar jedan od parcijalnih izvoda

∂ϕ

∂x
(M0),

∂ϕ

∂y
(M0)

različit od 0 (neka je npr.
∂ϕ

∂y
(M0) 6= 0.)
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Iz ϕ(x , y) = 0 sledi da je y = ψ(x), pa je z = f (x , ψ(x)) = h(x) funkcija jedne
promenljive. Potreban uslov da funkcija

z = f (x , ψ(x))

u tački M(x0, ψ(x0)) ima ekstremnu vrednost je da je
dz

dx
(M0) = 0. Sledi da je

dz(M0) = df (M0) =
∂f

∂x
(M0)dx +

∂f

∂y
(M0)dy = 0. (3)

Iz jednačine veze se dobija

dϕ(M0) = ϕx(M0)dx + ϕy (M0)dy = 0. (4)

Množenjem jednakosti (4) sa λ i dodavanjem jednakosti (3) dobijamo

405 / 569



Funkcije vise promenljivih Vezani (uslovni) ekstremi

(
∂f

∂x
(x0, y0) + λ

∂ϕ

∂x
(x0, y0)

)

dx +

(
∂f

∂y
(x0, y0) + λ

∂ϕ

∂y
(x0, y0)

)

dy = 0.

Iz
∂f

∂y
(x0, y0) + λ

∂ϕ

∂y
(x0, y0) = 0 izrazimo λ :

λ = −
∂f
∂y (x0, y0)

∂ϕ
∂y (x0, y0)

,
∂ϕ

∂y
(x0, y0) 6= 0.

Dakle, jednakosti

∂f

∂x
(x0, y0) + λ

∂ϕ

∂x
(x0, y0) = 0,

∂f

∂y
(x0, y0) + λ

∂ϕ

∂y
(x0, y0) = 0

daju potrebne uslove za nevezane ekstreme u tački M0(x0, y0) funkcije

F (x , y) = f (x , y) + λϕ(x , y) (LAGRANŽOVA FUNKCIJA).
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Dakle, uslovni ekstrem funkcije f (x , y), ako je ϕ(x , y) = 0, je obavezno
stacionarna tačka Lagranžove funkcije

F (x , y) = f (x , y) + λϕ(x , y),

pa se tačke koje mogu biti uslovni ekstremi funkcije f (x , y), ako je ϕ(x , y) = 0,
dobijaju tako što se formira Lagranžova funkcija i njeni prvi parcijalni izvodi

∂F

∂x
,

∂F

∂y

izjednače sa nulom. Dobijamo sistem od tri jednačine

∂F

∂x
= fx(x , y) + λϕx(x , y) = 0

∂F

∂y
= fy (x , y) + λϕy (x , y) = 0

ϕ(x , y) = 0,

čijim rešavanjem odredujemo λ, x i y mogućih tačaka ekstrema.
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Postojanje i prirodu uslovnih ekstrema odredujemo pomoću znaka drugog totalnog
diferencijala Lagranžove funkcije

d2F (x , y) =
∂2F

∂x2
dx2 + 2

∂2F

∂x∂y
dxdy +

∂2F

∂y2
dy2,

za skup vrednosti x0, y0, λ dobijenih iz prikazanog sistema jednačina pod uslovom
∂ϕ

∂x
dx +

∂ϕ

∂y
dy = 0, za (dx , dy) 6= (0, 0).

d2F (x0, y0) < 0 u tački (x0, y0) funkcija f (x , y) ima uslovni maksimum

d2F (x0, y0) > 0 u tački (x0, y0) funkcija f (x , y) ima uslovni minimum

d2F (x0, y0) u tački (x0, y0) menja znak funkcija f (x , y) nema uslovni ekstrem
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Primer

Odrediti ekstremne vrednosti funkcije z = f (x , y) = x2 + y2 pod uslovom da je
x + y = 1.

F (x , y , λ) = x2 + y2 + λ(x + y − 1),

∂F
∂x = 2x + λ = 0,
∂F
∂y = 2y + λ = 0,

x + y − 1 = 0






⇒ x = y = 1

2 , λ = −1.

Kako je ∂2F
∂x2 = 2, ∂

2F
∂y2 = 2, ∂2F

∂x∂y = 0 i dx + dy = 0, to je

d2F
(
1
2 ,

1
2

)
= 2dx2 + 2dy2

= 2dx2 + 2(−dx)2 = 4dx2 > 0, (dx , dx) 6= (0, 0),

pa funkcija u tački A
(
1
2 ,

1
2

)
ima uslovni minimum pod uslovom x + y = 1.
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Primer

Odrediti ekstremne vrednosti funkcije z = f (x , y) = xy pod uslovom da je
y − x = 0.

F (x , y , λ) = xy + λ(y − x),

∂F

∂x
= y − λ = 0,

∂F

∂y
= x + λ = 0,

y − x = 0







⇒ x = y = 0, λ = 0.

Kako je
∂2F

∂x2
= 0,

∂2F

∂y2
= 0,

∂2F

∂x∂y
= 1 i dy − dx = 0, to je d2F (0, 0) = dx2 > 0,

za dx 6= 0. Kako je d2F (0, 0) > 0, to funkcija u tački O (0, 0) ima uslovni lokalni
minimum. Primetimo da je rt − s2(0, 0) = −1 < 0, dakle funkcija može imati
uslovni ekstrem i ako je rt − s2 < 0.
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Neka je data funkcija f : D → R, definisana na skupu D ⊂ Rn, n ≥ 2 i funkcije
ϕi : D → R, i = 1, 2, . . . ,m, za fiksirano m ∈ N, m < n. Neka je

B = {X ∈ D : ϕi (X ) = 0, i = 1, 2, . . . ,m}

neprazan skup odreden sa ϕ1(X ) = 0, ϕ2(X ) = 0, . . . , ϕn(X ) = 0.

Definicija

Funkcija z = f (x1, . . . , xn) u tački nagomilavanja A(a1, a2, . . . , an) ∈ B skupa B
ima uslovni (vezani) lokalni maksimum (uslovni (vezani) lokalni minimum) pri
uslovima ϕ1(x1, . . . , xn) = 0, ϕ2(x1, . . . , xn) = 0, . . . , ϕm(x1, . . . , xn) = 0 ako

(∃ε > 0)(∀X ∈ B ∩ (L(A, ε) \ {A})) f (X ) < f (A) (f (X ) > f (A)).

Uslovni lokalni minimum odnosno uslovni lokalni maksimum jednim imenom
zovemo uslovni ili vezani ekstremi.
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Ako tražimo uslovne ekstreme funkcije z = f (x1, . . . , xn), pod uslovima

ϕ1(x1, x2, . . . , xn) = 0,
ϕ2(x1, x2, . . . , xn) = 0,

...
ϕm(x1, x2, . . . , xn) = 0,

gde je 1 ≤ m < n, formiramo Lagranžovu funkciju:

F (x1, . . . , xn, λ1, . . . , λm) = f (x1, . . . , xn) +

m∑

i=1

λiϕi (x1, . . . , xn),

uz pretpostavku da funkcije f (x1, . . . , xn) i ϕi (x1, . . . , xn), i = 1, . . . ,m imaju
neprekidne parcijalne izvode prvog i drugog reda u nekoj okolini potencijalne tačke
uslovnog ekstrema M(a1, . . . , an).
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Dalje, pretpostavimo da u toj okolini funkcionalna matrica









∂ϕ1

∂x1

∂ϕ1

∂x2
. . . ∂ϕ1

∂xn
∂ϕ2

∂x1

∂ϕ2

∂x2
. . . ∂ϕ2

∂xn
...

...
...

∂ϕm

∂x1

∂ϕm

∂x2
. . . ∂ϕm

∂xn









ima rang m. Izjednačavanjem sa nulom svih parcijalnih izvoda prvog reda funkcije
F (x1, . . . , xn, λ1, . . . , λm) i uzimajući u obzir jednačine veze, dobijamo sistem od
n +m jednačina:

∂F

∂xi
(x1, . . . , xn) = 0, i ∈ {1, 2, . . . , n}

ϕj(x1, . . . , xn) = 0, j ∈ {1, 2, . . . ,m}
čijim rešavanjem nalazimo λ1, . . . , λm i koordinate x1, x2, . . . , xn mogućih
ekstrema.
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Postojanje i prirodu uslovnih ekstrema odredujemo pomoću znaka drugog
diferencijala Lagranžove funkcije. Ako je u dobijenim tačkama

d2F < 0, (dx1, dx2, . . . , dxn) 6= (0, 0, . . . , 0), funkcija f (x , y) ima uslovni
maksimum

d2F > 0 (dx1, dx2, . . . , dxn) 6= (0, 0, . . . , 0), funkcija f (x , y) ima uslovni
minimum

d2F menja znak funkcija f (x , y) nema uslovni ekstrem

Izmedu dx1, dx2, . . . , dxn postoje veze

∂ϕ1

∂x1
dx1 + · · ·+ ∂ϕ1

∂xn
dxn = 0,

...
∂ϕm

∂x1
dx1 + · · ·+ ∂ϕm

∂xn
dxn = 0.
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Primer

Odrediti ekstremne vrednosti funkcije u = f (x , y , z) = x2 + y2 + z2 pod uslovom

da je x2

a2
+ y2

b2 +
z2

c2
= 1, a > b > c > 0.

F (x , y , z , λ) = x2 + y2 + z2 + λ

(
x2

a2
+

y2

b2
+

z2

c2
− 1

)

∂F
∂x = 2x + 2λ x

a2
= 2x(1 + λ

a2
) = 0 ⇒ x = 0 ∨ λ = −a2,

∂F
∂y = 2y + 2λ y

b2 = 2y(1 + λ
b2 ) = 0 ⇒ y = 0 ∨ λ = −b2,

∂F
∂z = 2z + 2λ z

c2
= 2z(1 + λ

c2
) = 0 ⇒ z = 0 ∨ λ = −c2






⇒

A(a, 0, 0), B(−a, 0, 0) (λ = −a2)
C (0, b, 0), D(0,−b, 0) (λ = −b2)
E (0, 0, c), H(0, 0,−c) (λ = −c2)
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Kako je
∂2F

∂x2
= 2 + 2

λ

a2
,

∂2F

∂y2
= 2 + 2

λ

b2
,

∂2F

∂z2
= 2 + 2

λ

c2
,

∂2F

∂x∂y
=

∂2F

∂x∂z
=

∂2F

∂y∂z
= 0,

to je

d2F = 2

((

1 +
λ

a2

)

dx2 +

(

1 +
λ

b2

)

dy2 +

(

1 +
λ

c2

)

dz2
)

.

Za tačke A i B je

d2F (A) = d2F (B) = 2

((

1− a2

b2

)

dy2 +

(

1− a2

c2

)

dz2
)

.
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Diferenciranjem jednačine veze dobijamo

2x

a2
dx +

2y

b2
dy +

2z

c2
dz = 0,

odakle uvřstavanjem koordinata tačaka A i B dobijamo ±2a

a2
dx = 0, odakle je

dx = 0.
S obzirom da je (dx , dy , dz) 6= (0, 0, 0), bar jedan od diferencijala dy ili dz mora
biti različit od nule.
Kako je

1− a2

b2
< 0 i 1− a2

c2
< 0

sledi da je
d2F (A) = d2F (B) < 0,

pa funkcija u tačkama A i B ima uslovni maksimum.
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Za tačke C i D je

d2F (C ) = d2F (D) = 2

((

1− b2

a2

)

dx2 +

(

1− b2

c2

)

dz2
)

.

Iz ± 2b
c2
dy = 0 sledi da je je dy = 0. S obzirom da je (dx , dy , dz) 6= (0, 0, 0), bar

jedan od diferencijala dx ili dz mora biti različit od nule. Ako je dx = 0 tada je

d2F (C ) = d2F (D) = 2

(

1− b2

c2

)

dz2 < 0,

a ako je dz = 0 tada je

d2F (C ) = d2F (D) = 2

(

1− b2

a2

)

dx2 > 0,

pa kako d2F menja znak u tačkama C i D, funkcija u tačkama C i D nema
uslovni ekstrem.
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Funkcije vise promenljivih Vezani (uslovni) ekstremi

Za tačke E i H je

d2F (E ) = d2F (H) = 2

((

1− c2

a2

)

dx2 +

(

1− c2

b2

)

dy2

)

.

Iz ±2c

c2
dy = 0 sledi da je je dz = 0. Kako je

1− c2

a2
> 0 i 1− c2

b2
> 0

sledi da je
d2F (E ) = d2F (H) > 0,

pa funkcija u tačkama E i F ima uslovni minimum.
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Neodredjeni integral Primitivna funkcija i neodredjeni integral

Primitivna funkcija i neodredeni integral

f (x) definisana nad intervalom I , tj. f : I → R

ako za funkciju f (x) postoji funkcija F : I → R, koja ima izvod F ′(x) nad
intervalom I , takva da je

F ′(x) = f (x), x ∈ I

tada je F (x) primitivna funkcija funkcije f (x) nad intervalom I

ona nije jednoznačno odredena, svaka funkcija F (x) + C , C ∈ R je takode
primitivna funkcija jer je

(F (x) + C )
′
= F ′(x) = f (x).

Veza izmedu dve primitivne funkcije F (x) i G(x) funkcije f (x) :

Teorema

Ako su F (x) i G(x) dve primitivne funkcije za f (x) nad nekim intervalom I onda
se one nad tim intervalom razlikuju za konstantu, tj. nad intervalom I je
F (x)− G(x) = C .
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Neodredjeni integral Primitivna funkcija i neodredjeni integral

Bitna je pretpostavka da se razlika G(x)− F (x) posmatra nad intervalom, a
ne na proizvoljnom skupu:

Primer

Pokazati da su funkcije G(x) = − arctg
1

x
i F (x) = arctg x primitivne funkcije

funkcije f (x) =
1

1 + x2
, za x 6= 0. Odrediti G(x)− F (x).

F (x) je primitivna funkcija funkcije f (x) za svako x ∈ R, jer je

(arctg x)′ =
1

1 + x2
.

(

− arctg
1

x

)′
=

1

1 + x2
, za x 6= 0, pa je nad svakim od intervala (−∞, 0) i

(0,∞) funkcija G(x) primitivna funkcija funkcije f (x).

Pri tome je G(x)− F (x) =

{
π , x ∈ (−∞, 0)
0 , x ∈ (0,∞)

.
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Neodredjeni integral Primitivna funkcija i neodredjeni integral

Definicija

Skup svih primitivnih funkcija funkcije f (x) nad nekim intervalom I naziva se
neodredeni integral funkcije f (x) nad datim I i označava se sa

∫

f (x)dx .

f (x) je podintegralna funkcija

f (x)dx je podintegralni izraz
∫

je znak integrala

ako je F (x) jedna primitivna funkcija tada je

∫

f (x)dx = F (x) + C = {F (x) + C : C ∈ R}
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Neodredjeni integral Primitivna funkcija i neodredjeni integral

Da li za svaku funkciju postoji primitivna funkcija?

Teorema

Ako je funkcija f : I → R neprekidna nad intervalom I tada postoji primitivna
funkcija F : I → R nad intervalom I , tj. postoji neodredeni integral funkcije f (x)
nad datim intervalom I .

funkcija f (x) ne mora da bude neprekidna da bi za nju postojao neodredeni
integral; funkcija

f (x) =

{
2x sin 1

x
− cos 1

x
, x 6= 0

0, x = 0

za x = 0 ima prekid druge vrste, a jedna njena primitivna funkcija je

F (x) =

{
x2 sin 1

x
, x 6= 0

0, x = 0
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Ako funkcija f : [a, b] → R u nekoj tački intervala [a, b] ima prekid druge
vrste, da li za nju uvek postoji primitivna funkcija nad posmatranim
intervalom?

Primer

Proveriti da li Dirihleova funkcija χ(x) =

{
1, x ∈ Q

0, x ∈ R \Q ima primitivnu

funkciju nad proizvoljnim intervalom I .

NE. Ako bi nad proizvoljnim zatvorenim intervalom [a, b] postojala funkcija
F : [a, b] → R, koja ima izvod nad I , pri čemu je F ′(x) = χ(x), tada važi
F ′(x) = 1, za x ∈ [a, b] ∩Q,
F ′(x) = 0, za x ∈ [a, b] ∩ (R \Q),

a ne postoji ξ ∈ [a, b] sa osobinom da je (na primer) F ′(ξ) = 1
2 (Darbuova

teorema), što znači da F (x) nije primitivna funkcija funkcije χ(x) nad [a, b]. 	
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ako funkcija f : I → R ima prekid prve vrste u c ∈ I tada za nju ne postoji
primitivna funkcija F (x) nad intervalom I (ako funkcija f (x) ima izvod u
svakoj tački intervala I , tada taj izvod ne može imati prekide prve vrste)

ako neodredeni integral date funkcije postoji, on se ne može uvek izraziti u
konačnom obliku (preko konačnog broja elementarnih funkcija) - neki primeri:

∫

e−x2dx ,

∫
ex

x
dx

∫
sin x

x
dx .
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Osobine neodredenog integrala

1.
(∫

f (x) dx
)′

= f (x)

2. d
∫
f (x) dx = f (x) dx

3.
∫
dF (x) = F (x) + C;

specijalno:
∫
F ′(f (x))f ′(x)dx =

∫
dF (f (x)) = F (f (x)) + C

4.
∫
a f (x) dx = a

∫
f (x) dx , a ∈ R

5.
∫
(f1(x) + · · ·+ fn(x)) dx =

∫
f1(x) dx + · · ·+

∫
fn(x) dx

6. Ako je
∫
f (x) dx = F (x) + C , tada je

∫
f (ax + b) dx =

1

a
F (ax + b) + C , a 6= 0
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Tako je, na osnovu osobine 3.

∫
arctg2 x

1 + x2
dx =

arctg 3 x

3
+ C .

Tablica neodredenih integrala

ukoliko nije drugačije naglašeno, traženje neodredenog integrala podrazumeva
nalaženje datog integrala nad svim intervalima iz oblasti definisanosti date
funkcije
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Smena promenljive u neodredenom integralu

Teorema

Neka sirjekcija ϕ : I1 → I ⊂ R ima neprekidan izvod različit od nule nad
intervalom I1 i neka za funkciju f : I → R postoji neodredeni integral nad
intervalom I . Tada važi

∫
f (x) dx =

∫
f (ϕ(t)) ϕ′(t) dt;

(posle integracije desne strane se stavi t = ϕ−1(x), x ∈ I .)

Dokaz. Jednakost važi jer su izvodi obe strane jednaki:

d
dx

∫
f (x)dx = f (x),

d
dx

∫
f (ϕ(t))ϕ′(t)dt = d

dt

(∫
f (ϕ(t))ϕ′(t)dt

)
dt
dx

= f (ϕ(t))ϕ′(t) 1
ϕ′(t) = f (ϕ(t)) = f (x),

a zbog stalnosti znaka ϕ′(t) je funkcija ϕ(t) strogo monotona, pa ima inverznu
funkciju ϕ−1(x).
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često je pogodnije smenu promenljivih umesto u obliku

x = ϕ(t)

pisati u obliku
t = ψ(x), dt = ψ′(x) dx .

Recimo,

∫
ψ′(x)

ψ(x)
dx =

∫
dt

t
= ln |t|+ C = ln |ψ(x)|+ C ,

∫
ψ′(x)

2
√

ψ(x)
dx =

∫
dt

2
√
t
=

√
t + C =

√

ψ(x) + C .

Primer

Da li se u integral

∫
dx√
x2 − 4

, x > 2, može uvesti smena x = arcsin t?
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Parcijalna integracija

Teorema

Neka su u(x) i v(x) diferencijabilne funkcije i neka postoji primitivna funkcija
funkcije u′(x)v(x). Tada postoji primitivna funkcija funkcije u(x)v ′(x) i važi
jednakost

∫

u(x)dv(x) = u(x)v(x) −
∫

v(x)du(x).

Dokaz. Polazeći od jednakosti (u(x)v(x))′ = u′(x)v(x) + u(x)v ′(x) dobija se

∫

(u(x)v(x))′dx =

∫

u′(x)v(x)dx +

∫

u(x)v ′(x)dx ,

odakle je ∫

u(x)dv(x) = u(x)v(x) −
∫

v(x)du(x).

(konstantu je dovoljno staviti sa jedne strane jednakosti)
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Napomena
∫
Pn(x)e

axdx , n ≥ 1 rešava se sa n parcijalnih integracija, uzimajući

u = Pn(x), eaxdx = dv

∫
Pn(x) sin ax dx

(∫
Pn(x) cos ax dx

)
, n ≥ 1 rešava se sa n parcijalnih

integracija, uzimajući

u = Pn(x), sin ax dx = dv , (cos ax dx = dv)

∫
Pn(x) ln

mx dx , n ≥ 1, m ∈ N rešava se sa m parcijalnih integracija,
uzimajući

u = lnmx , Pn(x) dx = dv
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Primer

Odrediti neodredeni integral I (x) funkcije f (x) =

{
x , x < 2
2 , x ≥ 2

I (x) postoji nad R (f (x) je neprekidna funkcija). Kako je

∫

xdx =
x2

2
+ C1,

∫

2dx = 2x + C2,

to da bi I (x) bila neprekidna funkcija mora da važi

2 + C1 = 4 + C2, tj. C1 = C2 + 2

pa je I (x) =







x2

2
+ 2 + C , x < 2

2x + C , x ≥ 2
.
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Integrali racionalnih funkcija

Racionalna funkcija je R(x) =
P(x)

Q(x)

ako je deg P(x) < deg Q(x) - prava racionalna funkcija

ako je deg P(x) ≥ deg Q(x) - neprava racionalna funkcija

Svaka neprava racionalna funkcija može se napisati u obliku

R(x) = T (x) +
R1(x)

Q(x)
, deg R1(x) < deg Q(x)

P(x) je deljiv polinomom x − a ako i samo ako je P(a) = 0

Svaki polinom stepena n ≥ 1 ima tačno n nula, R ili C

Ako su a1, . . . , am različite nule polinoma P(x) = cnx
n + . . . c1x + c0, n ≥ 1

onda je

P(x) = cn(x − a1)
k1(x − a2)

k2 . . . (x − am)
km , k1 + · · ·+ km = n.

Ako je kompleksan broj z = α+ iβ koren reda k polinoma P(x) tada je i
z̄ = α− iβ takode koren reda k polinoma P(x).
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Integrali racionalnih funkcija

Teorema

Neka je P(x) polinom stepena manjeg od n, a Q(x) polinom stepena n takav da je

Q(x) = cn(x − a1)
k1 . . . (x − ap)

kp (x2 + b1x + c1)
l1 . . . (x2 + bqx + cq)

lq = n,

gde je k1 + · · ·+ kp + 2(l1 + · · ·+ lq), ai , bj , cj ∈ R, b2j − 4cj < 0, i = 1, . . . , p,

j = 1, . . . , q. Tada se polinom R(x) = P(x)
Q(x) može napisati u obliku

R(x) =
(

A11

x−a1
+ · · ·+ A1k1

(x−a1)k1

)

+ · · ·+
(

Ap1

x−ap
+ · · ·+ Apkp

(x−ap)
kp

)

+
(

B11x+C11

x2+b1x+c1
+ · · ·+ B1l1

x+C1l1

(x2+b1x+c1)l1

)

+ . . .

+
(

Bq1x+Cq1

x2+bqx+cq
+ · · ·+ Bqlq x+Cqlq

(x2+bqx+cq )
lq

)

A
(x−a)k i Bx+C

(x2+bx+c)l , b
2 − 4c < 0, se nazivaju prosti ili parcijalni razlomci.
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Biće radeni na vežbama:

Integrali prostih razlomaka

Integrali nekih iracionalnih funkcija
∫

R(x ,
√
ax2 + bx + c)dx (tri Ojlerove smene),

∫

Pn(x)√
ax2+bx+c

dx , a 6= 0,
∫

dx

(x−α)n
√

ax2+bx+c
, n ∈ N, a 6= 0,

∫

R
(

x ,
(

ax+b
px+q

)r1
, . . . ,

(

ax+b
px+q

)rk
)

dx , aq − bp 6= 0, r1, . . . , rk ∈ Q,
∫

xm(a + bxn)pdx , m, n, p ∈ Q, n, p 6= 0, a, b ∈ R, a, b 6= 0,

Integrali trigonometrijskih funkcija
∫

R(sin x , cos x)dx ,
∫

sinm x cosn xdx ,
∫

sinmx sin nxdx ,
∫

sinmx cos nxdx ,
∫

cosmx cos nxdx ,

Integrali nekih eksponencijalnih funkcija
∫

R(ex)dx ,
∫

(P(x)eαx cosβx + Q(x)eαx sin βx)dx
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Odredjeni integral Pojam odredjenog integrala

Pojam odredenog integrala

Posmatramo [a, b] ⊂ R

Podela intervala: P = {x0, x1, . . . , xn}, a = x0 < x1 < · · · < xn = b

skup svih podela je P∗[a, b]

P ′ ⊂ P ⇒ P je finija od P ′, P ′ je grublja od P

∆xi = xi − xi−1, i = 1, 2, . . . , n dužina intervala [xi−1, xi ]

parametar podele P je max
1≤i≤n

∆xi = λ(P)

ξi ∈ [xi−1, xi ], ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn, skup izabranih tačaka ξ ∈ Rn podele
P je

ξ(P) = {ξ ∈ Rn : ξ = (ξ1, . . . , ξn), ξi ∈ [xi−1, xi ], i = 1, 2, . . . , n}

podela intervala sa izabranom tačkom (P , ξ)

P = P[a, b] skup svih takvih podela
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Definicija

Neka je f : [a, b] → R i neka je (P , ξ) podela sa izabranom tačkom intervala [a, b].
Zbir

I (f ,P , ξ) =
n∑

i=1

f (ξi )∆xi

se naziva integralna ili Rimanova suma funkcije f (x) za datu podelu (P , ξ).

MOTIVACIJA 1:

Povřsina krivolinijskog trapeza je
približno jednaka integralnoj sumi:
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Odredjeni integral Pojam odredjenog integrala

MOTIVACIJA 2: Na pravolinijskom putu AB deluje promenljiva sila ~F na
materijalnu tačku. Zavisnost intenziteta sile od puta je F = F (s). Uočimo podelu
P = {s0, s1, . . . , sn} sa izabranom tačkom ξ intervala, tj. puta [a, b] (a i b su

koordinate tačaka A i B respektivno). Rad sile ~F na intervalu [si−1, si ] je približno
n∑

i=1

F (ξi )∆si ,∆si = si − si−1. Dakle, rad sile intenziteta F konstantnog pravca na

pravolinijskom putu približno je jednak integralnoj sumi.

Definicija

Broj I je limes (granična vrednost) integralnih suma I (f ,P , ξ) funkcije
f : [a, b] → R za λ(P) → 0, pǐsemo

lim
λ(P)→0

I (f ,P , ξ) = I ,

ako za svako ε > 0 postoji δ > 0, takvo da za svaku podelu P i svaku izabranu
tačku ξ ∈ ξ(P), kada je λ(P) < δ, važi nejednakost

|I (f ,P , ξ)− I | < ε.
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Ako postoji
lim

λ(P)→0
I (f ,P , ξ) = I

tada

f (x) je integrabilna u Rimanovom smislu nad [a, b]

I se naziva Rimanov ili odredeni integral funkcije f (x) nad [a, b],

I =

b∫

a

f (x) dx

a je donja granica integrala, b je gornja granica integrala

f (x) je podintegralna funkcija

f (x) dx je podintegralni izraz

x je integraciona promenljiva

R[a, b] skup svih integrabilnih funkcija nad [a,b] (u Rimanovom smislu)
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Primer

Pokazati da je I =
b∫

a

cdx = c(b − a).

Posmatrajmo funkciju f (x) = c , x ∈ [a, b]. Neka je P = {x0, x1, . . . , xn},
ξ = {ξ0, ξ1, . . . , ξn} proizvoljna podela sa izabranom tačkom. Tada je f (ξi ) = c ,
i = 1, 2, . . . , n, pa je

I (f ,P , ξ) =

n∑

i=1

f (ξi )∆xi =

n∑

i=1

c∆xi = c(b − a).

Dakle,
lim

λ(P)→0
I (f ,P , ξ) = c(b − a),

tj.
b∫

a

cdx = c(b − a).
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Primer

Pokazati da za Dirihleovu funkciju χ(x) =

{
1, x ∈ Q

0, x ∈ R \Q ne postoji odredeni

integral ni nad jednim zatvorenim intervalom [a, b].

Neka su a, b ∈ R proizvoljni, a < b. Uzmimo proizvoljnu podelu
P = {x0, x1, . . . , xn} intervala [a, b] i dve izabrane tačke

ξ = {ξ0, ξ1, . . . , ξn} i ξ′ = {ξ′0, ξ′1, . . . , ξ′n},

takve da je ξi ∈ [xi−1, xi ] iracionalan, a ξ
′
i ∈ [xi−1, xi ] racionalan broj,

i = 1, 2, . . . , n. Tada

I (f ,P , ξ) =

n∑

i=1

0 ·∆xi = 0, I (f ,P , ξ′) =
n∑

i=1

1 ·∆xi = b − a,

pa lim
λ(P)→0

I (f ,P , ξ) ne postoji.
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Teorema

Potreban uslov da funkcija f (x) bude integrabilna nad intervalom [a, b] je da
funkcija f (x) bude ograničena nad [a, b].

Dokaz. Neka je funkcija f (x) definisana i neograničena nad intervalom [a, b]. Za
proizvoljnu podelu P = {x0, . . . , xn} postoji interval

[xk−1, xk ], k ∈ {1, . . . , n}

takav da funkcija f (x) na njemu nije ograničena.

Na intervalima
[xi−1, xi ], i ∈ {1, . . . , k − 1, k + 1, . . . , n}

proizvoljno izaberimo tačke ξi i sa I k označimo zbir

I k =
∑

i 6=k

f (ξi ) ·∆xi .
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Neka je M proizvoljno velik broj. Zbog neograničenosti funkcije f (x) nad
intervalom [xk−1, xk ], postoji tačka ξk ∈ [xk−1, xk ], takva da je

|f (ξk )| ≥
|I k |+M

∆xk
, odakle sledi da je |f (ξk)|∆xk ≥ |I k |+M .

Za integralnu sumu sada važi

|I (f ,P, ξ)| =
∣

∣

∣

∣

∣

n
∑

i=1

f (ξi) ·∆xi

∣

∣

∣

∣

∣

=
∣

∣

∣
I
k + f (ξk)∆xk

∣

∣

∣
≥ |f (ξk)|∆xk − |I k | ≥ M.

Izaberimo niz {Mk} takav da Mk → ∞, kada k → ∞. Za datu podelu P i za
svako k ∈ N postoji ξ tako da je I (f ,P , ξ) ≥ Mk , pa

lim
λ(P)→0

I (f ,P , ξ)

ne postoji i f (x) nije integrabilna. �
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Neka je f (x) definisana i ograničena funkcija nad [a, b] i P = {x0, . . . , xn} njegova
podela. Uvedimo oznake

mi = inf
x∈[xi−1,xi ]

f (x), m = inf
x∈[a,b]

f (x)

Mi = sup
x∈[xi−1,xi ]

f (x), M = sup
x∈[a,b]

f (x)

s = s(f ,P) =
n∑

i=1

mi∆xi donja Darbuova suma za f (x) nad [a, b]

S = S(f ,P) =
n∑

i=1

Mi∆xi gornja Darbuova suma za f (x) nad [a, b]

Teorema

Za integralnu i Darbuove sume ograničene funkcije f (x) nad intervalom [a, b] važi

m(b − a) ≤ s(f ,P) ≤ I (f ,P , ξ) ≤ S(f ,P) ≤ M(b − a)

inf
ξ∈ξ(P)

I (f ,P , ξ) = s(f ,P); sup
ξ∈ξ(P)

I (f ,P , ξ) = S(f ,P).

444 / 569



Odredjeni integral Pojam odredjenog integrala

Takode važe tvrdenja:

1) P ⊂ P ′ ⇒ s(f ,P) ≤ s(f ,P ′) ≤ S(f ,P ′) ≤ S(f ,P)

Dokaz. Tvrdenje je dovoljno pokazati u slučaju da se P i P ′ razlikuju za jednu
tačku. Neka je P = {x0, . . . , xn} i P ′ = P ∪ {x ′}, xk−1 < x ′ < xk . Neka je
sk =

∑

i 6=k

mi∆xi . Tada je

s(f ,P) = sk +mk(xk − xk−1)
s(f ,P ′) = sk +m′

k(x
′ − xk−1) +m′′

k (xk − x ′),

gde je
m′

k = inf
x∈[xk−1,x′]

f (x), m′′
k = inf

x∈[x′,xk ]
f (x).

Kako je mk = min{m′
k ,m

′′
k }, to je

mk(xk − xk−1) = mk(xk − x ′ + x ′ − xk−1)
= mk(xk − x ′) +mk(x

′ − xk−1)
≤ m′′

k (xk − x ′) +m′

k(x
′ − xk−1),

odakle sledi s(f ,P) ≤ s(f ,P ′) (ostalo slično). �
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2) s(f ,P) ≤ S(f ,P ′) za proizvoljne podele P , P ′

Dokaz. Za proizvoljne podele P i P ′ intervala [a, b] neka je P ′′ = P ∪ P ′. Tada je
P ⊂ P ′′ i P ′ ⊂ P ′′ pa je

s(f ,P) ≤ s(f ,P ′′) ≤ S(f ,P ′′) ≤ S(f ,P ′).

�

3) Postoje sup
P∈P∗

s(f ,P) i inf
P∈P∗

S(f ,P).

Dokaz. Skup
{s(f ,P) : P ∈ P∗}

je ograničen sa gornje strane, a skup

{S(f ,P) : P ∈ P∗}

je ograničen sa donje strane, pa zbog prethodno pokazane nejednakosti
sup
P∈P∗

s(f ,P) i inf
P∈P∗

S(f ,P) postoje. �
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sup
P∈P∗

s(f ,P) = I∗ je donji Darbuov integral za f (x) nad [a, b]

inf
P∈P∗

S(f ,P) = I ∗ je gornji Darbuov integral za f (x) nad [a, b]

Za svaku podelu P intervala [a, b] važi

m(b − a) ≤ s(f ,P) ≤ I∗ ≤ I ∗ ≤ S(f ,P) ≤ M(b − a).

Ako je f : [a, b] → R ograničena nad zatvorenim intervalom [a, b] tada je

I∗ = lim
λ(P)→0

s(f ,P) ≤ I ∗ = lim
λ(P)→0

S(f ,P).

f : [a, b] → R je integrabilna ako i samo ako važi I∗ = I ∗.
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Teorema

Neka je funkcija f (x) ograničena nad intervalom [a, b]. Funkcija f (x) je
integrabilna nad [a, b] ako i samo ako

(∀ε > 0) (∃δ > 0) (∀P ∈ P∗) λ(P) < δ ⇒ S(f,P)− s(f,P) < ε.

Dokaz.(⇐) Iz pretpostavke i niza nejednakosti s(f ,P) ≤ I∗ ≤ I ∗ ≤ S(f ,P)
dobijamo da se donji i gornji Darbuov integral funkcije f (x) poklapaju: I∗ = I ∗.
Označimo njihovu zajedničku vrednost sa I . Tada je

s(f ,P) ≤ I ≤ S(f ,P).

Sa druge strane, za proizvoljnu tačku ξ podele P važi

s(f ,P) ≤ I (f ,P , ξ) ≤ S(f ,P).

Iz poslednje dve relacije i početne pretpostavke sledi da je |I (f ,P , ξ)− I | < ε ako
je podela P ∈ P∗[a, b] takva da je λ(P) < δ, što znači da je funkcija f (x)

integrabilna i I =
b∫

a

f (x)dx . �
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Odredjeni integral Pojam odredjenog integrala

Definicija

Ako je funkcija f (x) definisana u tački a onda je

a∫

a

f (x)dx = 0.

Ako je a < b i
b∫

a

f (x)dx postoji onda je

a∫

b

f (x)dx = −
b∫

a

f (x)dx .
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Odredjeni integral Integrabilnost nekih klasa funkcija

Integrabilnost nekih klasa funkcija

Teorema

Ako je funkcija f : [a, b] → R neprekidna nad [a, b] ona je nad tim intervalom i
integrabilna.

Dokaz. Iz neprekidnosti funkcije f (x) nad intervalom [a, b] sledi njena uniformna
neprekidnost, što znači da za svako ε > 0 postoji δ > 0 tako da

x ′, x ′′ ∈ [a, b], |x ′ − x ′′| < δ ⇒ |f (x ′)− f (x ′′)| < ε

b − a
.

Izaberimo proizvoljnu podelu P = {x0, . . . , xn} intervala [a, b] za koju je λ(P) < δ.
Tada važi

Mi −mi <
ε

b − a
, i = 1, 2, . . . , n

jer postoje tačke ξ1i , ξ
2
i ∈ [xi−1, xi ] sa osobinom f (ξ2i ) = Mi , f (ξ

1
i ) = mi , pa je

Mi −mi = f (ξ2i )− f (ξ1i ) <
ε

b−a
. To znači da je

S(f ,P)− s(f ,P) =

n∑

i=1

(Mi −mi )∆xi <
ε

b − a
(b − a) = ε.

�
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Odredjeni integral Integrabilnost nekih klasa funkcija

Još dve klase integrabilnih funkcija:

Teorema

Ako je funkcija f : [a, b] → R ograničena nad intervalom [a, b] i nad njim ima
konačan broj prekida ona je nad tim intervalom i integrabilna.

Teorema

Ako je funkcija f : [a, b] → R monotona nad intervalom [a, b] ona je nad tim
intervalom i integrabilna.
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Odredjeni integral Integrabilnost nekih klasa funkcija

Napomena

Ograničena funkcija može da ima i beskonačan broj prekida, a da bude
integrabilna, jer važi

Teorema Lebega: Ograničena funkcija F : [a, b] → R je integrabilna nad
zatvorenim intervalom [a, b] ako i samo ako je skup prekida date funkcije nad
zatvorenim intervalom [a, b] mere nula.

Rimanova funkcija

f (x) =

{
1
n
, x = m

n
,m ∈ Z, n ∈ N, nzd(m, n) = 1

0, x ∈ R \Q

neprekidna je za svako x iracionalan broj, a prekidna u svim racionalnim tačkama,
mere nula, pa je integrabilna, na primer nad zatvorenim intervalom [−1, 1].
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Odredjeni integral Integrabilnost nekih klasa funkcija

Napomena

Posmatrajmo skup racionalnih tačaka iz zatvorenog intervala [0, 1] poredan u niz
A = {an} i neka je a1 = 0. Funkcija

f (x) =
∑

an<x

1

n2
, x ∈ [0, 1]

je očigledno monotono rastuća, ograničena i naprekidna u svim iracionalnim
tačkama datog intervala, a prekidna u svim racionalnim tačkama iz posmatranog
intervala, te je time integrabilna nad posmatranim intervalom [0, 1].
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Odredjeni integral Integrabilnost nekih klasa funkcija

Teorema

1. Ako je f (x) = 0 za svako x ∈ [a, b], tada je
b∫

a

f (x)dx =
b∫

a

0dx = 0.

2. Ako postoji konačan skup različitih tačaka c1, . . . , ck ∈ [a, b] takav da je

g(x) =

{
0, x ∈ [a, b] \ {c1, . . . , ck}
Ai , x = ci , i ∈ {1, 2, . . . k}, Ai 6= 0

tada je
b∫

a

g(x) dx = 0.
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Odredjeni integral Veza izmedju odredjenog i neodredjenog integrala

Veza izmedu odredenog i neodredenog integrala

Njutn-Lajbnicova formula

Ako je funkcija f (x) integrabilna nad zatvorenim intervalom [a, b] i ako funkcija
f (x) ima primitivnu funkciju F (x) nad intervalom [a, b], tada je

∫ b

a

f (x)dx = F (b)− F (a) = F (x)
∣
∣
∣

b

a
.

Dokaz. Posmatrajmo realnu funkciju F (x) nad intervalom [a, b]. Ona je
neprekidna i ima izvod nad intervalom [a, b]. Uzmimo da je P = {x0, x1, . . . , xn}
proizvoljna podela intervala [a, b].
Primenjujući Lagranžovu teoremu (teoremu o srednjoj vrednosti) na svakom
podintervalu [xi−1, xi ], i ∈ {1, 2, . . . , n} dobijamo

F (x1)− F (a) = F ′(ξ1)(x1 − a) = f (ξ1)∆x1, ξ1 ∈ (a, x1)
F (x2)− F (x1) = F ′(ξ2)(x2 − x1) = f (ξ2)∆x2, ξ2 ∈ (x1, x2)

...
F (b)− F (xn−1) = F ′(ξn)(b − xn−1) = f (ξn)∆xn, ξn ∈ (xn−1, b)
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Odredjeni integral Veza izmedju odredjenog i neodredjenog integrala

Ako saberemo gornje jednakosti, dobijamo

F (b)− F (a) =

n∑

i=1

f (ξi )∆xi ,

čija je desna strana jedna integralna suma I (f ,P , ξ), ξ = (ξ1, ξ2, . . . , ξn) funkcije
f (x).

Kako je funkcija f (x) integrabilna nad intervalom [a, b] to je

b∫

a

f (x)dx = lim
λ(P)→0

I (f ,P , ξ)

= lim
λ(P)→0

n∑

i=1

f (ξi )∆xi

= lim
λ(P)→0

(F (b)− F (a))

= F (b)− F (a).

�
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Odredjeni integral Veza izmedju odredjenog i neodredjenog integrala

Primer

Odrediti lim
n→∞

(
1

n+ 1
+

1

n + 2
+ · · ·+ 1

2n

)

.

Posmatrajmo niz s opštim članom an =

n∑

i=1

1

n + i
. Kako je

n∑

i=1

1

n + i
=

n∑

i=1

1

1 + i
n

1

n
integralna suma za funkciju f (x) =

1

1 + x
nad

zatvorenim intervalom [0, 1], ako posmatramo ekvidistantnu podelu
P = {0, 1

n
, 2
n
, . . . , n−1

n
, 1} zatvorenog intervala [0, 1], ∆xi =

1
n
, ξi =

i
n
, to je

lim
n→∞

n∑

i=1

1

n + i
=

1∫

0

dx

1 + x
= ln(1 + x)

∣
∣
∣

1

0
= ln 2− ln 1 = ln 2.
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Odredjeni integral Veza izmedju odredjenog i neodredjenog integrala

Primer

Funkcija

f (x) =

{

2x sin
1

x2
− 2

x
cos

1

x2
, x 6= 0

0 , x = 0

nije integrabilna nad zatvorenim intervalom [−1, 1], a nad tim intervalom jedna
njena primitivna funkcija je na primer funkcija

F (x) =

{

x2 sin
1

x2
, x 6= 0

0 , x = 0
.
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Odredjeni integral Neke osobine odredjenog integrala

Ako je funkcija f (x) integrabilna nad zatvorenim intervalom [a, b], tj.
f ∈ R[a, b], tada je ona integrabilna i nad svakim zatvorenim podintervalom
[c , d ] intervala [a, b].

(linearnost integrala) Ako f , g ∈ R[a, b] tada i f ± g ∈ R[a, b], αf ∈ R[a, b],
α ∈ R i važi

b
∫

a

(f (x)± g(x))dx =
b
∫

a

f (x)dx ±
b
∫

a

g(x)dx

b
∫

a

αf (x)dx = α
b
∫

a

f (x)dx .

Ako je f ∈ R[a, b] i ako se funkcija g : [a, b] → R razlikuje u konačnom broju
tačaka od funkcije f (x) tada je i g ∈ R[a, b] i važi

b∫

a

f (x)dx =

b∫

a

g(x)dx .
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Odredjeni integral Neke osobine odredjenog integrala

Ako f , g ∈ R[a, b] tada f · g ∈ R[a, b], |f| ∈ R[a, b],
1

f
∈ R[a, b] uz uslov

|f (x)| ≥ α > 0 za x ∈ [a, b].

(aditivnost integrala) Neka su a, b, c ∈ R krajevi tri zatvorena intervala. Ako
je f integrabilna na najvećem od ovih intervala onda je ona integrabilna i na
ostala dva. Pri tom važi

b∫

a

f (x)dx =

c∫

a

f (x)dx +

b∫

c

f (x)dx .

(monotonost i procena integrala) Ako je f ∈ R[a, b], a < b i f (x) ≥ 0,
x ∈ [a, b] tada je i

b∫

a

f (x)dx ≥ 0.
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Odredjeni integral Neke osobine odredjenog integrala

Ako je f (x) ≤ g(x), x ∈ [a, b], a < b, f , g ∈ R[a, b] onda je

b∫

a

f (x)dx ≤
b∫

a

g(x)dx .

Neka je f : [a, b] → R integrabilna i nenegativna (nepozitivna) funkcija. Ako
postoji tačka c ∈ [a, b] takva da je f (c) > 0 (f (c) < 0) u kojoj je funkcija
neprekidna ako c ∈ (a, b), a neprekidna sa leve (desne) strane ako je c = b
(c = a), onda je

b∫

a

f (x)dx > 0

(
∫ b

a

f (x)dx < 0

)

.

Ako je f ∈ R[a, b], a < b onda važi nejednakost

∣
∣
∣
∣
∣
∣

b∫

a

f (x)dx

∣
∣
∣
∣
∣
∣

≤
∫ b

a

|f (x)| dx ≤ (b − a) sup
x∈[a,b]

|f (x)| .
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Odredjeni integral Neke osobine odredjenog integrala

Primer

Naći odredeni integral funkcije f (x) =

{
x , x ≤ 0
5 , x > 0

nad [−1, 2].

Funkcija f (x) je neprekidna u svim tačkama intervala [−1, 2] osim u 0 gde ima
prekid prve vrste, pa je ona integrabilna nad [−1, 2] ali nema primitivnu funkciju
pa se ne može primeniti Njutn-Lajbnicova formula. Kako je
2∫

−1

f (x)dx =
0∫

−1

f (x)dx +
2∫

0

f (x)dx i

0∫

−1

f (x)dx =
0∫

−1

xdx = x2

2

∣
∣0−1 = − 1

2 ,
2∫

0

f (x)dx =
2∫

0

5dx = 5x
∣
∣2
0 = 10 (f (x) = x i

g(x) = 5 se razlikuju nad intervalom [0, 2] samo u jednoj tački jer je f (0) = 0,
g(0) = 5, pa imaju isti odredeni integral), to je

2∫

−1

f (x)dx = − 1
2 + 10 = 19

2 .
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Odredjeni integral Neke osobine odredjenog integrala

Teorema o srednjoj vrednosti:

Teorema

Neka f , g ∈ R[a, b], a < b, m = inf
x∈[a,b]

f (x), M = sup
x∈[a,b]

f (x) i

g(x) ≥ 0(g(x) ≤ 0), za x ∈ [a, b]. Tada postoji m ≤ η ≤ M , takvo da je

b∫

a

f (x)g(x)dx = η

b∫

a

g(x)dx .

Ako je još i f ∈ C 0[a, b] (C 0[a, b] je skup svih neprekidnih funkcija nad intervalom
[a, b]), onda postoji c ∈ [a, b] takvo da je

b∫

a

f (x)g(x)dx = f (c)

b∫

a

g(x)dx .
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Odredjeni integral Neke osobine odredjenog integrala

Neke osobine odredenog integrala

Dokaz. Bez ograničenja opštosti može se pretpostaviti da je funkcija g(x)
nenegativna. Tada iz m ≤ f (x) ≤ M sledi

mg(x) ≤ f (x)g(x) ≤ Mg(x), x ∈ [a, b].

Integracijom se dobija

m
b∫

a

g(x)dx ≤
b∫

a

f (x)g(x)dx ≤ M
b∫

a

g(x)dx , x ∈ [a, b].

Ako je
b∫

a

g(x)dx = 0, onda je
b∫

a

f (x)g(x)dx = 0, pa jednakost važi.

Ako je
b∫

a

g(x)dx > 0, onda je m ≤
b∫

a

f (x)g(x)dx

b∫

a

g(x)dx

≤ M , pa se može uzeti

η =

b∫

a

f (x)g(x)dx

b∫

a

g(x)dx

. �
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Odredjeni integral Neke osobine odredjenog integrala

Posledica

Neka f ∈ R[a, b], m = inf
x∈[a,b]

f (x), M = sup
x∈[a,b]

f (x). Tada postoji m ≤ η ≤ M ,

takvo da je
b∫

a

f (x)dx = η(b − a).

Ako je f ∈ C 0[a, b] onda postoji c ∈ [a, b] takvo da je
b∫

a

f (x)g(x)dx = f (c)(b − a).
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Odredjeni integral Odredjeni integral kao funkcija granice

Odredeni integral kao funkcija granice

f (x) je integrabilna nad [A,B], a ∈ [A,B] proizvoljna tačka. Za x ∈ [A,B] :

I (x) =
x∫

a

f (t)dt je integral sa promenljivom gornjom granicom

I1(x) =
a∫

x

f (t)dt je integral sa promenljivom donjom granicom

Teorema

Neka f , g ∈ R[A,B] i I (x) =
x∫

a

f (t)dt, x ∈ [A,B], a ∈ [A,B]. Tada važi:

1) I (x) je neprekidna funkcija nad [A,B]

2) Ako je funkcija f (x) neprekidna u tački x ∈ (A,B] (x ∈ [A,B)) sa leve
(desne) strane, tada funkcija I (x) ima levi (desni) izvod u tački x . Pri tome
važi

I ′−(x) = f (x), (I ′+(x) = f (x)).
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Odredjeni integral Odredjeni integral kao funkcija granice

Dokaz. Dokazaćemo 2), za slučaj kad je funkcija f (x) neprekidna nad intervalom
[A,B] i x ∈ (A,B). Kako je

I ′(x) = lim
∆x→0

I (x +∆x)− I (x)

∆x
= lim

∆x→0

x+∆x∫

x

f (t)dt

∆x
,

to na osnovu teoreme o srednjoj vrednosti za integrale, zbog neprekidnosti funkcije
f (x) sledi da postoji tačka ξ ∈ [x , x +∆x ] ⊂ [A,B], za ∆x > 0, odnosno
ξ ∈ [x +∆x , x ] ⊂ [A,B], za ∆x < 0, tako da je

I ′(x) = lim
∆x→0

f (ξ)
x+∆x∫

x

dt

∆x
= lim

∆x→0

∆xf (ξ)

∆x
= lim

∆x→0
f (ξ) = f (x).

�
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Odredjeni integral Odredjeni integral kao funkcija granice

Za funkciju I1(x) pod istim uslovima važi

I1(x) je neprekidna nad intervalom [A,B],

I1−
′(x) = (−I−(x))′ = −I ′−(x) = −f (x), x ∈ (A,B],

I1+
′(x) = (−I+(x))

′ = −I ′ +−(x) = −f (x), x ∈ [A,B).

Posledica

Ako je f (x) neprekidna funkcija nad [A,B] tada funkcija I (x) ima izvod nad
intervalom [A,B], pri čemu važi I ′(x) = f (x), x ∈ [A,B].

Posledica

Ako je funkcija f (x) neprekidna nad intervalom I , tada je funkcija

F (x) =
x∫

a

f (t)dt, pri čemu je a proizvoljna tačka iz intervala I , primitivna funkcija

funkcije f (x) nad I .
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Odredjeni integral Odredjeni integral kao funkcija granice

Primer

Naći lim
x→∞

x∫

1

2+ln t
3+ln t dt

x
.

Kako je funkcija f (x) =
2 + ln x

3 + ln x
neprekidna za x ≥ 1, to postoji tačka ξ ∈ [1, x ]

tako da je
x∫

1

2 + ln t

3 + ln t
dt = (x − 1)

2 + ln ξ

3 + ln ξ
.

Kako je f (x) =
2 + ln x

3 + ln x
monotono rastuća i lim

x→∞
2 + ln x

3 + ln x
= 1, f (1) =

2

3
, sledi

da f (x) =
2 + ln x

3 + ln x
∈
[
2

3
, 1

]

, za x ≥ 1.
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Odredjeni integral Odredjeni integral kao funkcija granice

Sledi da
x∫

1

2 + ln t

3 + ln t
dt = (x − 1)

2 + ln ξ

3 + ln ξ
→ ∞, x → ∞.

Primenom Lopitalovog pravila dobijamo da je

lim
x→∞

x∫

1

2+ln t
3+ln t dt

x
= lim

x→∞

2+ln x
3+ln x

1
= 1.

�
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Odredjeni integral Parcijalna integracija i smena promenljive

Parcijalna integracija i smena promenljive

Teorema

Neka funkcije u(x), v(x) imaju neprekidne izvode nad [a, b]. Tada važi

b∫

a

u(x)dv(x) = u(x)v(x)
∣
∣
∣

b

a
−

b∫

a

v(x)du(x).

Teorema

Neka je funkcija f : [A,B] → R neprekidna, a funkcija ϕ : [α0, β0] → [A,B] ima
neprekidan izvod. Ako je α ∈ [α0, β0], β ∈ [α0, β0], a = ϕ(α), b = ϕ(β), onda
važi jednakost

b∫

a

f (x)dx =

β∫

α

f (ϕ(t)) ϕ′(t) dt.
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Odredjeni integral Parcijalna integracija i smena promenljive

Dokaz. neka je F (x) primitivna funkcija funkcije f (x), x ∈ [A,B]. Za složenu
funkciju (F ◦ ϕ)(t) = F (ϕ(t)), t ∈ [α0, β0] imamo

d

dt
F (ϕ(t)) = F ′

ϕ · ϕ′
t = f (ϕ(t)) · ϕ′(t).

Dakle, za α0 ≤ t ≤ β0 funkcija F (ϕ(t)) je primitivna funkcija funkcije
f (ϕ(t)) · ϕ′(t) pa je prema Njutn-Lajbnicovoj formuli

β∫

α

f (ϕ(t)) · ϕ′(t)dt = F (ϕ(β)) − F (ϕ(α)) = F (b)− F (a).

Sa druge strane, iz F ′(x) = f (x) sledi

b∫

a

f (x)dx = F (b)− F (a).

�
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Odredjeni integral Primena odredjenog integrala

Primena odredenog integrala

POVRŠINA RAVNIH FIGURA

pravougle koordinate: y = f (x) je neprekidna i nenegativna za x ∈ [a, b]

P =

∫ b

a

f (x) dx

parametarski oblik:

{
x = ϕ(t),
y = ψ(t)

, t ∈ [α, β]

ϕ(t) ima neprekidan izvod nad [α, β]
ϕ(t) monotono rastuća nad [α, β]
ψ(t) neprekidna nad [α, β]
ψ(t) ≥ 0, t ∈ [α, β]

P =

∫ β

α

ψ(t) ϕ′(t) dt

polarne koordinate: ρ = ρ(ϕ) neprekidna, α ≤ ϕ ≤ β, |β − α| ≤ 2π

P =
1

2

∫ β

α

ρ2(ϕ) dϕ
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Odredjeni integral Primena odredjenog integrala

DUŽINA LUKA RAVNE KRIVE

pravougle koordinate: y = f (x), ima neprekidan izvod nad [a, b]

s =

∫ b

a

√

1 + f ′2(x) dx

parametarski oblik:

{
x = ϕ(t),
y = ψ(t)

, t ∈ [α, β]

ϕ(t), ψ(t) imaju neprekidan izvod nad [α, β]
ϕ′(t) > 0 nad [α, β]

s =

∫ β

α

√

ψ′2(t) + ϕ′2(t) dt =

∫ β

α

√

x ′2(t) + y ′2(t) dt

polarne koordinate: ρ = ρ(ϕ), α ≤ ϕ ≤ β, ρ ima neprekidan prvi izvod nad
[α, β]

s =

∫ β

α

√

ρ2(ϕ) + ρ′2(ϕ) dϕ
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Odredjeni integral Primena odredjenog integrala

ZAPREMINA OBRTNIH TELA

pravougle koordinate: y = f (x) neprekidna nad [a, b]

V = π

∫ b

a

f 2(x) dx

parametarski oblik:

{
x = ϕ(t),
y = ψ(t)

, t ∈ [α, β]

ϕ(t) ima neprekidan izvod nad [α, β]
ϕ(t) monotono rastuća nad [α, β]
ψ(t) neprekidna nad [α, β]
ψ(t) ≥ 0, t ∈ [α, β]

V = π

∫ β

α

ψ2(t)ϕ′(t) dt

polarne koordinate: ρ = ρ(ϕ) ≥ 0, α ≤ ϕ ≤ β, ρ ima neprekidan prvi izvod
nad [α, β] ⊂ [0, π]

V =
2π

3

∫ β

α

ρ3(ϕ) sinϕdϕ
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Odredjeni integral Primena odredjenog integrala

POVRŠINA OMOTAČA OBRTNIH TELA

pravougle koordinate: y = f (x) ≥ 0 i ima neprekidan prvi izvod nad [a, b]

S = 2π

∫ b

a

f (x)
√

1 + f ′2(x) dx

parametarski oblik:

{
x = ϕ(t),
y = ψ(t)

, t ∈ [α, β]

ϕ(t) i ψ(t) imaju neprekidan prvi izvod nad [α, β]
ϕ′(t) > 0 nad [α, β]
ψ(t) ≥ 0, t ∈ [α, β]

S = 2π

∫ β

α

ψ(t)
√

ψ′2(t) + ϕ′2(t) dt

polarne koordinate: ρ = ρ(ϕ), α ≤ ϕ ≤ β ⊂ [0, π], ρ ima neprekidan prvi
izvod nad [α, β]

P = 2π

∫ β

α

ρ(ϕ)
√

ρ2(ϕ) + ρ′2(ϕ) sinϕdϕ
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Nesvojstveni integral

MOTIVACIJA (geometrijska interpretacija)

T∫

a

f (x)dx , f (x) ≥ 0 predstavlja povřsinu ravnog lika ograničenog x-osom, pravama

x = a, x = T i lukom krive y = f (x) nad intervalom [a,T ]. Prirodno bi bilo
povřsinu lika ograničenog x-osom, pravom x = a i lukom krive y = f (x) nad

intervalom [a,∞) definisati kao
∞∫

a

f (x)dx .
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Nesvojstveni integral Nesvojstveni integral I vrste

Nesvojstveni integral I vrste

Definicija

Neka je funkcija f (x) definisana nad [a,∞) i integrabilna nad svakim zatvorenim
intervalom [a,T ] ⊂ [a,∞). Nesvojstveni integral funkcije f (x) nad intervalom
[a,∞), u oznaci

∫

[a,∞)

f (x)dx je funkcija F (T ) definisana sa

F (T ) =

T∫

a

f (x)dx , T ≥ a.

Ako postoji A = lim
T→∞

F (T ) = lim
T→∞

T∫

a

f (x)dx , u oznaci
∞∫

a

f (x)dx , tada

nesvojstveni integral
∫

[a,∞)

f (x) dx konvergira ka broju A. Ako granična vrednost

lim
T→∞

F (T ) ne postoji, tada nesvojstveni integral
∫

[a,∞)

f (x) dx divergira.
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Nesvojstveni integral Nesvojstveni integral I vrste

Definicija

Neka je funkcija f (x) definisana nad (−∞, a] i integrabilna nad svakim zatvorenim
intervalom [T , a] ⊂ (−∞, a]. Nesvojstveni integral funkcije f (x) nad intervalom
(−∞, a], u oznaci

∫

(−∞,a]

f (x)dx je funkcija F (T ) definisana sa

F (T ) =

a∫

T

f (x)dx , T ≤ a.

Ako postoji B = lim
T→−∞

F (T ) = lim
T→−∞

a∫

T

f (x), u oznaci
a∫

−∞
f (x)dx , tada

nesvojstveni integral
∫

(−∞,a]

f (x)dx konvergira ka broju B. Ako granična vrednost

lim
T→−∞

F (T ) ne postoji, tada nesvojstveni integral
∫

(−∞,a]

f (x)dx divergira.
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Nesvojstveni integral Nesvojstveni integral I vrste

Definicija

Neka je funkcija f (x) definisana nad intervalom (−∞,∞) i integrabilna nad
svakim zatvorenim intervalom [M ,N ] ⊂ (−∞,∞). Nesvojstveni integral funkcije
f (x) nad intervalom (−∞,∞), u oznaci

∫

(−∞,∞)

f (x)dx , je ureden par

(

∫

(−∞,a]

f (x)dx ,
∫

[a,∞)

f (x)dx

)

nesvojstvenih integrala

∫

(−∞,a]

f (x)dx ,
∫

[a,∞)

f (x)dx , gde je a proizvoljan realan broj. Ako oba ova

nesvojstvena integrala konvergiraju tada nesvojstveni integral
∫

(−∞,∞)

f (x)dx

konvergira i pǐsemo
∞∫

−∞
f (x)dx =

a∫

−∞
f (x)dx +

∞∫

a

f (x)dx . Ukoliko bar jedan od

njih divergira tada i nesvojstveni integral
∫

(−∞,∞)

f (x)dx divergira.
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Nesvojstveni integral Nesvojstveni integral I vrste

Nesvojstvene integrale
∞∫

−∞
f (x)dx ,

a∫

−∞
f (x)dx ,

∞∫

a

f (x)dx jednim imenom

zovemo nesvojstveni integral prve vrste.

Primer

Ispitati konvergenciju nesvojstvenog integrala Iα =
∫

[1,∞)

dx
xα
, α ∈ R.

Rešenje. Po definiciji treba posmatrati

lim
T→∞

T∫

1

dx

xα
=

1

1− α

(

lim
T→∞

T 1−α − 1

)

, α 6= 1.

1− α < 0 ⇒ T 1−α → 0,T → ∞ ⇒ Iα konvergira ka 1
α−1

1− α > 0 ⇒ T 1−α → ∞,T → ∞ ⇒ Iα divergira

α = 1 ⇒
T
∫

1

dx
x
= lnT → ∞,T → ∞ ⇒ Iα divergira

Dakle, Iα konvergira za α > 1, a divergira za α ≤ 1.
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Nesvojstveni integral Nesvojstveni integral I vrste

Ako postoji, granična vrednost

lim
T→∞

T∫

−T

f (x)dx = V .P .
∫

(−∞,∞)

f (x)dx

naziva se glavna vrednost integrala.

Ako nesvojstveni integral
∫

(−∞,∞)

f (x)dx konvergira, tada postoji

V .P .
∫

(−∞,∞)

f (x)dx i važi jednakost

∞∫

−∞
f (x)dx = V .P .

∫

(−∞,∞)

f (x)dx .

Može da postoji V .P .
∫

(−∞,∞)

f (x)dx , a da nesvojstveni integral

∫

(−∞,∞)

f (x)dx divergira (sledeći primer).
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Nesvojstveni integral Nesvojstveni integral I vrste

Primer

Ispitati konvergenciju nesvojstvenog integrala I =
∫

(−∞,∞)

2x
1+x2

dx .

Rešenje. I =

(

∫

(−∞,a]

2x
1+x2

dx ,
∫

[a,∞)

2x
1+x2

dx

)

= (I1, I2).

Kako je

lim
T→∞

T∫

a

2x
1+x2

dx = lim
T→∞

ln(1 + T 2)− ln(1 + a2) = ∞,

to I2 divergira, pa I divergira. Za glavnu vrednost se dobija

V .P.
∫

(−∞,∞)

2x
1+x2

dx = lim
T→∞

T
∫

−T

2x
1+x2

dx

= lim
T→∞

(ln(1 + T 2)− ln(1 + T 2))

= 0.
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Nesvojstveni integral Nesvojstveni integral II vrste

Nesvojstveni integral II vrste

Definicija

Neka je f (x) definisana nad konačnim intervalom [a, b) i integrabilna nad svakim
zatvorenim intervalom [a, b − ε] ⊂ [a, b), ε > 0. Nesvojstveni integral druge vrste
funkcije f (x) nad intervalom [a, b) u oznaci

∫

[a,b)

f (x)dx je funkcija F (ε) definisana

sa

F (ε) =
b−ε∫

a

f (x)dx , a < b − ε < b.

Ako postoji lim
ε→0+

F (ε) = lim
ε→0+

b−ε∫

a

f (x)dx = A, tada nesvojstveni integral

∫

[a,b)

f (x)dx konvergira ka A. Pǐse se
b∫

a

f (x)dx = lim
ε→0+

b−ε∫

a

f (x)dx = A. Ukoliko

lim
ε→0+

F (ε) ne postoji, nesvojstveni integral
∫

[a,b)

f (x)dx divergira.
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Nesvojstveni integral Nesvojstveni integral II vrste

Primer

Ispitati konvergenciju nesvojstvenog integrala

1∫

0

dx√
1− x2

.

Rešenje.

lim
ε→0+

1−ε∫

0

dx√
1− x2

= lim
ε→0+

(arcsin(1 − ε)− 0)

=
π

2

pa nesvojstveni integral

∫

[0,1)

dx√
1− x2

konvergira ka
π

2
.
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Nesvojstveni integral Nesvojstveni integral II vrste

Definicija

Neka je f (x) definisana nad konačnim intervalom (a, b] i integrabilna nad svakim
zatvorenim intervalom [a+ ε, b] ⊂ (a, b], ε > 0.
Nesvojstveni integral druge vrste funkcije f (x) nad intervalom (a, b] u oznaci
∫

(a,b]

f (x)dx je funkcija F (ε) definisana sa

F (ε) =
b∫

a+ε

f (x)dx , a < a+ ε < b.

Ako postoji lim
ε→0+

F (ε) = lim
ε→0+

b∫

a+ε

f (x)dx = B, tada nesvojstveni integral

∫

(a,b]

f (x)dx konvergira ka B. Pǐse se
b∫

a

f (x)dx = lim
ε→0+

b∫

a+ε

f (x)dx = B. Ukoliko

lim
ε→0+

F (ε) ne postoji, nesvojstveni integral
∫

(a,b]

f (x)dx divergira.
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Nesvojstveni integral Nesvojstveni integral II vrste

Definicija

Neka je f (x) definisana nad konačnim intervalom (a, b) i integrabilna nad svakim
zatvorenim intervalom [m,M ] ⊂ (a, b).
Nesvojstveni integral druge vrste funkcije f (x) nad intervalom (a, b) u oznaci

∫

(a,b)

f (x)dx je ureden par

(

∫

(a,c]

f (x)dx ,
∫

[c,b)

f (x)dx

)

nesvojstvenih integrala

∫

(a,c]

f (x)dx i
∫

[c,b)

f (x)dx , gde je c ∈ (a, b) proizvoljan realan broj. Ako svaki od

nesvojstvenih integrala
∫

(a,c]

f (x)dx i
∫

[c,b)

f (x)dx konvergira, onda nesvojstveni

integral
∫

(a,b)

f (x)dx konvergira i pǐsemo
b∫

a

f (x)dx =
c∫

a

f (x)dx +
b∫

c

f (x)dx , a

ukoliko bar jedan od njih divergira, nesvojstveni integral
∫

(a,b)

f (x)dx divergira.
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Nesvojstveni integral Nesvojstveni integral II vrste

Definicija

Ako je f (x) definisana u svim tačkama intervala (a, b) osim u tački c ∈ (a, b) i
ako su definisani nesvojstveni integrali

∫

(a,c)

f (x)dx i
∫

(c,b)

f (x)dx tada je

nesvojstveni integral druge vrste funkcije f (x) nad intervalom (a, b) u oznaci

∫

(a,b)

f (x)dx ureden par

(

∫

(a,c)

f (x)dx ,
∫

(c,b)

f (x)dx

)

nesvojstvenih integrala

∫

(a,c)

f (x)dx i
∫

(c,b)

f (x)dx . Ako oba nesvojstvena integrala
∫

(a,c)

f (x)dx i
∫

(c,b)

f (x)dx

konvergiraju, onda nesvojstveni integral
∫

(a,b)

f (x)dx konvergira i pǐsemo

b∫

a

f (x)dx =
c∫

a

f (x)dx +
b∫

c

f (x)dx , a ukoliko bar jedan od njih divergira,

nesvojstveni integral
∫

(a,b)

f (x)dx divergira.
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Nesvojstveni integral Nesvojstveni integral II vrste

Definicija

Ako za nesvojstveni integral
∫

(a,b)

f (x)dx postoji granična vrednost

lim
ε→0+

b−ε∫

a+ε

f (x) dx = V .P .
∫

(a,b)

f (x) dx

to je glavna vrednost nesvojstvenog integrala
∫

(a,b)

f (x)dx.

Slično se definǐse i nesvojstveni integral
∫

(a,b)

f (x)dx kada funkcija f (x) nije

definisana u konačnom broju tačaka intervala (a, b).
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Nesvojstveni integral Nesvojstveni integral II vrste

Napomena

Pri definiciji
∫

[a,b)

f (x)dx nismo nǐsta pretpostavili o ponašanju funkcije f (x) u

tački b!

ako f (x) → ±∞, kad x → b−, nesvojstveni integral može da konvergira ili da
divergira

ako postoji lim
x→b−

f (x) = L, nesvojstveni integral može samo da konvergira i

to ka Rimanovom integralu
b∫

a

f1(x)dx funkcije

f1(x) =

{
f (x) , x ∈ [a, b)
L , x = b

,

pa važi jednakost
b∫

a

f (x)dx =
b∫

a

f1(x)dx .
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Nesvojstveni integral Nesvojstveni integral II vrste

Primer

Ispitati konvergenciju nesvojstvenog integrala Iβ =
∫

(0,1]

dx
xβ
.

Rešenje. Za β > 0, f (x) = 1
xβ

→ ∞, x → 0+. Po definiciji je

lim
ε→0

1∫

ε

dx
xβ

= 1
1−β (1 − lim

ε→0
ε−β+1).

−β + 1 > 0 ⇒ ε−β+1 → 0, ε→ 0 ⇒ Iβ konvergira ka 1
1−β

−β + 1 < 0 ⇒ ε−β+1 → ∞, ε→ 0 ⇒ Iβ divergira

β = 1 ⇒
1
∫

ε

dx
x
= − ln ε→ ∞, ε→ 0 ⇒ Iβ divergira

Dakle, Iβ konvergira za β < 1, a divergira za β ≥ 1.
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Nesvojstveni integral Nesvojstveni integral III vrste

Nesvojstveni integral III vrste

Definicija

Neka je funkcija f (x) integrabilna nad svakim zatvorenim intervalom [a+ ε,T ],
ε > 0, T > 0, a+ ε < T <∞. Po definiciji je
∫

(a,∞)

f (x)dx =

(

∫

(a,c]

f (x)dx ,
∫

[c,∞)

f (x)dx

)

, c ∈ (a,∞) nesvojstveni integral treće

vrste funkcije f (x) nad intervalom (a, b).
Ako oba nesvojstvena integrala

∫

(a,c]

f (x)dx i
∫

[c,∞)

f (x)dx (druge i prve vrste,

respektivno) konvergiraju, onda nesvojstveni integral
∫

(a,∞)

f (x)dx konvergira i

pǐsemo
∞∫

a

f (x)dx =
c∫

a

f (x)dx +
∞∫

c

f (x)dx .

Slično se definǐse ostali slučajevi nesvojstvenog integrala treće vrste.
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Nesvojstveni integral Osnovne osobine nesvojstvenog integrala

Osnovne osobine nesvojstvenog integrala

Linearnost nesvojstvenog integrala:

Teorema

Ako
∫

[a,∞)

f (x)dx i
∫

[a,∞)

g(x)dx konvergiraju tada za svako α, β ∈ R važi

∞∫

a

(αf (x)± βg(x)) dx = α

∞∫

a

f (x)dx ± β

∞∫

a

g(x)dx

Parcijalna integracija u nesvojstvenom integralu:

Teorema

Pretpostavimo da
∫

[a,∞)

u(x)v ′(x)dx i
∫

[a,∞)

v(x)u′(x)dx konvergiraju. Tada važi:

∞∫

a

u(x)v ′(x)dx = lim
T→∞

u(T )v(T ) − u(a)v(a)−
∞∫

a

v(x)u′(x)dx .
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Nesvojstveni integral Osnovne osobine nesvojstvenog integrala

Smena promenljive u nesvojstvenom integralu:

Teorema

Neka funkcija t = ϕ(x) ima neprekidan prvi izvod različit od nule nad [a,∞) i
neka nesvojstveni integral

∫

[a,∞)

f (x)dx konvergira. Tada važi

∞∫

a

f (x)dx =

B∫

A

f (φ(t))φ′(t)dt,

A = ϕ(a), B = lim
x→∞

ϕ(x), φ(t) = ϕ−1(x)
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Nesvojstveni integral Kriterijumi konvergencije nesvojstvenog integrala

Kriterijumi konvergencije nesvojstvenog integrala

Košijev kriterijum

Nesvojstveni integral
∫

[a,∞)

f (x)dx konvergira ako i samo ako za svako ε > 0

postoji realan broj T0 > a takav da za svako T ,T ′ takve da je T ′ > T > T0 važi

∣
∣
∣
∣
∣
∣

T ′
∫

T

f (x)dx

∣
∣
∣
∣
∣
∣

< ε.

Navešćemo još neke od kriterijuma konvergencije i to samo za slučaj kad je
podintegralna funkcija f (x) stalnog znaka za x ≥ x0.
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Nesvojstveni integral Kriterijumi konvergencije nesvojstvenog integrala

Uporedni kriterijum

Neka je 0 ≤ f (x) ≤ Mg(x) za x ≥ a,M > 0.
Ako

∫

[a,∞)

g(x)dx konvergira, onda konvergira i integral
∫

[a,∞)

f (x)dx i važi da je

∞∫

a

f (x)dx ≤ M

∞∫

a

g(x)dx .

Obrnuto, ako je 0 ≤ mg(x) ≤ f (x), za x ≥ a, m > 0 i integral
∫

[a,∞)

g(x)dx

divergira tada divergira i
∫

[a,∞)

f (x)dx .
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Nesvojstveni integral Kriterijumi konvergencije nesvojstvenog integrala

Pogodnije za upotrebu:

Teorema

Neko je f (x) > 0 i g(x) > 0 i f (x) ≈ g(x), kada x → ∞, tj. lim
x→∞

f (x)
g(x) = 1.

Tada nesvojstveni integrali
∫

[a,∞)

f (x)dx i
∫

[a,∞)

g(x)dx istovremeno konvergiraju ili

divergiraju.

Primer

Ispitati konvergenciju nesvojstvenog integrala
∫

[1,∞)

x5+x3+8x2

x6+2x+1 dx .

Rešenje. x5+x3+8x2

x6+2x+1 ≈ 1
x
, x → ∞, a kako

∫

[1,∞)

1
x
dx divergira, to i

∫

[1,∞)

x5+x3+8x2

x6+2x+1 dx

divergira.
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Nesvojstveni integral Neke funkcije definisane nesvojstvenim integralom

Neke funkcije definisane nesvojstvenim integralom

Ojlerova gama funkcija:

Γ(x) =

∞∫

0

e−ttx−1dt

definisana je za one x ∈ R za koje nesvojstveni integral
∫

(0,∞)

e−ttx−1dt

konvergira, odnosno za x > 0.

Funkcionalna jednačina za gama funkciju:

Γ(x + 1) = xΓ(x), x > 0.

pokazuje smisao uvodenja gama funkcije - proširuje n! na skup pozitivnih realnih
brojeva; ako stavimo redom x = n, n − 1, . . . , 2, 1 i imamo u vidu da je

Γ(1) =
∞∫

0

e−tdt = 1, dobija se Γ(n + 1) = n!.
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Nesvojstveni integral Neke funkcije definisane nesvojstvenim integralom

Beta funkcija:

B(a, b) =

1∫

0

xa−1(1− x)b−1dx

definisana je za one vrednosti a, b ∈ R za koje nesvojstveni integral
∫

(0,1)

xa−1(1 − x)b−1dx konvergira, odnosno za a > 0 i b > 0.

Veza beta i gama funkcije:

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
.
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Nesvojstveni integral Apsolutna konvergencija nesvojstvenog integrala

Apsolutna konvergencija nesvojstvenog integrala

Definicija

Nesvojstveni integral prve vrste
∫

[a,∞)

f (x)dx konvergira apsolutno ako

∫

[a,∞)

|f (x)|dx konvergira. Nesvojstveni integral koji je konvergentan, ali ne

apsolutno konvergentan konvergira uslovno.

definicija je data za nesvojstveni integral prve vrste, slično se može uraditi za
nesvojstveni integral druge i treće vrste

Teorema

Svaki apsolutno konvergentan integral je i konvergentan (u običnom smislu).
Obrnuto ne mora da važi.
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Diferencijalne jednačine Opšti pojmovi, definicije

Opšti pojmovi, definicije

Diferencijalna jednačina - jednačina koja sadrži bar jedan izvod nepoznate
funkcije jedne ili vǐse promenljivih.

Obična diferencijalna jednačina - nepoznata funkcija je funkcija jedne
promenljive, parcijalna diferencijalna jednačina - nepoznata funkcija je
funkcija vǐse promenljivih.

Red diferencijalne jednačine je red najvǐseg izvoda nepoznate funkcije koji se
javlja.

Sistem (običnih ili parcijalnih) diferencijalnih jednačina je sistem jednačina
kod kog svaka jednačina sadrži bar jedan izvod reda n ∈ N jedne od
nepoznatih funkcija jedne ili vǐse promenljivih, npr.
x ′ = 2x − 3xy , y ′ = −2x + 5xy , x = x(t), y = y(t).

Ako je broj nepoznatih funkcija jednak broju jednačina sistema, sistem je
odreden (naredni primer).
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Diferencijalne jednačine Opšti pojmovi, definicije

Jednačina
tx ′(t) + ty ′′(t) = t2 − 1

može se smatrati neodredenim sistemom (n = 2,m = 1).

Opšti oblik jednačine n-tog reda:

G(x , y , y ′, . . . , y (n)) = 0, n ≥ 0.

Normalni oblik jednačine n-tog reda:

y (n) = F (x , y , y ′, . . . , y (n−1)).

Funkcija y = f (x), definisana i n puta diferencijabilna u intervalu (a, b) je
rešenje jednačine n-tog reda u opštem, tj. normalnom obliku, ako je za svako
x ∈ (a, b)

G(x , f (x), f ′(x), . . . , f (n)(x)) = 0,

odnosno
f (n) = F (x , f (x), f ′(x), . . . , f (n−1)(x)).
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Diferencijalne jednačine Opšti pojmovi, definicije

Rešenje je u implicitnom obliku ako je dato vezom g(x , y) = 0, npr.
x2 + y2 = r2 je implicitno rešenje jednačine x + yy ′ = 0.

Početni (Košijev) problem - Pronaći rešenje jednačine

G(x , y , y ′, . . . , y (n)) = 0

koje zadovoljava početni uslov

y(x0) = α0, y ′(x0) = α1, . . . , y (n−1)(x0) = αn−1,

pri čemu je x0 proizvoljna tačka posmatranog intervala, αi ∈ R su proizvoljni
brojevi, i = 0, . . . , n − 1.

Granični problem - Problem drugog reda: naći rešenje jednačine y = y(x)
jednačine

y ′′ = F (x , y , y ′)

nad intervalom [a, b] koje zadovoljava granični uslov

y(a) = A, y(b) = B.
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Diferencijalne jednačine Opšti pojmovi, definicije

y ′′ + y = 0, y(0) = 1, y(π) = −1

je granični problem koji ima beskonačno mnogo rešenja.

y ′′ + y = 0, y(0) = 1, y(π) = 2

je granični problem koji nema rešenje.

y ′′ + y = 0, y(0) = 1, y
(π

2

)

= 0

je granični problem koji ima jedinstveno rešenje.
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Diferencijalne jednačine Opšti pojmovi, definicije

Modeli:

izvod dy
dx

predstavlja veličinu promene funkcije y(x) u zavisnosti od x , a sve što se
u prirodi dešava je promena

y ′ = ky , y = y(x), k-proizvoljna konstanta - Maltusov zakon rasta populacije

y ′′ − 2xy ′ + 2py = x2, y = y(x), p-proizvoljna konstanta - Ermitova
jednačina čija su rešenja talasne funkcije kvantne mehanike

∂u
∂t = α2 ∂2u

∂x2 , u = (x , t) - jednodimenzionalna jednačina provodenja toplote

d2θ
dt2

+ g
L
sin θ = 0 - jednačina matematičkog klatna (L je dužina klatna, g je

gravitaciona konstanta, θ je uglovno udaljenje od ravnotežnog položaja)
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Diferencijalne jednačine Opšti pojmovi, definicije

N(t)-broj jedinki posmatrane populacije u trenutku t; ako smatramo da je
veličina promene populacije srazmerna broju jedinki dobijamo matematički
model rasta populacije:

N ′(t) = kN(t), k = const.

Tada je N(t) rešenje početnog problema

N ′(t) = kN(t), N(t0) = N0 :

dN
dt

= kN ⇒ dN
N

= kdt ⇒
∫

dN
N

=
∫
kdt ⇒ lnN(t) = kt + c

⇒ N(t) = ekt+c ⇒ N(t) = c1e
kt

t = t0 ⇒ N(t0) = c1e
kt0 , tj. c1 = N0e

−kt0 ,
pa je rešenje posmatranog početnog problema

N(t) = N0e
k(t−t0).
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Diferencijalne jednačine Opšti pojmovi, definicije

Ukoliko matematički model pojave zadovoljava osobine:

postoji rešenje početnog problema,

rešenje početnog problema je jedinstveno,

rešenje početnog problema neprekidno zavisi od početnih uslova

kaže se da je problem korektno postavljen u smislu Adamara.

Kvalitativna analiza - ne samo nalaženje rešenja, već i proučavanje njegovih
osobina na osnovu posmatrane jednačine

ključna tačka postupka rešavanja bila je integracija, odatle se termin
integrala diferencijalne jednačine koristi za njeno rešenje
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Diferencijalne jednačine prvog reda

Diferencijalne jednačine prvog reda

Opšti oblik
G(x , y , y ′) = 0 (5)

Normalni oblik
y ′ = F (x , y) (6)

x je promenljiva, y = y(x) je nepoznata funkcija, y ′ je izvod po promenljivoj,
F ,G poznate funkcije.

y = f (x), definisana i diferencijabilna nad (a, b) je rešenje jednačine (5)
odnosno (6) ako za svako x ∈ (a, b) važi da je

G(x , f (x), f ′(x)) = 0,

odnosno
f ′(x) = F (x , f (x)).
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Diferencijalne jednačine prvog reda

Teorema o egzistenciji i jedinstvenosti rešenja

Neka je F (x , y) neprekidna u zatvorenoj oblasti G :

{
a ≤ x ≤ b
α ≤ y ≤ β

i neka postoji

K > 0 tako da u oblasti G važi
|F (x , y2)− F (x , y1)| ≤ K |y2 − y1| (Lipšicov uslov).

Tada postoji jedinstveno rešenje početnog problema
y ′ = F (x , y), y(x0) = y0, (x0, y0) ∈ G ,

koje je definisano nad intervalom [a′, b′] ⊂ [a, b]. Rešenje je dato sa
y(x) = lim

n→∞
yn(x), gde je {yn(x)} niz sukcesivnih aproksimacija,

definisan rekurzivno sa

y0(x) = y0, yn(x) = y0 +
x∫

x0

F (t, yn−1(t)dt), n = 1, 2, . . .

a′ = max
{

a, x0 − β−y0
M

, x0 − y0−α

M

}

, b′ = min
{

b, x0 +
β−y0
M

, x0 +
y0−α

M

}

,

M = sup
(x,y)∈G

|f (x , y)| > 0
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Diferencijalne jednačine prvog reda

dovoljan uslov za konvergenciju niza je neprekidnost i Lipšicov uslov

neprekidnost i jedinstvenost rešenja ne garantuju konvergenciju niza
sukcesivnih aproksimacija

ako niz konvergira ka nekom rešenju, ono ne mora biti jedinstveno

u praksi se umesto Lipšicovog uslova zahteva da je u oblasti G

∣
∣
∣
∣

∂F

∂y

∣
∣
∣
∣
≤ M .

metoda se koristi u teorijske, a manje u praktične svrhe
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Diferencijalne jednačine prvog reda

Neka je funkcija F (x , y) definisana i neprekidna u oblasti G i neka je y = f (x) je
rešenje jednačine y ′ = F (x , y) nad intervalom (a, b).

(x , y , y ′) je linijski element

skup svih linijskih elemenata je polje pravaca

tangenta rešenja y = f (x) u svakoj tački (x , y) grafika ima koeficijent pravca
y ′ dat sa y ′ = F (x , y); svaka kriva sa ovom osobinom je saglasna sa poljem
pravaca

skup svih krivih saglasnih sa poljem pravaca naziva se opšte rešenje jednačine

kriva koja zadovoljava početni uslov y(x0) = y0, tj. prolazi kroz neku tačku
(x0, y0) naziva se partikularno rešenje

512 / 569



Diferencijalne jednačine prvog reda

Primer

Odrediti rešenje y = y(x) diferencijalne jednačine y ′ = x .

U svim tačkama sa istom apscisom tangente imaju isti nagib:

x: . . . , -2, -1, 0, 1, 2, . . .
y: sve vrednosti (proizvoljne)
y’: . . . , -2, -1, 0, 1, 2, . . .

Lako se može zaključiti da su sva rešenja (opšte rešenje u smislu naše definicije)
data sa

y(x) =
x2

2
+ c ,

gde je c proizvoljna konstanta, a partikularno koje prolazi kroz tačku (x0, y0) sa
data sa

y(x) =
x2

2
+ y0 −

x20
2
.
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Diferencijalne jednačine prvog reda

Ojlerove poligonalne linije - aproksimacija rešenja

podela konačnog intervala intervala (a, b) koji sadrži x0 :
a = zn < zn−1 < · · · < z1 < z0 = x0 < x1 < · · · < xn = b

kroz (x0, y0) postavimo pravu L0 : y = y0 + (x − x0)F (x0, y0), sa nagibom
F (x0, y0)

ako je ξ1 = x1 ili z1 dosta blizu x0, u tački ξ1 ordinata prave L0 data sa
y1 = y0 + (ξ − x0)F (x0, y0) ne odstupa mnogo od ordinate rešenja u toj tački

kroz (ξ1, y1) postavimo pravu L1 : y = y1 + (x − ξ1)F (ξ1, y1)

nakon k koraka - Ojlerova poligonalna linija

Lk : y = yk + (x − ξk)F (ξk , yk),

(ξk ≤ x ≤ ξk+1, ξi = xi ) ili (ξk+1 ≤ x ≤ ξk , ξi = zi ), i = 1, 2, . . . , n

gde se yk+1 računa iz obrasca

yk+1 = yk + (ξk+1 − ξk)F (ξk , yk ), k = 0, 1, . . . , n− 1.
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Neke klase integrabilnih diferencijalnih jednacina prvog reda Jednacina koja razdvaja promenljive

Jednačina koja razdvaja promenljive

Normalni oblik: y ′ = f (x)g(y)

Teorema

Ako je f (x) neprekidna nad a < x < b, a g(y) neprekidna i različita od 0 nad
α < y < β tada postoji jedinstveno rešenje jednačine y ′ = f (x)g(y) koje
zadovoljava početni uslov y(x0) = y0, x0 ∈ (a, b), y0 ∈ (α, β) i definisano je na
nekoj okolini x0. Rešenje je dato sa

y(x) = G−1

(

G(y0) +

∫ x

x0

f (t)dt

)

,

pri čemu je G(u) primitivna funkcija za 1
g(u) nad (α, β).

Opšte rešenje pod uslovom g(y) 6= 0 je dato obrascem
∫

dy

g(y)
=

∫

f (x)dx + c .
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Neke klase integrabilnih diferencijalnih jednacina prvog reda Jednacina koja razdvaja promenljive

O egzistenciji i jedinstvenosti rešenja ako je funkcija g(y) neprekidna nad
intervalom (α, β), ali ne važi g(y) 6= 0 nad datim intervalom:

Ako je g(y0) 6= 0, zbog neprekidnosti g(y) postoji interval (α1, β1) ⊂ (α, β)
koji sadrži y0 sa osobinom

g(y)g(y0) > 0 za svako y ∈ (α1, β1).

Zaključak teoreme ostaje, ali se (α, β) zamenjuje sa (α1, β1).

Ako je g(y0) = 0, rešenje početnog problema je sigurno funkcija y(x) = y0,
ali to rešenje ne mora da bude jedinstveno (videti sledeći primer).
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Neke klase integrabilnih diferencijalnih jednacina prvog reda Jednacina koja razdvaja promenljive

Primer

Rešiti početni problem y ′ = 3y
2
3 , y(1) = 0.

Jedno rešenje početnog problema je y(x) = 0.

Iz dy
dx

= 3y
2
3 zbog konvergencije nesvojstvenog integrala

∫

(0,y(x))

du

3u
2
3

za y(x) > 0, odnosno

∫

(y(x),0)

du

3u
2
3

za y(x) < 0,

da je
y(x)∫

0

du

3u
2
3

=

x∫

1

dt, odnosno 3
√
u|y(x)0 = t|x1.

Sledi da je 3
√

y(x) = x − 1, odnosno y(x) = (x − 1)3, pa dati problem ima
najmanje dva rešenja.
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Neke klase integrabilnih diferencijalnih jednacina prvog reda Jednacina koja razdvaja promenljive

Primer

Naći rešenje jednačine y ′ = x(y − 1)2 koje prolazi kroz tačku (0, 1).

dy

(y − 1)2
= xdx ⇒ − 1

y − 1
=

x2

2
+ c ⇒ y − 1 = − 2

x2 + 2c

⇒ y(x) = 1− 2

x2 + 2c

Uzimajući u obzir početni uslov dobijamo 1 = 1− 2

2c
, tj. 0 =

1

c
(konstanta u

”opštem” rešenju ne može da se odredi).
Ova situacija je nastupila jer nesvojstveni integral

∫

(1,y)

dy

(y − 1)2
za y > 1, odnosno

∫

(y,1)

dy

(y − 1)2
za y < 1

divergira. Rešenje problema je y(x) = 1.
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Neke klase integrabilnih diferencijalnih jednacina prvog reda Homogena diferencijalna jednacina

Homogena diferencijalna jednačina

Normalni oblik: y ′ = f
(y

x

)

, f (t) je neprekidna funkcija nad (a, b);

smenom:
y

x
= u, y ′ = u + xu′ svodi se na jednačinu u′ =

f (u)− u

x
koja razdvaja

promenljive.
Ako je f(u)− u 6= 0 nad intervalom (a, b) tada kroz svaku tačku (x0, y0) oblasti

G :

{
a < y

x
< b

x > 0
ili G :

{
a < y

x
< b

x < 0
prolazi samo jedno rešenje y(x) = xu(x)

definisano za svako x za koje je

ili lim
y→α+

G(y) < G(y0) +
x
∫

x0

f (t)dt < lim
y→β−

G(y)

ili lim
y→β−

G(y) < G(y0) +
x
∫

x0

f (t)dt < lim
y→α+

G(y),

gde je u(x) dato sa

u(x)∫

u0

dt

f (t)− t
= ln

∣
∣
∣
∣

x

x0

∣
∣
∣
∣
, u0 =

y0
x0
.
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Neke klase integrabilnih diferencijalnih jednacina prvog reda Homogena diferencijalna jednacina

Ako je f(u)− u = 0 za neko x ∈ (a, b) :

Ako je f(u0) 6= u0,
(

u0 =
y0
x0

)

, zbog neprekidnosti funkcije f (u)− u postoji

interval (a1, b1) ⊂ (a, b), koji sadrži tačku u0, tako da je

(f (u)− u)(f (u0)− u0) > 0 za svako u ∈ (a1, b1)

pa svi zaključci važe nad podintervalom (a1, b1) intervala (a, b).

Ako je f(u)− u = 0 za svako u ∈ (a, b), jednačina glasi y ′ = y
x
, a to je

jednačina koja razdvaja promenljive.

Ako je f(u0) = u0,
(

u0 =
y0
x0

)

, rešenje početnog problema je sigurno funkcija

y(x) = u0x ,
(
y ′(x) = u0 = f

(
u0x
x

)
= f (u0)

)
. Ovo rešenje ne mora da bude

jedinstveno.
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Neke klase integrabilnih diferencijalnih jednacina prvog reda Homogena diferencijalna jednacina

Napomena

Opšte rešenje uz pretpostavku f (u)− u 6= 0 dato je obrascem
∫

du
f (u)−u

= ln cx
(
u = y

x

)
, y = y(x), a partikularno se dobija odredivanjem c

iz početnog uslova y(x0) = y0. Gornji integral mora da postoji nad posmatranim
intervalom!

Primer

Jednačina y ′ = f
(

a1x+b1y+c1
a2x+b2y+c2

)

, gde su a1, a2, b1, b2, c1, c2 realni brojevi, a f (t)

neprekidna funkcija nad intervalom (a, b), svodi se na jednačinu koja razdvaja
promenljive ili na homogenu.

Ako je D =

∣

∣

∣

∣

a1 b1
a2 b2

∣

∣

∣

∣

= 0, jednačina se smenom

a1x + b1y + c1 = t ili a2x + b2y + c2 = t

svodi na jednačinu koja razdvaja promenljive.
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Neke klase integrabilnih diferencijalnih jednacina prvog reda Homogena diferencijalna jednacina

Ako je D =

∣

∣

∣

∣

a1 b1
a2 b2

∣

∣

∣

∣

6= 0, smenom

x = X + α, y = Y + β

gde su α i β (jedinstvena!) rešenja sistema

a1α+ b1β + c1 = 0
a2α+ b2β + c2 = 0

dobija se

Y ′ = y ′ = f

(
a1X + a1α+ b1Y + b1β + c1
a2X + a2β + b2Y + b2β + c2

)

= f

(
a1X + b1Y

a2X + b2Y

)

= f

(

a1 + b1
Y
X

a2 + b2
Y
X

)

= g

(
Y

X

)

.
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Neke klase integrabilnih diferencijalnih jednacina prvog reda Linearna diferencijalna jednačina

Linearna diferencijalna jednačina

Opšti oblik: y ′ + f (x) y = g(x)

Teorema

Ako su funkcije f (x) i g(x) neprekidne nad intervalom (a, b) tada postoji
jedinstveno rešenje linearne diferencijalne jednačine koje zadovoljava početni uslov
y(x0) = y0, x0 ∈ (a, b), y0 ∈ R i definisano je nad (a, b) u obliku

y(x) = e
−

x∫

x0

f (t)dt



y0 +

x∫

x0

e

t∫

x0

f (u)du

g(t)dt



 .

smena: y(x) = u(x) · v(x)
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Neke klase integrabilnih diferencijalnih jednacina prvog reda Bernulijeva jednačina

Bernulijeva jednačina

Opšti oblik: y ′ + f (x) y = g(x)yα, α ∈ R

α = 0 - linearna diferencijalna jednačina

α = 1 - jednačina koja razdvaja promenljive

smena: z(x) = (y(x))
−α+1

, z ′(x) = (1− α)y−α(x)y ′(x)

Svodi se na linearnu diferencijalnu jednačinu

z ′(x) + (1− α) f (x) z(x) − (1− α) g(x) = 0

Ako su f (x) i g(x) neprekidne nad (a, b), tada kroz svaku tačku (x0, z0), gde je
x0 ∈ (a, b), z0 ∈ R, prolazi jedinstveno rešenje definisano nad (a, b). Kako se zbog
α ∈ R mora pretpostaviti da je y > 0, rešenje je u opštem slučaju definisano na
najvećem podintervalu (a1, b1) od (a, b) kom pripada x0 i u kom je z(x) > 0.
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Neke klase integrabilnih diferencijalnih jednacina prvog reda Jednačina totalnog diferencijala

Jednačina totalnog diferencijala

P(x , y) dx + Q(x , y) dy = 0

je jednačina totalnog diferencijala ako postoji funkcija F (x , y) takva da je

dF (x , y) = P(x , y) dx + Q(x , y) dy

∂F

∂x
= P(x , y),

∂F

∂y
= Q(x , y)

Teorema

Neka su P(x , y), Q(x , y), ∂P
∂y (x , y),

∂Q
∂x (x , y) neprekidne u otvorenoj jednostruko

povezanoj oblasti G i Q(x0, y0) 6= 0. Da bi jednačina P(x , y) dx + Q(x , y) dy = 0
bila jednačina totalnog diferencijala potrebno je i dovoljno da bude za svako
(x , y) ∈ G

∂P
∂y (x , y) =

∂Q
∂x (x , y).

Ako oblast nije jednostruko povezana, tvrdenje ne mora da važi!
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Neke klase integrabilnih diferencijalnih jednacina prvog reda Integracioni mnozitelj

Integracioni množitelj

P(x , y) dx + Q(x , y) dy = 0,
∂P

∂y
(x , y) 6= ∂Q

∂x
(x , y)

Da li postoji funkcija h(x , y) 6= 0 takva da je diferencijalna jednačina

h(x , y)P(x , y)dx + h(x , y)Q(x , y)dy = 0

jednačina totalnog diferencijala, tj.
∂(hP)

∂y
(x , y) =

∂(hQ)

∂x
(x , y)?

1

h

(

P
∂h

∂y
− Q

∂h

∂x

)

=
∂Q

∂x
− ∂P

∂y

h(x , y) - integracioni množitelj (funkcija koja ima u otvorenoj jednostruko
povezanoj oblasti G neprekidne parcijalne izvode, zadovoljava gornji uslov i
različita je od nule u G)
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Neke klase integrabilnih diferencijalnih jednacina prvog reda Klero-ova jednacina

Klero-ova jednačina y = xy ′+f (y ′)

Tvrdenje

Neka funkcija f (t) ima nad intervalom (a, b) neprekidan drugi izvod koji je različit
od nule i neka je ϕ(t) inverzna funkcija od −f ′(t). Tada su rešenja jednačine
y = xy ′ + f (y ′) funkcije

y = xc + f (c), c ∈ (a, b) (c je konstanta)

y = xϕ(x) + f (ϕ(x)) (tzv. singularno rešenje)
definisano nad intervalom (α, β), gde α = inf

t∈(a,b)
{−f ′(t)} ako infimum

postoji, u suprotnom α = −∞ i β = sup
t∈(a,b)

{−f ′(t)} ako supremum postoji, u

suprotnom je β = ∞

svaka kriva sastavljena od proizvoljnog luka AB krive i na nju nastavljenih
tangenata u tačkama A i B.
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Neke klase integrabilnih diferencijalnih jednacina prvog reda Lagranzova jednacina

Lagranžova jednačina

y = xf (y ′) + g(y ′)

Uzmimo p = y ′, tj. dy = pdx . Dobijamo y = xf (p) + g(p), a odavde
diferenciranjem pdx = dy = (xf ′(p) + g ′(p))dp + f (p)dx , tj.
(f (p)− p)dx + (xf ′(p) + g ′(p))dp = 0.

f (p) − p 6= 0 ⇒ dx

dp
+

f ′(p)

f (p)− p
x +

g ′(p)

f (p)− p
,

što je linearna jednačina, iz koje dobijamo x = x(p), što sa
y(p) = x(p)f (p) + g(p) predstavlja rešenje Lagranžove jednačine u
parametarskom obliku.

Ako jednačina f (p)− p = 0 ima rešenja i ako je jedno rešenje p = c , tada je
rešenje jednačine i y = cx + g(c).

Ako je f (p)− p = 0 za svako p, Lagranžova jednačina postaje
y = xy ′ + g(y ′) (Klero-ova).

(ovo je spec. slučaj opšteg postupka uvodenja parametra)
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Diferencijalne jednačine vǐseg reda Snižavanje reda diferencijalne jednačine

Snižavanje reda diferencijalne jednačine

I) y (n)(x) = f (x) , f (x) neprekidna funkcija nad (a, b)

y (n−1)(x) =

∫

f (x) dx = f1(x) + c1

y (n−2)(x) =

∫

(f1(x) + c1) dx = f2(x) + c1x + c2

...

y(x) = fn(x) +
c1x

n−1

(n − 1)!
+ · · ·+ cn−1x

1!
+ cn
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Diferencijalne jednačine vǐseg reda Snižavanje reda diferencijalne jednačine

Primer

Rešiti početni problem y IV = sin x , y(0) = y ′′(0) = 1, y ′(0) = y ′′′(0) = 0

y ′′′ =
∫
y IV (x)dx =

∫
sin xdx = − cos x + c1,

y ′′ =
∫
y ′′′(x)dx =

∫
(− cos x + c1)dx = − sin x + c1x + c2,

y ′ =
∫
y ′′(x)dx =

∫
(− sin x + c1x + c2)dx = cos x + c1

x2

2 + c2x + c3,

y =
∫
y ′(x)dx =

∫
(cos x + c1

x2

2 + c2x + c3)dx = sin x + c1
x3

6 + c2
x2

2 + c3x + c4,

y ′′′(0) = −1 + c1 = 0 ⇒ c1 = 1
y ′′(0) = c2 = 1 ⇒ c2 = 1
y ′(0) = 1 + c3 = 0 ⇒ c3 = −1
y(0) = c4 = 1 ⇒ c4 = 1

⇒ y = sin x + x3

6 + x2

2 − x + 1
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Diferencijalne jednačine vǐseg reda Snižavanje reda diferencijalne jednačine

III) F (x , y (k), y (k+1), . . . , y (n)) = 0, 1 ≤ k < n

smena: y (k)(x) = z(x)
dobijamo jednačinu reda n − k oblika

F (x , z , z ′, . . . , z(n−k)) = 0.

IV) F (y , y ′, y ′′, . . . , y (n)) = 0, n ≥ 2

smena: y ′ = z(y)

y ′′ =
dy ′

dx
=

dz

dx
=

dz

dy

dy

dx
= z ′(y)y ′(x) = z ′ z

y ′′′ =
dy ′′

dx
=

d(zz ′)

dx
=

dz

dx
z ′ + z

dz ′

dx
=

dz

dy

dy

dx
z ′ + z

dz ′

dy

dy

dx

= zz
′2 + z2z ′′

dobijamo jednačinu reda n − 1 oblika H(y , z , z ′, . . . , z(n−1)) = 0.
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Diferencijalne jednačine vǐseg reda Snižavanje reda diferencijalne jednačine

• Ako znamo jedno rešenje y1(x) diferencijalne jednačine
y ′′ + a1(x)y

′ + a2(x)y = 0,
tada se jednačina

y ′′ + a1(x)y
′ + a2(x)y = f (x)

rešava smenom
y = z(x)y1(x),

gde je z(x) nepoznata funkcija.

y = zy1 ⇒ y ′ = z ′y1 + zy ′
1

y ′′ = z ′′y1 + 2z ′y ′
1 + zy ′′

1

pa da bi y bilo rešenje z(x) mora da zadovoljava jednačinu
y1z

′′ + (2y ′
1 + a1(x)y1)z

′ + (y ′′
1 + a1(x)y

′
1 + a2(x)y1

︸ ︷︷ ︸

0

)z = f (x)

koja ne sadrži z , pa joj se smenom z ′ = p, z ′′ = p′ snižava red.
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Diferencijalne jednačine vǐseg reda Snižavanje reda diferencijalne jednačine

• Ako znamo dva rešenja y1(x) i y2(x) diferencijalne jednačine

y ′′ + a1(x)y
′ + a2(x)y = f (x),

tj. ako je

y ′′
1 (x) + a1(x)y

′
1(x) + a2(x)y1(x) = f (x),

y ′′
2 (x) + a1(x)y

′
2(x) + a2(x)y2(x) = f (x),

oduzimanjem ove dve jednakosti dobija se

(y2(x)− y1(x))
′′ + a1(x)(y2(x)− y1(x))

′ + a2(x)(y2(x)− y1(x)) = 0,

tj. funkcija h(x) = y2(x)− y1(x) je jedno rešenje jednačine

y ′′ + a1(x)y
′ + a2(x)y = 0.

Ona se rešava smenom

y = z(x)(y2(x)− y1(x)).
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Diferencijalne jednačine vǐseg reda Linearna jednačina n−tog reda

Linearna jednačina n−tog reda, n ≥ 2

Opšti oblik: g0(x)y
(n) + g1(x)y

(n−1) + · · ·+ gn(x)y = h(x).

Pretpostavke:

h(x), gi (x), i = 1, 2, . . . , n definisane i neprekidne nad otvorenim intervalom I

g0(x) 6= 0, x ∈ I

Ln[y ] = f (x)

Ln[y ] = y (n) + a1(x)y
(n−1) + · · ·+ an(x)y

ai(x) =
gi(x)

g0(x)
, i = 1, 2, . . . , n, f (x) =

h(x)

g0(x)

y (n) + a1(x)y
(n−1) + · · ·+ an(x)y = f (x)

f (x) = 0, x ∈ I - homogena diferencijalna jednačina,
u suprotnom je to nehomogena diferencijalna jednačina
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Diferencijalne jednačine vǐseg reda Linearna jednačina n−tog reda

1) problem egzistencije rešenja

2) problem jednoznačnosti rešenja

3) problem pronalaženja rešenja (efektivnog rešavanja)

Teorema

Ako su ai (x), i = 1, 2, . . . , n i f (x) neprekidne funkcije nad intervalom I , x0 ∈ I
proizvoljna tačka, αi ∈ R, i = 0, 1, . . . , n − 1 proizvoljni brojevi, tada postoji
jednistveno rešenje y(x) diferencijalne jednačine Ln[y ] = f (x) koje zadovoljava
početni uslov

y(x0) = α0, y
′(x0) = α1, . . . , y

(n−1)(x0) = αn−1

i definisano je nad datim intervalom I .
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Diferencijalne jednačine vǐseg reda Homogena linearna jednačina

Homogena linearna jednačina Ln[y ] = 0

Lema

Operator Ln[ ] je linearan, tj. važi
Ln[y1 + y2] = Ln[y1] + Ln[y2], Ln[cy ] = cLn[y ],

gde je c proizvoljna konstanta.

Teorema

(PRINCIP SUPERPOZICIJE) Ako su yi (x), i = 1, 2, . . . ,m rešenja homogene
linearne diferencijalne jednačine tada je rešenje i

y(x) =
m∑

i=1

ciyi (x), gde su ci proizvoljne konstante.

Dokaz. Ln

[
m∑

i=1

ciyi (x)

]

=
m∑

i=1

ciLn[yi (x)] = 0.

opšte rešenje: m = n, ci se mogu izabrati tako da je zadovoljen svaki početni
uslov

partikularno rešenje - dob. izborom konstanti ci , i = 1, . . . , n
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Diferencijalne jednačine vǐseg reda Homogena linearna jednačina

Definicija

Funkcije fi(x), i = 1, 2, . . . , n, n ∈ N \ {1}, su linearno zavisne nad intervalom I
ako postoje brojevi ci koji nisu svi jednaki nuli, da je

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0, za svako x ∈ I .
Funkcije koje nisu linearno zavisne su linearno nezavisne.

Definicija

Ako su funkcije y1(x), y2(x), . . . , yn(x) ∈ C n−1(I ), n ≥ 2, tada je

W (x) = W (y1, . . . , yn)(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1(x) y2(x) . . . yn(x)
y ′

1(x) y ′

2(x) . . . y ′

n(x)
...

...
...

y
(n−1)
1 (x) y

(n−1)
2 (x) . . . y

(n−1)
n (x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

determinanta Vronskog od y1(x), y2(x), . . . , yn(x) nad I .
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Diferencijalne jednačine vǐseg reda Homogena linearna jednačina

Lema

Neka su funkcije y1(x), y2(x), . . . , yn(x) (n − 1) puta neprekidno diferencijabilne
nad intervalom I . Ako su funkcije y1, y2, . . . , yn linearno zavisne nad intervalom I ,
tada je W (x) = 0 za svako x ∈ I .

Dokaz. Ako su funkcije y1, y2, . . . , yn linearno zavisne nad intervalom I , tada
postoje konstante c1, c2, . . . , cn koje nisu sve istovremeno jednake nuli, tako da je

c1y1(x) + c2y2(x) + · · ·+ cnyn(x) = 0, za svako x ∈ I .

Ako je na primer cn 6= 0, tada je

yn = α1y1 + α2y2 + · · ·+ αn−1yn−1, αi = − ci
cn
, i = 1, 2, . . . , n− 1.

Sledi da je poslednja kolona u W (x) linearna kombinacija prethodnih kolona, pa je
W (x) = 0.
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Diferencijalne jednačine vǐseg reda Homogena linearna jednačina

Lema

Ako su rešenja y1, y2, . . . , yn homogene linearne jednačine Ln[y ] = 0 linearno
nezavisna, tada je W (x) 6= 0, za svako x ∈ I .

Teorema

Potreban i dovoljan uslov da y1(x), y2(x), . . . , yn(x) budu linearno nezavisna
rešenja homogene linearne jednačine Ln[y ] = 0 nad nekim intervalom I je da bude

W (x) ≡ W (y1, y2, . . . , yn)(x) 6= 0, za svako x ∈ I .

Dakle, za skup rešenja {y1, y2, . . . , yn} jednačine Ln[y ] = 0 je ili W (x) = 0 za
svako x ∈ I ili W (x) 6= 0 za svako x ∈ I .
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Diferencijalne jednačine vǐseg reda Homogena linearna jednačina

Primer

Ispitati linearnu zavisnost funkcija y1(x) = x i y2(x) = x2 nad R. Naći W (x).

Iz α1x + α2x
2 = 0 za svako x ∈ R sledi da je α1 = α2 = 0, jer:

x = 1 ⇒ α1 + α2 = 0
x = −1 ⇒ −α1 + α2 = 0

tako da su funkcije y1(x) = x i y2(x) = x2 linearno nezavisne nad R.
Kako je

W (x) =

∣
∣
∣
∣

y1(x) y2(x)
y ′
1(x) y ′

2(x)

∣
∣
∣
∣
=

∣
∣
∣
∣

x x2

1 2x

∣
∣
∣
∣
= 2x2 − x2 = x2,

sledi da je W (0) = 0, W (x) 6= 0, za svako x 6= 0.
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Diferencijalne jednačine vǐseg reda Homogena linearna jednačina

Primer

Da li funkcije y1(x) = x i y2(x) = x2 mogu biti rešenja nad skupom R neke
homogene linearne jednačine oblika y ′′ + a1(x)y

′ + a2(x)y = 0, gde su a1(x) i
a2(x) neprekidne funkcije za svako x ∈ R? Formirati homogenu linearnu jednačinu
čija su rešenja y1(x) = x i y2(x) = x2.

y1(x) = x i y2(x) = x2 su linearno nezavisne nad R. Ne mogu da budu rešenja
homogene linearne jednačine y ′′ + a1(x)y

′ + a2(x)y = 0 nad R, jer je W (0) = 0.
Ako su y1(x) = x i y2(x) = x2 rešenja neke linearne jednačine, tada je rešenje te
jednačine i funkcija y(x) = c1x + c2x

2, gde su c1 i c2 proizvoljne konstante.
y(x) = c1x + c2x

2

y ′(x) = c1 + 2c2x
y ′′(x) = 2c2

⇒ c2 = y ′′(x)
2

c1 = y ′(x)− xy ′′(x)

⇒ y(x) = xy ′(x)− x2y ′′(x) + x2

2 y
′′(x), pa je tražena jednačina

x2y ′′ − 2xy ′ + 2y = 0.
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Diferencijalne jednačine vǐseg reda Homogena linearna jednačina

Definicija

Svaki skup od n, n ∈ N \ {1} linearno nezavisnih rešenja jednačine Ln[y ] = 0 je
fundamentalni skup rešenja jednačine Ln[y ] = 0.

Teorema

Postoji fundamentalni skup rešenja jednačine Ln[y ] = 0 nad intervalom I .

Dokaz. Neka je x0 proizvoljna tačka iz intervala I i yi (x), i = 1, 2, . . . , n rešenja
jednačine Ln[y ] = 0 koja zadovoljavaju početni uslov

y1(x0) = 1, y ′
1(x0) = 0, . . . , y

(n−1)
1 (x0) = 0,

y2(x0) = 0, y ′
2(x0) = 1, . . . , y

(n−1)
2 (x0) = 0,

...
...

...

yn(x0) = 0, y ′
n(x0) = 0, . . . , y

(n−1)
n (x0) = 1.

(postoje na osnovu teoreme o egzistenciji i jedinstvenosti)
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Diferencijalne jednačine vǐseg reda Homogena linearna jednačina

Rešenja yi (x) su linearno nezavisna nad intervalom I , jer da su linearno zavisna,
sledilo bi da je W (x) = 0 za svako x ∈ I , pa i za x = x0.

Za x0 imamo da je

W (x0) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 . . . 0
0 1 . . . , 0
...

...
...

0 0 . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1 6= 0,

što je kontradikcija. �
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Diferencijalne jednačine vǐseg reda Homogena linearna jednačina

Teorema

(FORMULA LJUVILA-ABELA) Neka je x0 ∈ I proizvoljna tačka, a
{y1(x), y2(x), . . . , yn(x)} fundamentalni skup rešenja homogene linearne jednačine
Ln[y ] = 0. Tada je za svako x ∈ I

W (x) = W (x0)e
−

∫
x

x0
a1(t)dt .

• Ako je a1 = c , tada je W (x) = W (x0)e
−c(x−x0), te za c = 0 važi

W (x) = W (x0), za svako x ∈ I .

Posledica

Rešenja y1(x), y2(x), . . . , yn(x) homogene linearne jednačine Ln[y ] = 0 su linearno
nezavisna nad intervalom I ako je W (x0) 6= 0 za neku tačku x0 ∈ I .
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Diferencijalne jednačine vǐseg reda Homogena linearna jednačina

Teorema

Ako je {y1(x), y2(x), . . . , yn(x)} fundamentalni skup rešenja homogene linearne
jednačine Ln[y ] = 0 nad intervalom I , tada je opšte rešenje te jednačine nad
intervalom I dato sa

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x),
gde su c1, c2, . . . , cn proizvoljni realni brojevi.

Dokaz. Neka su su α0, α1, . . . , αn−1 proizvoljni realni brojevi i neka je h(x) rešenje
jednačine Ln[y ] = 0 koje zadovoljava početni uslov

h(x0) = α0, h
′(x0) = α1, . . . , h

(n−1)(x0) = αn−1, x0 ∈ I .

Pokažimo da se u rešenju

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)

konstante c1, c2, . . . , cn mogu odrediti tako da i y(x) zadovoljava isti početni
uslov.
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Diferencijalne jednačine vǐseg reda Homogena linearna jednačina

Uvřstavajući početni uslov u

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)

dobijamo sistem S algebarskih jednačina

c1y1(x0) + c2y2(x0) + · · ·+ cnyn(x0) = α0

c1y
′
1(x0) + c2y

′
2(x0) + · · ·+ cny

′
n(x0) = α1

c1y
(n−1)
1 (x0) + c2y

(n−1)
2 (x0) + · · ·+ cny

(n−1)
n (x0) = αn−1

Determinanta ovog sistema je DS = W (x0) 6= 0 jer su rešenja
y1(x), y2(x), . . . , yn(x) linearno nezavisna, pa je sistem odreden.

Znači, rešenje

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x),

gde je (c1, c2, . . . , cn) rešenje sistema S zadovoljava isti početni uslov kao i rešenje
h(x).
Zbog jednoznačnosti rešenja početnog problema je y(x) = h(x), x ∈ I . �
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Diferencijalne jednačine vǐseg reda Homogena jednačina sa konstantnim koeficijentima

Homogena jednačina sa konstantnim koeficijentima

Ln[y ] = y (n) + a1y
(n−1) + a2y

(n−2) + · · ·+ an−1y
′ + a0y = 0, ai ∈ R

Ako je y = ekx , k ∈ R tada je y (i) = k iekx , i = 1, 2, . . . , n, pa je

Ln[e
kx ] = ekx(kn + a1k

n−1 + · · ·+ an−1k + an
︸ ︷︷ ︸

Pn(k)

)

pa je
Ln[e

kx ] = 0 ⇔ kn + a1k
n−1 + · · ·+ an−1k + an = 0

Pn(k) - karakterističan polinom

kn + a1k
n−1 + · · ·+ an−1k + an = 0 - karakteristična jednačina

Rešenja diferencijalne jednačine su za svako x ∈ (−∞,∞) funkcije

yi = ekix , i = 1, 2, . . . , n.
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Diferencijalne jednačine vǐseg reda Homogena jednačina sa konstantnim koeficijentima

Lema

Ako je y(x) = u(x) + iv(x) kompleksno rešenje linearne jednačine Ln[y ] = 0 tada
su u(x) i v(x) dva realna rešenja te jednačine.

Dokaz. Ln[u(x) + iv(x)] = Ln[u(x)] + iLn[v(x)] = 0
⇒ Ln[u(x)] = Ln[v(x)] = 0.

• Koreni karakteristične jednačine su realni i jednostruki

Karakteristična jednačina ima 1 < m ≤ n različitih realnih korena ki , i = 1, . . . ,m;
realna rešenja su yi = ekix , i = 1, . . . ,m; linearno su nezavisna (čine
fundamentalni skup rešenja) ako je m = n, jer je

W (x) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

ek1x ek2x . . . ekmx

k1e
k1x k2e

k2x . . . kme
kmx

...
...

...
km−1
1 ek1x km−1

2 ek2x . . . km−1
m ekmx

∣
∣
∣
∣
∣
∣
∣
∣
∣

= e(k1+k2+···+km)xV ,
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Diferencijalne jednačine vǐseg reda Homogena jednačina sa konstantnim koeficijentima

gde je

V =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 . . . 1
k1 k2 . . . km
...

...
...

km−1
1 km−1

2 . . . km−1
m

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∏

1≤j<i≤m

(ki − kj) 6= 0,

jer je ki 6= kj za i 6= j .

Opšte rešenje za m = n dato je sa:

y(x) =
n∑

i=1

cie
kix .
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Diferencijalne jednačine vǐseg reda Homogena jednačina sa konstantnim koeficijentima

• Koreni karakteristične jednačine su kompleksni i jednostruki

kj = αj + i βj , βj 6= 0, tada su rešenja

yj1 = Re(e(αj+i βj )x) = eαjx cosβjx

yj2 = Im(e(αj+i βj )x) = eαjx sinβjx

Lako se proverava da su ova dva rešenja linearno nezavisna.

Iako je kj = αj − i βj takode koren karakteristične jednačine, nema dodatnih
rešenja!
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Diferencijalne jednačine vǐseg reda Homogena jednačina sa konstantnim koeficijentima

• Koreni karakteristične jednačine su realni i vǐsestruki

ki koren vǐsestrukosti m > 1, tada su rešenja jednačine funkcije
yi1(x) = ekix , yi2(x) = xekix , . . . , yim(x) = xm−1ekix

i linearno su nezavisna:
Kako je

Pn(ki ) = P ′
n(ki) = · · · = P

(m−1)
n (ki) = 0, P

(m)
n (ki) 6= 0

i kako je Ln[e
kx ] = ekxPn(k) to se diferenciranjem po k dobija

Ln[xe
kx ] = xekxPn(k) + ekxP ′

n(k)

= ekx(xPn(k) + P ′
n(k))

pa se iz Ln[xe
kx ] = ekx(xPn(k) + P ′

n(k)) stavljajući k = ki dobija Ln[xe
kix ] = 0, tj

da je i xekix rešenje. Slično, diferenciranjem (m − 1) puta po k dobijamo da su
rešenja i funkcije

yi1(x) = ekix , yi2(x) = xekix , . . . , yim(x) = xm−1ekix .
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Diferencijalne jednačine vǐseg reda Homogena jednačina sa konstantnim koeficijentima

• Koreni karakteristične jednačine su kompleksni i vǐsestruki

kj = αj + i βj , βj 6= 0 koren vǐsestrukosti m > 1, tada su 2m realnih (linearno
nezavisnih) rešenja jednačine funkcije

yj1 = e
αj x cosβjx ,

yj2 = xe
αj x cos βjx ,

...

yjm = x
m−1

e
αj x cos βjx ,

yjm+1 = e
αj x sin βjx ,

yjm+2 = xe
αj x sin βjx ,

...

yj2m = x
m−1

e
αj x sin βjx .
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Diferencijalne jednačine vǐseg reda Homogena jednačina sa konstantnim koeficijentima

Primer

Neka su rešenja karakteristične jednačine neke homogene linearne jednačine sa
konstantnim koeficijentima

k1 = k2 = k3 = 1,
k4 = −1,
k5 = 3 + i ,
k6 = 3− i ,

k7 = k8 = k9 = 2 + i ,
k10 = k11 = k12 = 2− i .

y(x) = ex(c1 + c2x + c3x
2) + c4e

−x + e3x(c5 cos x + c6 sin x) + e2x(c7 cos x +
c8x cos x + c9x

x cos x + c10 sin x + c11x sin x + c12x
2 sin x)
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Diferencijalne jednačine vǐseg reda Nehomogena linearna jednačina

Nehomogena linearna jednačina

Teorema

Neka je yp(x) neko (partikularno) rešenje jednačine

Ln[y ] = f (x)

i y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x) opšte rešenje odgovarajuće homogene
jednačine Ln[y ] = 0.
Tada je

y(x) = yh(x) + yp(x)

opšte rešenje jednačine Ln[y ] = f (x).

Dokaz. y(x) je rešenje jednačine Ln[y ] = f (x) jer iz linearnosti operatora Ln[ ]
sledi

Ln[y(x)] = Ln[yh(x) + yp(x)] = Ln[yh(x)] + Ln[yp(x)]
= 0 + f (x) = f (x)
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Diferencijalne jednačine vǐseg reda Nehomogena linearna jednačina

Pokažimo da ono sadrži svako rešenje koje zadovoljava početni uslov
y (i)(x0) = αi , i = 0, 1, . . . , n− 1,

(tj. svako partikularno rešenje), gde su αi proizvoljni realni brojevi, x0 ∈ I
proizvoljna tačka i y (0)(x) = y(x) :

Neka je {y1(x), . . . , yn(x)} fundamentalni skup rešenja jednačine Ln[y ] = 0. Tada
je njeno opšte rešenje

yh(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x).
Neka su α0, . . . , αn−1 ∈ R proizvoljni brojevi i h(x) rešenje jednačine Ln[y ] = f (x)
koje u proizvoljnoj tački x0 zadovoljava početni uslov

h(x0) = α0, h
′(x0) = α1, . . . , h

(n−1)(x0) = αn−1.

Pokazaćemo da se u rešenju y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x) + yp(x)
konstante mogu odrediti tako da i funkcija y(x) zadovoljava isti početni uslov.
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Diferencijalne jednačine vǐseg reda Nehomogena linearna jednačina

Uvřstavajući početni uslov u jednačinu Ln[y ] = f (x) dobijamo sistem S
algebarskih jednačina

c1y1(x0) +c2y2(x0) + · · ·+ cnyn(x0) = α0 − yp(x0)
c1y

′

1(x0) +c2y
′

2(x0) + · · ·+ cny
′

n(x0) = α1 − y ′

p(x0)
...

c1y
(n−1)
1 (x0) +c2y

(n−1)
2 (x0) + · · ·+ cny

(n−1)
n (x0) = αn−1 − y

(n−1)
p (x0)

Determinanta sistema S je DS = W (x0) 6= 0, pa je sistem odreden.

Dakle, rešenje g(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x) + yp(x), gde je
(c1, c2, . . . , cn) rešenje sistema S zadovoljava isti početni uslov kao i h(x).

Zbog jednoznačnosti rešenja početnog problema je g(x) = h(x) za svako x ∈ I . �
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Diferencijalne jednačine vǐseg reda Nehomogena linearna jednačina - metod varijacije konstanti

Metod varijacije konstanti

Teorema

Neka je y1(x), . . . , yn(x) fundamentalni skup rešenja jednačine Ln[y ] = 0 nad
intervalom I . Tada je partikularno rešenje yp(x) nehomogene jednačine

Ln[y ] = f (x) koje zadovoljava početni uslov y
(i)
p (x0) = y

(i)
0 = 0,

i = 0, 1, . . . , n − 1, dato sa

yp(x) =

n∑

i=1

yi (x)

x∫

x0

Wi (s)

W (s)
f (s)ds,

gde je x0 ∈ I proizvoljna tačka, a Wi (s), i = 0, 1, . . . , n, je determinanta koja se
dobija kada se iz determinante Wronskog funkcija y1(x), . . . , yn(x) i -ta kolona
zameni sa col(0, 0, . . . , 1) dok su ostale kolone iste kao kod W (x).
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Diferencijalne jednačine vǐseg reda Nehomogena linearna jednačina - metod varijacije konstanti

Dokaz. Neka je {y1(x), . . . , yn(x)} fundamentalni skup rešenja. Potrebno je
odrediti funkcije c1(x), . . . , cn(x) tako da je

yp(x) = c1(x)y1(x) + c2(x)y2(x) + · · ·+ cn(x)yn(x)

partikularno rešenje nad intervalom I jednačine Ln[y ] = f (x).
Diferenciranjem obe strane i ako za prvi uslov za funkcije ci (x) uzmemo

c ′1(x)y1(x) + c ′2(x)y2(x) + · · ·+ c ′n(x)yn(x) = 0
dobijamo

y ′
p(x) = c1(x)y

′
1(x) + c2(x)y

′
2(x) + · · ·+ cn(x)y

′
n(x)

Ponovnim diferenciranjem poslednje jednakosti i ako za drugi uslov za funkcije
ci (x) uzmemo

c ′1(x)y
′
1(x) + c ′2(x)y

′
2(x) + · · ·+ c ′n(x)y

′
n(x) = 0

dobijamo
y ′′
p (x) = c1(x)y

′′
1 (x) + c2(x)y

′′
2 (x) + · · ·+ cn(x)y

′′
n (x).
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Nastavljajući ovaj postupak dobijamo

c ′1(x)y
(n−2)
1 (x) + c ′2(x)y

(n−2)
2 (x) + · · ·+ c ′n(x)y

(n−2)
n (x) = 0,

y (n−1)
p (x) = c1(x)y

(n−1)
1 (x) + c2(x)y

(n−1)
2 (x) + · · ·+ cn(x)y

(n−1)
n (x).

Sada je

y
(n)
p (x) = c ′1(x)y

(n−1)
1 (x) + c ′2(x)y

(n−1)
2 (x) + · · ·+ c ′n(x)y

(n−1)
n (x)

+c1(x)y
(n)
1 (x) + c2(x)y

(n)
2 (x) + · · ·+ cn(x)y

(n)
n (x).
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Diferencijalne jednačine vǐseg reda Nehomogena linearna jednačina - metod varijacije konstanti

Kako funkcija

yp(x) = c1(x)y1(x) + c2(x)y2(x) + · · ·+ cn(x)yn(x)

treba da bude rešenje jednačine Ln[y ] = f (x), zamenom yp(x), y
′
p(x), . . . , y

(n)
p (x)

u tu jednačinu i vodeći računa da je {y1(x), . . . , yn(x)} fundamentalni skup
rešenja jednačine Ln[y ] = 0, dobijamo

Ln[yp(x)] ≡
n∑

i=1

ci(x) Ln[yi (x)]
︸ ︷︷ ︸

0

+

n∑

i=1

c ′i (x)y
(n−1)
i (x) = f (x),

odnosno

c ′1(x)y
(n−1)
1 (x) + c ′2(x)y

(n−1)
2 (x) + · · ·+ c ′n(x)y

(n−1)
n (x) = f (x).
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Diferencijalne jednačine vǐseg reda Nehomogena linearna jednačina - metod varijacije konstanti

Determinanta linearnog (algebarskog) sistema

c ′1(x)y1(x) + c ′2(x)y2(x) + · · ·+ c ′n(x)yn(x) = 0

c ′1(x)y
′

1(x) + c ′2(x)y
′

2(x) + · · ·+ c ′n(x)y
′

n(x) = 0

...

c ′1(x)y
(n−1)
1 (x) + c ′2(x)y

(n−1)
2 (x) + · · ·+ c ′n(x)y

(n−1)
n (x) = f (x)

je W (x) 6= 0 jer su rešenja y1(x), . . . , yn(x) jednačine Ln[y ] = 0 po pretpostavci
linearno nezavisna. Rešavanjem po c ′i (x) dobija se

c ′i (x) =
DCi

D
=

Wi (x)f (x)

W (x)
, i = 1, 2, . . . , n.
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Diferencijalne jednačine vǐseg reda Nehomogena linearna jednačina - metod varijacije konstanti

Integracijom nad intervalom (x0, x) za x > x0 (tj. (x , x0) za x < x0) sledi da je

ci (x) =

x∫

x0

f (x)
Wi (s)

W (s)
f (s)ds, i = 1, 2, . . . , n,

čijom zamenom u obrazac za yp(x) dobijamo da je partikularno rešenje

yp(x) =

n∑

i=1

yi (x)

x∫

x0

Wi (s)

W (s)
f (s)ds.

�
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Diferencijalne jednačine vǐseg reda Nehomogena linearna jednačina - metod varijacije konstanti

Na primer, za n = 2 sistem za odredivanje funkcija ci glasi

c ′1(x)y1(x) + c ′2(x)y2(x) = 0
c ′1(x)y

′
1(x) + c ′2(x)y

′
2(x) = f (x),

dok je za n = 3 odgovarajući sistem

c ′1(x)y1(x) + c ′2(x)y2(x) + c ′3(x)y3(x) = 0
c ′1(x)y

′
1(x) + c ′2(x)y

′
2(x) + c ′3(x)y

′
3(x) = 0

c ′1(x)y
′′
1 (x) + c ′2(x)y

′′
2 (x) + c ′3(x)y

′′
3 (x) = f (x)

563 / 569



Diferencijalne jednačine vǐseg reda Nehomogena linearna jednačina - metod varijacije konstanti

Primer

Naći opšte rešenje jednačine y ′′′ − y ′′ = ex .

y ′′′ − y ′′ = 0 ⇒ k3 − k2 = 0 ⇒ k1 = k2 = 0, k3 = 1
⇒ yh(x) = c1 + c2x + c3e

x

Metodom varijacije konstanti dobijamo sistem
c ′1(x) + c ′2(x)x + c ′3(x)e

x = 0
c ′2(x) + c ′3(x)e

x = 0
c ′3(x)e

x = ex

čijim rešavanjem i integracijom rešenja dobijamo
c ′3(x) = 1 ⇒ c3(x) = x + C3

c ′2(x) = −c ′3(x)e
x = −ex ⇒ c2(x) = −ex + C2

c ′1(x) = −c ′2(x)x − c ′3(x)e
x = (x − 1)ex ⇒ c1(x) = (x − 2)ex + C1

Jedno partikularno rešenje nehomogene jednačine je
yp(x) = (x − 2)ex

pa je
y(x) = yh(x) + yp(x) = c1 + c2x + c3e

x + (x − 2)ex .
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Diferencijalne jednačine vǐseg reda Nehomogena jednacina sa konstantnim koeficijentima - metod jednakih koeficijenata

Metod jednakih koeficijenata

Ako je jednačina linearna sa konstantnim koeficijentima oblika

y (n) + a1y
(n−1) + · · ·+ any = f (x)

gde je funkcija f (x) specijalnog oblika

f (x) = eαx(P(x) cos βx + Q(x) sin βx),

partikularno rešenje tražimo u obliku

yp(x) = x reαx(Tk(x) cos βx + Rk(x) sin βx)

pri čemu je

k = max{n,m}, n = degP(x), m = degQ(x), ako su oba polinoma
različita od nula polinoma (ako je P(x) nula polinom onda je k = m, a ako je
Q(x) nula polinom onda je k = n)

r je vǐsestrukost α+ iβ kao korena karakteristične jednačine odgovarajuće
homogene jednačine
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Diferencijalne jednačine vǐseg reda Nehomogena jednacina sa konstantnim koeficijentima - metod jednakih koeficijenata

Korisna je činjenica: ako je

Ln[y ] = f1(x) + f2(x)

i ako je
y1(x) partikularno rešenje jednačine Ln[y ] = f1(x) nad I ,

y2(x) partikularno rešenje jednačine Ln[y ] = f2(x) nad I ,

tada je
y(x) = y1(x) + y2(x)

nad intervalom I partikularno rešenje jednačine

Ln[y ] = f1(x) + f2(x)
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Diferencijalne jednačine vǐseg reda Nehomogena jednacina sa konstantnim koeficijentima - metod jednakih koeficijenata

Primer

Odrediti opšte rešenja jednačine y ′′′ − y ′′ = ex + sin x + x .

Rešenje. Opšte rešenje homogenog dela jednačine je
yh(x) = c1 + c2x + c3e

x .
Jedno partikularno rešenje jednačine y ′′′ − y ′′ = ex je

yp1(x) = xex .
Jedno partikularno rešenje jednačine y ′′′ − y ′′ = sin x je

yp2(x) =
1
2(cos x + sin x).

Jedno partikularno rešenje jednačine y ′′′ − y ′′ = x je
yp3(x) = − 1

6x
2(x + 3).

Opšte rešenje je
y(x) = c1 + c2x + c3e

x + xex + 1
2 (cos x + sin x)− 1

6x
2(x + 3).
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Diferencijalne jednačine vǐseg reda Ojlerova jednacina

Ojlerova jednačina

Ojlerova jednačina je oblika

(ax + b)ny (n) + a1(ax + b)n−1y (n−1) + · · ·+ an−1(ax + b)y ′ + any = f (x)

gde su ai , i = 1, 2, . . . , n konstante i smenom

ax + b = et , ax + b > 0 (ax + b = −et , ax + b < 0)

svodi se na jednačinu sa konstantnim koeficijentima.
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Diferencijalne jednačine vǐseg reda Ojlerova jednacina

Primer

Naći opšte rešenje diferencijalne jednačine
x3y ′′′ + x2y ′′ + 3xy − 8y = 0.

Za x > 0 smenom

x = et ⇒ y ′

x = y
′

t t
′

x =
1

x
y
′

t ,

y
′′

x = − 1

x2
y
′

t +
1

x2
y
′′

t =
1

x2
(y ′′

t − y
′

t )

y
′′′

x = − 2

x3
(y ′′

t − y
′

t ) +
1

x3
(y ′′′

t − y
′′

t ) =
1

x3
(y ′′′

t − 3y ′′

t + 2y ′

t )

dobija se linearna diferencijalna jednačina y ′′′ − 2y ′′ + 4y ′ − 8y = 0. čija
karakteristična jednačina r3 − 2r2 +4r − 8 ima korene r1 = 2, r2 = 2i , r3 = −2i pa
je njen fundamentalni skup rešenja {e2t, sin 2t, cos 2t} tako da je fundamentalni
skup rešenja Ojlerove jednačine {x2, sin(2 ln |x |), cos(2 ln |x |)}, x 6= 0
pa je opšte rešenje y = c1x

2 + c2 sin(2 ln |x |) + c3 cos(2 ln |x |).
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