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Prezentacija iz Matematicke analize 1 za studente raunarstva i automatike

Autor: llija Kovacevic¢

Nastavno-nauéno vece Fakulteta koje je odrzano dana 16.7.2015., na osnovu
predloga Odluke Saveta za bibliotetku i izdavatku delatnost br. 014-112/30, je
odobrilo koris¢enje Prezentacije iz Matemati¢ke analize 1 za studente ralunarstva
i automatike, kao pomocéno sredstvo u nastavi na predmetu Matemati¢ka analiza
1, na studijskom programu Raclunarstvo i automatika.
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Metrika i metri¢ki prostor

Definicija
Metrika ili rastojanje na nepraznom skupu X je svako preslikavanje
d: X% — Rt U{0} za koje vazi

(Ml) d(Xay) > Oa

(M2) d(x,y) =0 x =y,

(M3) d(Xay) - d(y,X),

(Ms) d(x,y) < d(x,z) + d(z,y) (nejednakost trougla)

Metricki prostor je ureden par (X, d) skupa X i metrike d na X.

Za skup X kaZemo da je nosat metritkog prostora (X, d).
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(WSTHSIIRl  Metrika i metri¢ki prostor

e Realan broj d(x, y) je rastojanje elemenata (tataka) x,y € X.

e Metritki prostor (X, d) ¢emo nekada krade oznalavati istim slovom kao i njegov
nosat X.

e U metritkom prostoru (X, d) vaZi tzv. nejednakost mnogougla:

d(x1,xn) < d(x1,%) + d(x2,x3) + -+ + d(xp—1,Xn), n €N\ {1}
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(WSTHSIIRl  Metrika i metri¢ki prostor

Primer

(R", d) je metri¢ki prostor, gde je metrika d : R" x R" — R definisana sa

d(Xa}/) =

za X = (X]_,XQ7 ...,Xn), y = ()/1,}/27 ---,Yn)-

e Za metriku d kaZemo da je euklidska, a prostor (R", d), koji éemo krace
obeleZavati sa R", n—dimenzionalni euklidski prostor.

o Metrika d je uopstenje metrika iz R, R? i R3.
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Metrigki prostori Metrika i metrigki prostor

Primer

Ako je X # () proizvoljan skup, tada je preslikavanje d : X?> — R definisano sa

d(X7}/)_{ g_)’ i;y

3

metrika.

e Za (X, d) kaZemo da je diskretan metricki prostor.

6 / 569



Metrikalilmetrickilproston
Potprostor metrickog prostora
Neka je (X, d) metricki prostor i neka je ) £ Y C X. Sa dy obeleZimo restrikciju

preslikavanja d nad skupom Y, tj. neka je

dY(Xv}/) = d(Xay)a X,y € Y.

Otigledno dy je metrika na skupu Y, tj. (Y, dy) je metritki prostor. KaZzemo da
je (Y, dy) potprostor prostora (X, d).

Metriku dy najces¢e oznatavamo takode sa d, pa je ret o potprostoru (Y, d)
prostora (X, d).
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Metrikalilmetrickilproston
Ogranitenost
Definicija
Za neprazan skup A C X metri¢kog prostora (X, d) kaZemo da je ograniten ako

Jje skup {d(a, b) : a, b € A} ograni€en u skupu R.

Prazan skup je ograni¢en skup (po definiciji).

Definicija

Ako je (X, d) metricki prostor i ako je neprazan skup A C X ogranien, tada
postoji realan broj d(A) = sup{d(a, b) : a, b € A} koji zovemo dijametar skupa
A.

Po definiciji uzimamo da je d(0) = 0.
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(WSTHSIIRl  Metrika i metri¢ki prostor

Definicija
Za preslikavanje f : D — X skupa D u metri¢ki prostor X kaZemo da je
ograniteno nad skupom A C D ako je f(A) C X ograni¢en skup u X.

Ako je A= D, tada je preslikavanje f ograni¢eno.

Ograniceno preslikavanje
f:Ny— X,

gde je Ny proizvoljan beskonalan podskup skupa prirodnih brojeva je ograni€en
niz.
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(WSTHSIIRl  Metrika i metri¢ki prostor

Definicija

Neka je (Y, =) totalno ureden skup. Za funkciju f : X — Y kaZemo da je
ogranitena sa gornje (donje) strane nad nepraznim podskupom A od X ako je
skup njenih vrednosti f(A) ograni€en sa gornje (donje) strane u odnosu na relaciju
=, tj. ako postoji 1 € R tako da za sve x € X vaZi da je f(x) = u (pu = f(x)).

Reéi ¢emo da je funkcija f ograniena sa gornje (donje) strane sa p1, a broj u
zvaéemo gornjim (donjim) ogranitenjem /i gornjom (donjom) granicom
funkcije f.

Funkcija f je ograni€ena ako je ogranifena i sa gornje i sa donje strane.

Potreban i dovoljan uslov da je funkcija f : X — R, X C R ograni¢ena, je da
postoji v € RY, tako da za svako x € X vazi |f(x)| < v.
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Metri&ki prostori Topologija u metrickom prostoru

Topologija u metri¢kom prostoru

Definicija
Neka je (X, d) metri¢ki prostor, a € X i r € RT. Za skup
L(a,r)={xe X :d(a,x) <r}

kaZemo da je otvorena lopta u metri¢kom prostoru (X, d) sa centrom u tacki a
poluprecnika r.

e Kako je d(a,a) = 0 < r, jasno je da otvorena lopta L(a, r) sadrZi svoj centar.

e Ako je 1 < r, otigledno je L(a, 1) C L(a, r2).
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WESTHSERCEUl  Topologija u metrickom prostoru

a) R: L(ar)y=(a—r,a+r),
b) R*: L((a,b),r)={(x,y): V(x—a) +(y - b2 <r},
c) R: L((abc)r)={(xy.2):/{x=a+(y = b+ (z—c) <r}.
; o AN // :/:__ I::\\
. @b)) ' @bl)
a-r él atr X x y
a) c)
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WESTHSERCEUl  Topologija u metrickom prostoru

Tvrdenje

Ako je L(a, r) otvorena lopta u metri¢kom prostoru (X, d), tada za svaku tatku
b e L(a,r), postoji s € RT tako da je L(b,s) C L(a,r).

Dokaz. Kako b € L(a, r), to je d(a, b) < r, pa moZzemo uzeti da je
s=r—d(a,b) > 0.
Odatle sledi da je za svaku tatku x € L(b, s)
d(a,x) < d(a,b)+d(b,x) <r,

$to dokazuje da je
L(b,s) C L(a,r).
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WESTHSERCEUl  Topologija u metrickom prostoru

Definicija
Za neprazan skup U C X kaZemo da je otvoren u metri¢kom prostoru (X, d) ako

(Vx € U)(Br e RT) L(x,r) C U.

Uzimamo da je ) po definiciji otvoren.

e Otvorena lopta jeste otvoren skup u metri¢kom prostoru.

e Za neprazan skup U C X koji je otvoren u metrickom prostoru (X, d) za svaku
tatku x € U, postoji r, € R, tako da je x € L(x, r) C U, pa je

U= U{L(x, r):x € U},

tj. sledi da je svaki neprazan otvoren skup u metritkom prostoru (X, d) unija neke
familije otvorenih lopti iz (X, d).
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iTopologijajulmetrickom]prostorl
Familiju 7 svih otvorenih skupova metri¢kog prostora (X, d) zovemo topologka
struktura ili topologija metritkog prostora (X, d).
e JasnojedajeferidajeXer.
e Unija svake familije elemenata iz 7 je ponovo elemenat iz 7.
e Presek kona¢no mnogo elemenata iz 7 je elemenat iz 7.
Definicija

Za podskup A metri¢kog prostora X kaZemo da je zatvoren ako je
Cx(A) = X \ A otvoren skup.

Otigledno je da su @ i skup X i zatvoreni skupovi.
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Pojam okoline tac¢ke

Definicija

Neka je X dati metri¢ki prostor i a tacka u X.

Za skup V C X kaZemo da je okolina tatke a u metrickom prostoru X, ako
postoji € € RT tako da L(a,e) C V.

Ako je V otvoren skup kaZemo da je V otvorena okolina tatke a.

Otvorenu loptu L(a,e) zovemo e—okolina tacke a.

€ - pozitivan, proizvoljno mali, unapred dat!
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(WSTHSIIREEUIl  Pojam okoline tatke

e Okolina tatke a u prostoru X je neki podskup od X koji sadrZi ne samo tacku a

ve¢ i neku otvorenu loptu sa centrom u ta&ki a.

e Skup X okolina svake svoje tatke u prostoru X.

e Neprazan skup U C X je otvoren ako i samo ako je U okolina svake svoje tacke.

e Za proizvoljnu tacku a u prostoru (X, d) familiju svih okolina tatke a u X
nazivamo sistem okolina tatke a u prostoru X, u oznaci V(a).
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(WSTHSIIREEUIl  Pojam okoline tatke

Tvrdenje

Ako je (X, d) metri¢ki prostor, za svake dve razli¢ite tatke a i b, postoje
disjunktne otvorene okoline L(a, ) i L(b,¢€), tj. svake dve razlitite tatke mogu se
odvojiti disjunktnim otvorenim okolinama.

Dokaz. Kako je a # b, to moZemo uzeti da je ¢ = %d(a, b) > 0.
Dokazimo da je L(a,e) N L(b,e) = (). Pretpostavimo suprotno, tj.

L(a,e) N L(b,e) # 0,

odnosno da postoji
z € L(a,e) N L(b,e).

Tada z € L(a,€), tj. d(a,z) <eize L(b,e), tj. d(b,z) <e,
pa je
0<d(a,b)<d(az)+d(z,b) <ec+e=2c=d(ab),

Sto je kontradikcija, jer je d(a, b) > 0. O
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(WSTHSIIREEUIl  Pojam okoline tatke

Napomena

Ako je U okolina tacke a, tada postoji n € N tako da vaZi L(a, %) c U.

Zaista, ako je U okolina tatke a, tada postoji ¢ € R tako da je
ael(ace)cCU.

No kako postoji n € N, tako da je

Z<e,
n

to je

L<a,%> C L(a,e) C U.
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(ST SIIRCUIl  Klasifikacija tadaka u metrigkom prostoru

Klasifikacija ta¢aka u metri¢kom prostoru

Definicija
Neka je A podskup metri¢kog prostora X. Za tatku a € X kaZemo da je
unutrasnja tatka skupa A, ako postoji ¢ € R tako da je L(a,e) C A.

Skup A° svih unutrasnjih tataka zovemo unutra$njost skupa A.

VaZe tvrdenja:
eflo=0 X=X
o Skup A° je najveli otvoren skup sadrZan u A.

e Skup A je otvoren ako i samo ako je A° = A.
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WESTHSIRCUl  Klasifikacija tadaka u metrigkom prostoru

Definicija
Za tacku a € X kaZemo da je spoljasnja tatka podskupa A metri¢kog prostora X
ako postoji okolina tacke a koja ne sadrZi nijednu tacku skupa A.

Skup svih spoljasnjih tataka zovemo spoljasnjost skupa A.

Octigledno vaZi tvrdenje

e Ako je a spoljasnja tatka skupa A, tada je a unutra3nja tatka skupa X \ A.
Dakle, spoljadnjost skupa A je skup (X \ A)°.
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WESTHSIRCUl  Klasifikacija tadaka u metrigkom prostoru

Definicija
Za tacku a € X kaZemo da je rubna tacka skupa A C X ako
(Ve e RT)(L(a,e) NA# DA L(a,e) N Cx(A) # ()

(svaka e—okolina tatke a ima neprazan presek i sa skupom A i sa njegovim
komplementom).

Skup A* svih rubnih taaka skupa A nazivamo rubom skupa A.

Vaze tvrdenja:
o A* = (X \ A)*

o X = A°U (X \ AP U A"
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WESTHSIRCUl  Klasifikacija tadaka u metrigkom prostoru

Definicija
Tacka a € X je adherentna tacka skupa A C X ako svaka e—okolina tactke a ima
neprazan presek sa skupom A, tj.

(Ve € RT) L(a,e) NA# 0.

Skup A svih adherentnih tataka zovemo adherencija ili zatvorenje skupa A.

Vaze tvrdenja:
o 0=0, X=X
e Skup A je najmanji zatvoren skup koji sadrZi skup A.
e Skup A je zatvoren ako i samo ako je A = A.

o A* :ZQ(X—\A)
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WESTHSIRCUl  Klasifikacija tadaka u metrigkom prostoru

Definicija
Za tacku a € X kaZemo da je tatka nagomilavanja skupa A C X ako

(Ve € R*) L(a,) N (A\ {a}) # 0

(svaka e—okolina tatke a ima neprazan presek sa skupom A\ {a}).

e Skup svih tataka nagomilavanja skupa A obelezavamo sa A’.

e Svaka tatka nagomilavanja skupa A je adherentna tatka datog skupa, tj. vazi
daje A C A

e Svaka tatka skupa ne mora biti tatka nagomilavanja datog skupa, pa odatle
sledi da svaka adherentna ta¢ka ne mora da bude i tatka nagomilavanja datog
skupa. Na primer, ako je A =(0,1) U {3,4}, tada je

A =1[0,1], A=[0,1]U{3,4}. Dakle, 3€ A, ali3 & A’

e Otigledno vaZida je A= AUA'.
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Metri&ki prostori Klasifikacija tagaka u metrickom prostoru

Definicija
Za tacku a € A kaZemo da je izolovana tatka skupa A C X ako

(3e e RT) L(a,e) N A= {a}

(postoji e—okolina tatke a koja sadrZi samo tacku a iz skupa A).
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Metri&ki prostori Klasifikacija tagaka u metrickom prostoru

Primer

Za skup A= (1,2]U {3} je
A® = (172)7
A=1,2]U{3},
A =1L2],
A*=1{1,2,3}

Tacka 3 je izolovana tacka skupa A.

Za skup B = {1,2,3} je

B =10,
B =B=B",
B = (.

Sve tactke skupa B su izolovane tacke.
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Konvergencija nizova u metrickom prostoru

Definicija
Neka je A prebrojiv podskup skupa prirodnih brojeva (ili skupa Ng = NU{0}) i X
neprazan skup. Preslikavanje a: A — X zovemo nizom u skupu X.

Obitno se u definiciji niza uzima da je A = N. Medutim, tada za slede¢a
preslikavanja definisana sa

ne bismo mogli reéi da predstavljaju niz. U prvom slu€aju oblast definisanosti nije
titav skup N ve¢ N\ {2}, a u drugom slutaju N\ {2n—1:n € N}.
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Konvergencija nizova u metritkom prostoru

Bez gubitka op3tosti za domen niza se moZe uzimati skup prirodnih brojeva N, jer
za svaki prebrojiv skup A, A C N, postoji bijekcija ¢ : N — A skupa N na skup A
sa osobinom da ako je

n < m,

tada je i
#(n) < ¢(m), zasve n,me N.

Tada umesto niza a moZemo posmatrati niz
aop:N—= X.

Primetimo da njegov domen jeste skup prirodnih brojeva i da oba preslikavanja
imaju isti skup vrednosti.
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Konvergencija nizova u metritkom prostoru

e Bijekciju ¢ mozemo definisati na sledeci nacin:

#(1) = minA,
¢(2) min(A\ {¢(1)}),

6(n) = min(A\{6(1),6(2),...,6(n—1)}), za sve n > 1.

1
e Na primer, bijekcija ¢ za niz dat sa a(n) = — preslikava skup N na skup
N\ {2} i data je sa

o(1) = 1,
¢(n) = n+1, zasven>1.
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Konvergencija nizova u metritkom prostoru

e Neka je a: N — X niz. Elemenat a(n) skupa X (slika prirodnog broja n)
obeleZavamo sa a,, i zovemo ga n-ti €lan niza a ili opsti €lan niza a. Dakle,
a(1) = a1 je prvi &lan niza, a(2) = a, je drugi ¢lan niza, itd.

e Niz a: N — X krade obelezavamo sa {a,}, < a, > ili (a,). Koristi¢emo oznaku
{an}.

e Ako je X =R, onda kaZemo da je {a,} realan niz, a ako je X = C onda
kaZemo da je {a,} kompleksan niz. Primetimo da svakom kompleksnom nizu

{an} = {xn + iyn}
odgovaraju dva realna niza:

{x,} — niz realnih delova niza {a,},
{yn} — niz imaginarnih delova niza {a,}.
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Konvergencija nizova u metritkom prostoru

Neka je (X, <) (totalno) ureden skup i {a,} C X niz u skupu X.

1) Ako postoji M € X, tako da je a, < M, za sve n € N, onda kaZemo da je niz
{a,} ograniten sa gornje strane.

Element M zovemo gornja granica niza (gornje ogranitenje).

Najmanja gornja granica niza (ako postoji) koji je ograniten sa gornje strane, zove
se supremum niza (gornja meda), u oznaci sup a,.

2) Ako postoji m € X, tako da je m < a,,, za sve n € N, onda kaZemo da je niz
{an} ograniten sa donje strane.

Element m zovemo donja granica niza (donje ogranitenje).

Najveca donja granica niza (ako postoji) ogranienog sa donje strane zove se
infimum niza (donja meda), u oznaci inf a,.
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Konvergencija nizova u metritkom prostoru

Ako je niz {a,} ograni¥en i sa gornje i sa donje strane, kaZemo da je ogranicen.
Ako je M =supa, i m=infa,, tada za sve n € N vazi da je m =< a, < M.
Ogranien niz realnih brojeva ima supremum i infimum.

e Realan niz {1} je ograniten, pri ¢emu je M = sup 2 =1 prvi &lan niza, a
m= inf% = 0 nije &lan niza.

e Realan niz {n} je ograniten sa donje strane (m = 1), a nije ograniten sa gornje
strane.

e Realan niz {(—1)"n} nije ograniZen ni sa gornje ni sa donje strane.
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Konvergencija nizova u metritkom prostoru

Ako za niz {a,} vaZi:

1) (Vn € N) a, < ap+1 - niz je monotono rastudi,

2) (Vn € N) apy1 < ap - niz je monotono opadajuéi,

3) (Vn € N) a, < ap41 - niz je monotono neopadajudi,

4) (Vn € N) apt1 < a, - niz je monotono nerastudi.

e Ako niz {an} zadovoljava neki od gornja Zetiri uslova, kazemo da je monoton.

e Ako niz zadovoljava uslov 1) ili 2) kaZemo da je i strogo (striktno) monoton.

Ocigledno je da je monotono rastuéi niz ujedno i monotono neopadajudi, a
monotono opadajudi niz je ujedno i monotono nerastudi.
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Konvergencija nizova u metritkom prostoru

e KaZemo da je niz {a,} gotovo monotono rastuéi, ako postoji ng € N, tako da
za svako n € N, n > ng, vazi a, < apy1-

e Sli¢no se definisu pojmovi gotovo monotono opadajuéeg, gotovo monotono
nerastuceg, gotovo monotono neopadajuceg i gotovo monotonog niza.

Definicija
Ako je {ni} monotono rastuci niz prirodnih brojeva, onda za niz {a,, } kaZemo da
Jje podniz niza {a,}.

Na primer podnizovi niza {a,} su nizovi {as,}, {a3n}, {32n—1}, itd.
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Konvergencija nizova u metritkom prostoru

Definicija
Neka je (X, d) metri¢ki prostor. Za niz {a,} C X kaZemo da ima graninu
vrednost a € X i piSemo da je lim a, = a, ako

n—o0o

(Ve € RT)(3ng € N)(Vn € N)(n > ng = a, € L(a,e)),

tj.
’ (Ve € RY)(3ng € N)(Vn € N)(n > ng = d(as, a) < €).
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Konvergencija nizova u metritkom prostoru

Prethodna definicija za prostore R i C je:

e Broj a € R je grani¢na vrednost realnog niza {a,} u R ako i samo ako je
ispunjen uslov

(Ve € RT)(3ng € N)(n > ng = |a, — a| <€),

odnosno potev od ng svi €lanovi niza nalaze se u e—okolini tatke a, tj. u
otvorenom intervalu (a — g, a + €).

e Broj z € C je granitna vrednost kompleksnog niza {z,} u C ako i samo ako je
ispunjen uslov

(Ve e RT)(3ng € N)(n > ng = |z, — 2| < e).

36 / 569



Konvergencija nizova u metritkom prostoru

e Ako niz {a,} ima grani€nu vrednost a, tada kaZemo da niz konvergira ili tezi
ka a, odnosno da je niz {a,} konvergentan. Za niz koji nije konvergentan
kaZemo da divergira, odnosno da je divergentan.

e Broj ng otigledno zavisi od ¢ i pokazuje koliko se €lanova niza {a,} nalazi izvan
e—okoline tatke a. PoZev od ng svi &lanovi niza se nalaze u otvorenoj lopti L(a, ¢)
dok se van nje nalazi najvise ng — 1 ¢lanova niza. KaZemo i da su u svakoj okolini
skoro svi €lanovi niza.

Napomena

Ponekad se umesto lim a, = a pise a, — a, n — oo ili kraée a, — a.
n—o0
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Konvergencija nizova u metritkom prostoru

e Ako je (Vn € N\ Np) a, = a, gde je Ny C N konaan skup, onda kaZemo da je
niz {a,} stacionaran. Kako za stacionaran niz {a,} gde je

a,=a, za neN\M
vazi
d(ap,a) =d(a,a)=0, za neN\M
to sledi da je

lim a, = a.
n—oo

e Sli¢no, ako je {a,} konstantan niz, tj. a, = a za svako n € N, sledi da je

lim a, = a.
n—oo
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Konvergencija nizova u metritkom prostoru

Primer

Za svako o > 0 u R vazi

To je tacno, jer je

1 1 1/
——O‘<5@—<5@n><—) ,
n% n% €

pa za proizvoljno € > 0, postoji

1 1/a
ng = <—> + 1.
3

Tako ako jea=1iec = tada je ngp = 11.

1
10°
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Konvergencija nizova u metritkom prostoru

Ako je {zn}, gde je z, = X, + yni kompleksan niz, granitna vrednost niza {z,}
moZe se odrediti preko grani¢nih vrednosti realnih nizova {x,} i {y,}. Naime, vazi

Tvrdenje

Kompleksan broj z = x + yi je grani¢na vrednost kompleksnog niza {z,},

zn = Xn + yni u C ako i samo ako je x grani¢na vrednost niza {x,} uR, ay
grani¢na vrednost niza {y,} uR, tj.

lim z,=z=x+yi< lim x, =xA lim y,=y.
n— oo n—o0 n—o0
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Konvergencija nizova u metritkom prostoru

Dokaz. (=) Pretpostavimo da je lim z, = z = x + yi. Neka je (x — €1, x + €1),

n—o0o
g1—okolina tatke x i (y — €2,y + €2), ea—okolina tatke y. Uzmimo da je

e = min{ey,e2}. Tada
zp € L(z,e), za n>ng,
pa sledi da
|xp — x| <e<er i |yn—y|l<e<es za n>ng,

odnosno za nizove {x,} i {y,} vazi lim x, =x, lim y, =y.
n—o0 n—o0

y

yre-

-,
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Konvergencija nizova u metritkom prostoru

(<) Pretpostavimo obrnuto, tj. neka je
n

lim x, =x1i lim y,=y,a L(z,¢)
— 00 n— o0

proizvoljna € okolina tatke z. Upidimo u L(z,¢€) pravougaonik sa stranicama 2¢7 i
2¢e, Cije su stranice paralelne koordinatnim osama. Tada je (x — &1, x + £1),

g1—okolina tatke x i (y — €2,y + €2), e2—

Xne(X—é‘l,X‘Fé‘l), ’72”1

sledi da z, € L(a,e) za n > np = max{m

y+8z'

\

e ——

R
N

okolina tacke y, pa iz
Yn S (y_€27y+52)5 n Z ny

,n2}, odnosno lim z, = z.
n—o00

\
\
1
I
1

RN

1

N
[
~ -

O
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Konvergencija nizova u metritkom prostoru

Napomena

Sli¢no se moZe dokazati da niz {(x},x2,...,xT)} C R™ konvergira ka
(al,a?,...,am) € R™ u R™ ako i samo ako za svako i = 1,...,m niz {x}}
konvergira ka a' u R, tj.

m

. 1.2 1.2 m . P_oLior
lim (x5, x5, ..., x7) = (a*,a%,..,a") & lim x, =4, i=1,...,m.
n—oo n—oo

Napomena

Niz {a,} C X konvergira ka a € X u metritkom prostoru (X, d) ako i samo ako
niz realnih brojeva {d(an, a)} konvergira ka nuli u R.

Napomena
Ako je k fiksan prirodan broj, tada ako je lim a, = a, sledi takode da je
n—o0

lim apix = a.
n—oo
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Konvergencija nizova u metritkom prostoru

Tvrdenje

Ako niz {a,} C X konvergira u metri¢kom prostoru (X, d), tada je grani¢na
vrednost jednoznaéno odredena.

Dokaz. Pretpostavimo da postoje dve grani¢ne vrednosti a i b. Kako je X
metriZki prostor, to postoje otvorene lopte L(a, ) i L(b,¢), ¢ = 1d(a, b) koje su
disjunktne. Tada postoje prirodni brojevi ny i ny tako da vazi

(YneN)(n>n = a, € L(a,e)), (YneN)(n>ny= a, € L(b,e)).
Neka je ng = max{ny, n,}. Tada sledi da je

(Vn € N)(n > no = a, € L(a, ) N L(b,¢)),

$to je nemogule. Dakle, ako niz ima grani&nu vrednost, ona je jednozna&no
odredena. (]
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Konvergencija nizova u metritkom prostoru

Tvrdenje

Konvergentan niz u metri¢kom prostoru (X, d) je ograni&en.

Dokaz. |z toga da je lim a, = a, imamo da vaZi
n— oo

(3no € N)(Vn € N)(n > ng = a, € L(a,1)).
Ako je ng = 1, tada se svi ¢lanovi niza nalaze u otvorenoj lopti L(a, 1), pa je
d(am, an) < d(am,a) +d(a,a,) <1+1=2,tj. niz je ogranien.
Za ng > 1, neka je D = max{1,d(a,a1),d(a, a2),...,d(a,an—1)}. Tada je
d(an,am) < d(an,a) + d(a,am) < 2D, pa je
sup{d(an, am) : an,am € {an}} < D+ D =2D.

Dakle, niz {a,} je ograniZen. O
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Konvergencija nizova u metritkom prostoru

Definicija
Za tatku a € X kaZemo da je tatka nagomilavanja niza {a,} u metri¢kom
prostoru (X, d) ako

(Ve e RT)(Vm e N)(3n € N)(n > m A a, € L(a,¢)).

e Dakle, ako je a tatka nagomilavanja niza {a,}, tada svaka eé—okolina tatke a
sadrzi bar jedan &lan datog niza.

Obrnuto nije ta¢no. Na primer, ako posmatramo realan niz {a,} gde je a, = 1,
tada L(1,¢) sadrzi prvi &lan niza a3 = 1, ali 1 nije tatka nagomilavanja datog niza

u R.
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Konvergencija nizova u metritkom prostoru

e Tatke nagomilavanja niza {(—1)"} u R su otigledno -1i 1
(ograniten niz ne mora da bude konvergentan!).

e Tatka nagomilavanja niza {n(-1"} uR je 0
(nije ogranien i nije konvergentan!)

e Niz {n} nema ni jednu tatku nagomilavanja u R.

Dakle, niz moZe da nema ni jednu, da ima jednu ili vise tataka nagomilavanja, pa
i beskona&no mnogo.
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Konvergencija nizova u metritkom prostoru

Tvrdenje

Za svaku okolinu V' tatke nagomilavanja a niza {a,}, postoji beskona&an skup
M C N tako da je (Ym € M) a, € V.

Dokaz. DokaZimo da je skup M = {n € N: a,, € V} beskonatan. On je neprazan
jer iz same definicije tatke nagomilavanja sledi da postoji prirodan broj n takav da
a,eV.
Pretpostavimo da je M konaZan skup. Tada postoji n1 = max{n: n € M}. Ako
uzmemo da je

m=n +1,

tada postoji n > m> n; takoda a, € V, pajene M tj. n < n; §to je
kontradikcija. Dakle, M je beskona&an. O
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Konvergencija nizova u metritkom prostoru

e Iz definicije tatke nagomilavanja niza {a,} sledi da je tatka nagomilavanja niza
adherentna tatka skupa {a, : n € N}, ali ne mora da bude tatka nagomilavanja
toga skupa.

Npr. u slu¢aju niza &iji je opsti &lan a, = (—1)" tatke 1 i —1 su tacke
nagomilavanja niza u R, dok je skup {1, —1} konatan i nema tatke nagomilavanja.

Napomena

Ako niz {ap,} C X u metritkom prostoru X konvergira ka a, onda je a jedina tatka
nagomilavanja niza {a,}.
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Konvergencija nizova u metritkom prostoru

e Tacka a je tatka nagomilavanja niza {a,} ako i samo ako postoji podniz {a,, }
niza {a,} koji konvergira ka a.

e U metritkom prostoru (X, d), skup A C X je zatvoren ako i samo ako za svaki
niz {a,} elemenata iz A koji konvergira ka a sledi da a € A.

Tvrdenje

Neka je (X, d) metri¢ki prostor. Skup svih tataka nagomilavanja niza {a,} C X je
zatvoren u (X, d).

50 / 569



Konvergencija nizova u metritkom prostoru

e Pretpostavimo da je skup A tataka nagomilavanja realnog niza {a,} neprazan i
ograniten. Kako je skup tataka nagomilavanja zatvoren, to sledi da skup A ima
najveci i najmanji element, tj. najvecu i najmanju tatku nagomilavanja. Tada

a) najve¢u tatku nagomilavanja zovemo limes superior datog niza i oznatavamo
je salimsup a, ili lim a,.

b) najmanju tatku nagomilavanja zovemo limes inferior datog niza i oznatavamo
je sa liminf a, ili lim a,.

e ako su liminf a, i limsup a, razli¢iti, niz ne konvergira, ako konvergira jednaki
su.

51 / 569



Konvergencija realnih nizova Divergencija realnih nizova

Divergencija realnih nizova

Definicija
Za niz {a,} kaZemo da teZi co kada n — oo, tj. a, — 0o kada n — oo ako

(VK € RM)(3no € N)(Vn € N)(n > ng = a, > K).

Za niz {a,} kaZemo da tezi —oo kada n — oo, tj. a, = —o0 kada n — co ako
(VK € R7)(3ng € N)(Vn € N)(n > no = a, < K).
Ako niz {ap} teZi +oo ili —oo kaZemo da je divergentan u uzem smislu. Za niz

koji je divergentan, ali ne u uZem smislu, kaZemo da je divergentan u Sirem
smislu.
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[CUVEEIIEREE LTINSVl Divergencija realnih nizova

Napomena

Umesto a, — oo (odnosno a, — —oc) kada n — oo &esto éemo pisati
lim a, = oo (odnosno lim a, = —00).

n— oo n—o0

e Niz {(—1)"} je otigledno divergentan u 3irem smislu. (Ovaj niz ima dve tatke
nagomilavanja.)

e Niz {n(=1)"} divergira u &irem smislu. (Ovaj niz ima samo jednu tatku
nagomilavanja i to realan broj 0.)

e Niz {(—1)"n} je divergentan u 3irem smislu. (Ovaj niz nema ni jednu tatku
nagomilavanja.)

e Niz { /n} teZi ka co kada n — o0, a niz {—n?} te¥i ka —co kada n — oo.
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[CUVEESIERCE LTINSV Osnovne osobine realnih konvergentnih nizova

Osnovne osobine realnih konvergentnih nizova

1° Ako je lim a, = a, tada je a jedina tatka nagomilavanja niza {a,}.
n—oo

2° Konvergentan niz {an} ima jedinstvenu grani¢nu vrednost.
3° Konvergentan niz je ogranien.

4° Ako je realan niz {an} ogranien i ima jednu tatku nagomilavanja, tada je on
konvergentan i njegova grani¢na vrednost je tacka nagomilavanja.
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[CUVEEEIERCE LTINSVl Osnovne osobine realnih konvergentnih nizova

Naglasimo da ograniéen niz sa samo jednom tac¢kom nagomilavanja ne mora da
bude konvergentan u prostoru (X, d). Na primer, u prostoru (Q,| |),
posmatrajmo niz {a,} dat sa

aon =1

am-1 € (,\f—%,\/§+%)m@:(\f_%,\/§+%)Q

e a, € (—50,50) (ograniten je);

e 1 je jedina tatka nagomilavanja u Q, u R ima dve tatke nagomilavanja: 1 i v/5;
e a, » 1, n — oo jer se izvan otvorene lopte L (1,2) /= (1—-% 1+ %)Q nalaze
svi neparni &lanovi niza, dakle beskona&no mnogo.

Q
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[CUVEEEIERCE LTINSVl Osnovne osobine realnih konvergentnih nizova

5° Ako niz {a,} konvergira ka broju a, tada je i niz {|a,|} konvergentan i
konvergira ka broju |a|, t.

lim a, =a= lim |a,| = |a|.
n—o0 n— oo

e Obrnuto nije ta¢no. Na primer, niz {(—1)"} je divergentan, a niz {|(-1)"|}, tj.
{1} je konvergentan (konvergira ka broju 1).

6° Ako niz {|an|} konvergira ka broju 0, tada je i niz {a,} konvergentan i
konvergira ka broju 0, tj.

lim |a,| =0= lim a, =0.
n—oo n—oo

7° Ako su nizovi {a,} i {b,} takvi da je a, < b, za n > k i ako je lim a, = a,
n—00
lim b, = b, tada je a < b.

n— oo
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Konvergencija realnih nizova Osnovne osobine realnih konvergentnih nizova

8° Ako su nizovi {ap},{bn} i {cn} takvi da je an < b, < ¢, za n >k,

lim a, = lim ¢, = a, onda je i I|m b, = a.
n—o0 n—00
Primer
Kako je
n n n
n 1 1 1 n
n+n ;n3+n_;n3+i_;n3+l n+1’

to prema osobini 8° sledi da je

1 n
0= lim < lim < lim =0
n—>oon3—|—n_n—>oo 2”34—[ _n—>oon3—|—1 ’

t.

I Lo Lot 0
m|[—m+——+.+—— | =
nsoo \mM+1 nd4+2 m+n
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Konvergencija realnih nizova Osnovne osobine realnih konvergentnih nizova

9° Neka je {bn} niz prirodnih brojeva za koji vazi da je lim b, = co. Ako je
n—oo
lim a, = a, tada jei lim ap, = a.

n— oo n—oo

10° Ako niz {an} konvergira ka a, tada i svaki podniz {ap, } niza {a,} konvergira
ka a.

Napomena J

Poslednje dve osobine vaZe i u proizvoljnom metri¢kom prostoru (X, d).

Napomena

Iz lim a,=a, lim by=bia,<b,zan>k, sledi a<b, ali ne uvek i a < b,
n—00 n—o00

. . . n . . .
Sto se npr. videti ako se uzme da je a, = 1 ib,=1. Tada je a, < by i
n
lim a, = lim b, =1.
n—oo n—oo
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Racunske operacije sa grani¢nim vrednostima i primeri
Racunske operacije sa grani¢nim vrednostima i primeri

Tvrdenje (deo tvrdenja pod a) vaziiu R iu C)
a) Ako je I|m a,=ai lim b, = b, tada je

n— oo
1°) lim (an &+ by) = lim a, = lim b, = a+ b,
n— oo n— oo n— oo

2°) lim (an - bn) = I|m an- lim by=a-b,

n—oo — 00 n—oo

3°) lim(c-an)=c- lim a,=c-a,

n—oo n— oo
o . .11 1
4)zab,,;é01b7$0,nan;ob—n_ b = b
n— oo
. . an nin;oan a
5)zabn7é01b7é0,nangob—n: e
n— oo

59 / 569



[CUVEESIERC NNV Racunske operacije sa graniénim vrednostima i primeri

Dokaz. Dokazacemo deo tvrdenja a) 1°).
Iz konvergencije nizova {a,} i {bs} sledi da za proizvoljno € > 0, postoje prirodni
brojevi n1, n, € N, tako da je

lan—al <=, n>n i |bn—b|<%, n> np.

Birajudi
no = max{ny, na},

imamo da je

|(an + bn) — (a £ b)| (an — a) £ (b, — b)|

= |
< |an_a|+|bn_b|
< £.¢
2 2
= & n2z2n
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Konvergencija realnih nizova Racunske operacije sa grani¢nim vrednostima i primeri

Tvrdenje (deo tvrdenja pod b), c), d) vazi u R)
b) Ako a, — o0 i b, — b (b€ RU{o0}), tada

1°) (an + bn) — oo,

2°) (an - bn) — 00, za b > 0, odnosno (an - by) — —o0, za b < 0.
c) Ako a, - —oo i b, — b (b€ RU{—oc0}), tada

1°) (an + bn) = —o0,

2°) (an- bn) = —o0 za b > 0, odnosno (a, - by) — 0o za b < 0.

d) Neka je {a,} niz za koji je a, # 0, n € N. Tada je

. .1
lim |ap] =00« lim — =0.
n—o00 n—oo a,
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[COVEESIERCE LTINSV Princip monotonije. Broj e

Princip monotonije

Tvrdenje

Svaki monotono neopadajuéi (rastuéi) niz koji je ograni¢en sa gornje strane
konvergira svome supremumu, a svaki monotono nerastuéi (opadajuéi) niz
ograniten sa donje strane konvergira svome infimumu.

Dokaz. Pretpostavimo na primer, da je niz {a,} ogranien sa gornje strane i
monotono neopadajuéi. Neka je

(M—e,M+¢), M=supa,,
e—okolina tatke M. Tada postoji n; € N tako da

M—e<a, <M.
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[COVEEISIERCE LTINSV Princip monotonije. Broj e

Zaista, ako ne bi postojao takav prirodan broj ny, sledilo bi da za sve &lanove niza
vazi
ap < M-—¢g,

pa bi broj
M—e<M

bio gornje ogranicenje niza, koje je manja od njegovog supremuma M $to je
nemoguce.

S obzirom da je {a,} monotono neopadajuéi niz, vaZi
M—-—e<apn <am+1 < amp2 < ... <M< M+eg,

tj. ap€(M—e,M+¢)zan>n,
pa je M grani¢na vrednost niza {a,}. Sli¢no se dokazuje preostali sluaj. O

Posledica J

Svaki gotovo monoton i ograni¢en niz je konvergentan.
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[COVEESIERCE LTINSV Princip monotonije. Broj e

Broj e

1 n 1 n+1
Posmatrajmo nizove {a,} i {b,}, gde je a, = (1 + ;) , b= <1 + ;) .

1) Niz {a,} je monotono rastuéi , jer

ani1 _ (1+ﬁ)"+1 B (%)n—s—l _ n(n+2) n+1. n+1
(n+1)?

B R N =T
- n +2n il n—|—17 1 1 ntl n+1
S\ m+2n+1 no (n+1)2 n
i koriste¢i Bernulijevu nejednakost (1 + h)" >1+4nh, h> -1, h#0,n>1

dobijamo da je
dn+1 > (1 _ 1 ) ) n+1 _ 1,
an n+1 n

tj. ant1 > an.
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[COVEEISIERCE LTINSV Princip monotonije. Broj e

2) Niz {b,} je monotono opadajuéi, jer iz

b,  (14%)"! (mt1yntl ((n+1)2)n+2. ,

— n
bop1 (14 L)z (2E2)m+2 n(n+2) n+1

n+1 n+1

— (142 o 14— (nt2)) 1
N n(n+2) n+1 n(n+ 2) n+1 7

sledi da je by11 < b,.

Kako je ap, < by, to je a1 < a, < b, < by, tj. nizovi {ap} i {b,} su ograniZeni, pa
su zbog njihove monotonosti oba niza konvergentna.

65 / 569



[COVEEISIERCE LTINSV Princip monotonije. Broj e

1 n
Neka je lim (1 + —) =e.
n—o00 n

1\ 1
Tada je lim b, = lim (1 + —) <1 + —) =e, paje
n—oo n—oo n n

1 n 1 n+1
(1+—) <e<<1+—) ; (1)
n n
jer je e supremum za niz {a,}, a infimum za niz {b,}. Svi &lanovi nizova a, i b,
su racionalni brojevi. Broj e je iracionalan, pa u (1) vaZi stroga nejednakost.

Napomenimo da je e ~ 2,718281828... transcedentan broj, odnosno nije nula

nijednog polinoma sa celobrojnim koeficijentima. Transcedentnost broja e dokazao
je Ermit! 1873. godine.

1Ermit, C. (Charles Hermite, 1822-1901) francuski matemati¢ar
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[COVEEISIERCE LTINSV Princip monotonije. Broj e

VaZe osobine:

1) Ako niz {a,}, a, > 0 konvergira ka broju a > 0, tada je i niz {In a,},
konvergentan i konvergira ka broju In a.

2) Ako niz {a,} konvergira ka a, tada je i niz {e®}, konvergentan i konvergira ka
e?.

3) Ako niz {an}, an > 0 konvergira ka broju a, tada je i niz {{/an}, k € N,
konvergentan i konvergira ka broju ¥/a.

4) Ako je {a,} niz takav da a, — oo, tada je
1\
lim <1 + —> =e.
n— 00 an
5) Ako je {an} niz takav da a, — —oco, tada je

1\
lim (1 + —) = e.
n—oo an
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Konvergencija realnih nizova Princip monotonije. Broj e

Primeri nekih grani¢nih vrednosti nizova su:

Primer

1) a>0= lim ya=1;
n—o0

2) lim v/n=1;

n—o0
0, lql<1
3) lim g"= 1, g=1 ;
n—o0o
oo, qg>1
nOL
4) acRa>1= lim —=0;
n—oo gn
n
5 lim — =0
n—oo nl
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LCUVEEIERC NNV Niz umetnutih intervala. Bolcano-Vajeritrasova teorema

Niz umetnutih intervala. Bolcano-VajerStrasova teorema

Pod nizom umetnutih intervala podrazumeva se niz zatvorenih intervala
{[an, bn]} za koji vaZi:

1) [a1, b1] D [a2, b2] D ... D [an, bn] D ...
(svaki sledeéi nalazi se u prethodnom intervalu).

2) ILm (bn — an) = 0 (duZina intervala tezi ka nuli).
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Konvergencija realnih nizova Niz umetnutih intervala. Bolcano-Vajerstrasova teorema

Tvrdenje
Neka je dat niz zatvorenih intervala {[an, b,]} za koji vaZi 1).
Tada je
ﬂ[an,bn]:{xeR:agxgb},
neN
gde je

a=sup{a,: ne€ N},
b =inf{b, : n € N}.

Ukoliko je {[an, bn|} niz umetnutih intervala, tj. vaZi i 2), tada postoji jedan i
samo jedan broj koji pripada svim intervalima.
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LCUVEESIERC NNV Niz umetnutih intervala. Bolcano-Vajeritrasova teorema

Dokaz. Posmatrajmo nizove {a,} i {b,}. Tada otigledno vaZi:

- niz {a,} je monotono neopadajuéi,

- niz {b,} je monotono nerastudi,

- a1 < a, < b, < by, n €N, odnosno nizovi {a,} i {by} su ograni&eni.
Dakle, nizovi {a,} i {b,} su konvergentni, prema principu monotonije, i

lim a, =a=sup{a,: neN}

n— oo

lim b, =b=inf{b,: neN}.

n—o0
Takode je a < b (osobina 7°).
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LCUVEESIERC NNV Niz umetnutih intervala. Bolcano-Vajeritrasova teorema

lim (b, —a,) = lim b,— lim a,=b—a=0
n— o0 n— 00 n— 00
sledi da je a = b. Kako za svako n vaZi
a,<a=b<b,

to je a jedina zajednitka tatka za sve intervale.
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LCUVEESIERC NNV Niz umetnutih intervala. Bolcano-Vajeritrasova teorema

Ovu osobinu nema skup racionalnih brojeva Q. lzmedu brojeva

ﬁ—% Va1

n+1

uzmimo racionalan broj a,, a izmedu brojeva

1 1
ﬁ+;|ﬁ+

n+1

racionalan broj b,. Dobijamo niz zatvorenih intervala {[a,, bs]} pri €emu
1) a, €Q, by eQ,

2) [a1, b1] D [a2, b2] D ... D [an, bn] D ...,
3) nli}ngo(b,, —ap) =0.

To bi bio niz umetnutih intervala u skupu R. U skupu R dati niz ima jednu i samo
jednu zajednitku tatku i to /2.
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LCUVEESIERC NNV Niz umetnutih intervala. Bolcano-Vajeritrasova teorema

Oznatimo sa [a, blg = [a, b] N Q. Za niz {[a,, bng} vaZi:

1) [al,bl]Q D [az,bg](@ D...D [a,,,b,,]Q Doy

2) lim (by— a,) = 0.

n—o0

Ne postoji racionalan broj g, tako da za svako n € N, g € [a,, bs]q, jer bi tada niz
{[an, bn]} imao dve zajednitke tatke q i v/2, $to protivureti dokazu prethodne
teoreme.

DokaZimo Bolcano?-Vajerétrasovu® teoremu

2Bolcano, B. (Bernhard Bolzano, 1781-1848) - &eski matematicar i filozof
3Vajerdtras, K. (Karl Weierstrass, 1815-1897) - nemaZki matemati&ar
74 / 569



LCUVEESIERC NNV Niz umetnutih intervala. Bolcano-Vajeritrasova teorema

Tvrdenje
Svaki ograni¢en niz ima bar jednu tatku nagomilavanja. J

Dokaz. Neka je niz {a,} ograniten i
m=infa, <a, <M =supa,.
Ako je m = M, tada je a, = m, odnosno niz {a,} je konstantan, pa on ima

jedinstvenu tatku nagomilavanja - grani¢nu vrednost.

Pretpostavimo da je m # M. Podelimo interval [m, M] na dva jednaka dela. U bar
jednom delu, ozna&imo taj interval sa [m1, M;], ima beskona&no mnogo &lanova
niza i to u smislu da je skup

Ny = {nEN:anE [ml,Ml]}

beskonacan.
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LCUVEESIERC NNV Niz umetnutih intervala. Bolcano-Vajeritrasova teorema

Podelimo [my, M| na dva jednaka dela. Sa [ma, M;] oznatavamo onaj od
podintervala intervala [my, M;] koji sadrZi beskonatno mnogo &lanova niza.

Nastavljajuci dolazimo do niza {[m,, M,]} zatvorenih intervala za koji vaZi:

1) [mn, M) sadrzi beskona&no mnogo &lanova niza,

2) [ml, Ml] D) [fTIQ, Mz] D...D [m,,, Mn] D ..,

3) lim (My — mp) = lim M= _ g,

n—oo n—oo n

76 / 569



LCUVEESIERC NNV Niz umetnutih intervala. Bolcano-Vajeritrasova teorema

Dakle, postoji jedinstvena tatka a koja pripada svim zatvorenim intervalima.
DokaZimo da je a tatka nagomilavanja niza {a,}. Iz

lim m=a=Ilim M, i m,<a<M,,
n—00 n—-o00

sledi da za proizvoljno € > 0, postoje ny, ny € N, tako da je

mp€(a—eg,at+e) i n>m

M,e(a—e,a+e) i n>ny

odnosno

[Ma,Mp) C(a—e,a+¢€) za n>ng=max{n,m},

pa je a tatka nagomilavanja niza {a,} jer [m,, M,] sadrZi beskona&no mnogo
¢lanova datog niza. O
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Konvergencija realnih nizova Niz umetnutih intervala. Bolcano-Vajerstrasova teorema

Posledica
Iz svakog ograni¢enog niza moZe se izdvojiti konvergentan podniz. J

Dokaz. Neka je {a,} ograni€en niz. Postoji bar jedna tatka nagomilavanja a tog
niza. Tada postoji monotono rastuéi niz prirodnih brojeva {n,} tako da za svako
k € N imamo da a,, € L(a, £). Podniz {an, } niza {a,}, kako je konstruisan
konvergira ka tatki a. U

Napomena

Sli¢na osobina vaZi i za prostor R™, tj. iz svakog ograni¢enog niza {a,} C R"
moZe se izdvojiti konvergentan podniz.
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LCUVEESIERC NNV Niz umetnutih intervala. Bolcano-Vajeritrasova teorema

Posledica

Svaki ograni¢en niz {a,} koji ima samo jednu tatku nagomilavanja, je
konvergentan.

Dokaz. Neka je {a,} ograni&en niz, tj.
m=infa, <a,<M=supa,

i neka je a jedina tatka nagomilavanja niza ap.
DokaZimo da je lim a, = a. Pretpostavimo suprotno, postoji okolina
n—o0o

(a — €,a+ €) izvan koje ima beskonatno mnogo ¢lanova niza. Ovi &lanovi niza
izvan (a — €, a + €), obrazuju novi niz {a,, } koji je podniz datog niza. Ovaj niz je
ogranicen, pa ima jednu tatku nagomilavanja b. Ocigledno je da je b ujedno i
tatka nagomilavanja niza {a,} ida b ¢ (a—¢e,a+¢e).

Dakle, niz {a,} ima dve tatke nagomilavanja, 3to je suprotno pretpostavci. Znati

lim a, = a. U
n—oo
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Kompletni metriki prostori

Kompletni metri¢ki prostori

Definicija
Za niz {a,} C X kaZemo da je Kosijev?® niz u metri¢kom prostoru (X, d) ako
(Ve € RM)(3ng € N)(Vm,n € N)(n > ng A m > ng = d(am,an) < €),

odnosno u ekvivalentnom obliku

(Ve € R")(3ng € N)(Vn € N)(Vp € N)(n > ng = d(anip, an) < €).

?Kogi, L. A. (Louis Augustin Cauchy, 1789-1857) - francuski matematicar
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Kompletni metriki prostori

Tvrdenje

Ako je niz {a,} C X konvergentan u metrickom prostoru (X, d), tada je {a,}
Kosijev niz u (X, d).

Dokaz. Ako je a € X grani¢na vrednost niza {a,}, tada za svako € € R™, postoji
ng € N, tako da za svako n € N, za koje je n > ng, sledi

d(an,a) <

N[ ™

Takode za svaka dva prirodna broja m, n > ng vazi
d(an, am) < d(an,a) + d(a,am) <

pa je niz {a,} Kogijev. O
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Kompletni metriki prostori

Tvrdenje

Neka je {a,} Kosijev niz u metri¢kom prostoru (X, d). Ako neki podniz {an,} niza
{an} konvergira prema a € X u (X,d), tada i niz {a,} konvergira ka a u (X, d).

Dokaz. Neka je dato proizvoljno € > 0. Tada po pretpostavci postoji takav ny € N
da iz m, n > ng sledi

€

d(am,an) < =.

N

Kako je a = lim ap,, postoji k € N da je nx > ng i da je
k—o0

d(an,,a) <

N| ™

Ako je, dakle, n > ng, onda je

d(an,a) < d(an,an, )+ d(an,a) < = + - £,

N[ ™
N

pa je teorema dokazana. ([l
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Kompletni metriki prostori

Tvrdenje
Svaki Kosijev niz {an} u metri¢kom prostoru (X, d) je ogranien u datom prostoru.J

Dokaz. Za e = 1 postoji ng € N tako da za n > ng sledi d(ap, a,,) < 1. Dakle,
{an:n>no} C L(apy,1).

e Ako je ng =1 svi Elanovi niza su u otvorenoj lopti L(an,, 1) pa je niz {a,}
ogranicen.

e Za slu¢aj da je ng > 1 uzmimo da je

D = max{1, d(an,, a1), d(an,, a2), ..., d(@ny> any—1) }-

Tada je
d(an, am) < d(an, an,) + d(an,, am) < 2D,

odnosno niz {a,} je ogranicen. O
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Kompletni metriki prostori

U svakom metri¢kom prostoru Kosijev niz ne mora konvergirati. Na primer,
posmatrajmo niz {a,} C R\ {1} dat sa

n
n+1

dp =

S obzirom da je lim a, =1, to je {a,} konvergentan niz u R, pa je u R i Kogijev,
n— oo
odakle sledi da je Kogijev i u R\ {1}, ali konvergira ka 1 ¢ R\ {1}.

Dakle, svaki Kosijev niz prostora R\ {1} ne konvergira u tom prostoru.

Definicija J

Metri¢ki prostor (X, d) je kompletan ukoliko u njemu svaki Kosijev niz konvergira.
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Kompletni metriki prostori

Tvrdenje
Metri¢ki prostor R je kompletan.

Dokaz. Neka je {a,} Kosijev niz. Tada je on u metrickom prostoru i ograni€en, pa
¢emo dokazati da on ima samo jednu ta&ku nagomilavanja, a odatle ¢e slediti da
je konvergentan.

Kako je {a,} ogranicen niz, to prema Bolcano-Vajerstrasovoj teoremi sledi da niz
{an} ima bar jednu tatku nagomilavanja a.

DokaZimo da je a jedina tatka nagomilavanja. Pretpostavimo da je b # a jo3
jedna tatka nagomilavanja. Uzmimo da je

1
€= §|b—a|.
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Kompletni metriki prostori

Neka su
an, n € N svi &lanovi niza za koje vazi a, € L(a,¢),

am, m € N” svi &lanovi niza za koje vaZi ap, € L(b,¢).

S obzirom da su a i b tatke nagomilavanja, sledi da su N/ i N” beskonatni
podskupovi skupa N. Tada je

lan — am| > ¢,
pa sledi da niz {a,} nije Kosijev. Kontradikcija! Dakle, niz {a,} ima samo jednu

tatku nagomilavanja a. O

e Teorema vaZi i za metri¢ki prostor R, tj. za svako m € N metri¢ki prostor R™
je kompletan.
e Takode i metricki prostor C je kompletan.
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Kompletni metriki prostori

Primer

Niz {a,}, gde je
; 1 1 1 1
" 2 3 7 n

divergira u R.
Da bismo to dokazali, pokazacemo da niz nije Kosijev. Kako je

1 1

1
SR 2

| | T 1 SN

as, — a = > ==

2n o en 2n = 2n 2
to sledi da se |ax, — a,| ne moZe ni za jedno n uéiniti manje od %, odnosno dati
niz nije Kosijev, pa samim tim sledi da je niz {a,} divergentan.
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Kompletni metriki prostori

Potprostor kompletnog prostora ne mora biti kompletan. Tako prostor Q
racionalnih brojeva nije kompletan, jer za niz {a,} C Q,

1
a,=(01+-=)"
n=(1+ n)

vazi da

lim a,=e Q.

n—oo
Prostor Q se moZe kompletirati, tj. proSiriti do najmanjeg prostora koji je
kompletan. Tako moZemo do¢i do skupa R realnih brojeva.
Vazi sledeéa teorema

Tvrdenje
Zatvoren potprostor kompletnog metri¢kog prostora je kompletan. J
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Nepokretna tacka, teorema Banaha

Definicija
Ako je f preslikavanje skupa X u samog sebe, tada za tatku x € X kaZemo da je
fiksna (nepokretna) tacka za preslikavanje f ako je f(x) = x.

Definicija
Za preslikavanje f : X — Y metri¢kog prostora (X, d1) u metri¢ki prostor (Y, do)
kaZemo da vr3i kontrakciju ako postoji realan broj A € (0, 1) tako da za svako

x1, X € X vaZi
dz(f(Xl), f(X2)) S )\dl(Xl,Xz).

Broj \ zovemo koeficijent kontrakcije, a preslikavanje f kontrakcija.
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LCBESTIRSR Ul Nepokretna taka, teorema Banaha

e Va%i teorema Banaha* o fiksnoj tatki:

Tvrdenje

Ako je (X, d) kompletan metri¢ki prostor i f : X — X kontrakcija sa koeficijentom
A, tada postoji jedna i samo jedna fiksna tatka a € X preslikavanja f i vaZi da je

n

1-A

d(a, a,) < d(ao, a1),

gde je ag € X proizvoljna tatka, a a; = f(a;j—1), i € N.

(teorema daje i ocenu gredke aproksimacije, kada se tatka a aproksimira &lanom
a, formiranog niza)

4Banah, S. (Stefan Banach, 1892-1945) - poljski matemati&ar
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LCBESTIRSR Ul Nepokretna taka, teorema Banaha

Napomena

Ako je (X, d) kompletan metricki prostor i za preslikavanje f : X — X vaZi
d(f(x1), f()) <d(x,x), x # x,
onda u opstem slucaju ne vaZi da za preslikavanje f postoji fiksna tacka.

Dokaz. Definisimo preslikavanje f : R — R sa f(x) = V1 + x2.
Za x # y vazi da je

x —ylix+yl
VI+x2+/1+y2

F(x) = () = [V1+x2—/1+y2 =

Ix +yI x| + |yl B
< x—yl—/— o < Ix—ylo— = Ix—vl,
x|+ yl x| + 1yl

tj. [f(x) = f(y)| < |x — y|. dok preslikavanje nema fiksnu tatku.
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LCBESTIRSR Ul Nepokretna taka, teorema Banaha

Napomena

Primetimo da je uslov kompletnosti prostora neophodan!

Zaista, u tu svrhu posmatrajmo prostor X = [—3, 2]\ {0} i funkciju f(x) = x°.

PokaZimo da je f kontrakcija, da prostor X nije kompletan i da funkcija nema
nepokretnu tacku u X.

A(FG F()) = 1 = y2] = x4 yllx = y] < She =y = Sd(x, ).

2

za sve x, y € X. Jasno, zbog f(x) = x* = x & x =0V x = 1, funkcija f nema u

X nepokretnu tatku.

Ako bi (X, d) bio kompletan prostor, na osnovu Banahove teoreme, sledilo bi da
funkcija f : X — X ima nepokretnu tacku, Sto je kontradikcija.
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LCBESTIRSR Ul Nepokretna taka, teorema Banaha

Primer

Dokazati pomoéu Banahove teoreme o fiksnoj tacki da jedna&ina x> — x —1 =0
ima jedinstveno reSenje nad intervalom [1,2].

Re3enje. Potetna jednadina ekvivalentna je sa x = v/x + 1.

PokaZimo da funkcija f(x) = v/x + 1 ima nepokretnu tatku, odnosno da
jednatina f(x) = x ima reZenje u intervalu [1,2].

Kako je f monotono rastuéa funkcija, to za x € [1,2]
f(x) € [f(1),f(2)] = [\3/57 \3/§] c[1,2],
pa f:[1,2] = [1,2].

Skup [1,2] je zatvoren metri¢ki potprostor kompletnog prostora R, pa je i sam
kompletan.

PokaZimo da je f kontrakcija. Neka su x,y € [1,2] proizvoljni elementi.
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LCBESTIRSR Ul Nepokretna taka, teorema Banaha

d(f(x), f(y)) = |F(x) = f(y)| = |[¥/x + 1 — ¢/y +1
- (- v Y S
_\?’/(X+1)2+Vx|:1_\3/yy|+1+\3/m
<\3/(1+1)2+\3/1|—:1_\3/y1|+1+\3/(1+1)2
— 7kl
:3—;/1d(x,y)

Kako su ispunjeni uslovi Banahove teoreme, to postoji jedinstveno resenje
jednatine x = v/x + 1 u intervalu [1,2].
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[TEUTLERER RN  Definicija grani¢ne vrednosti funkcije

Definicija
Neka su dati metricki prostori (X,dx) i (Y,dy). Neka je a€ X tacka

nagomilavanja za oblast definisanosti D C X funkcije f : D — Y. ZaA€Y
kaZemo da je grani€na vrednost funkcije f u tacki a ako

(Ve > 0)(26 > 0) F(L(a,8) N (D \ {a})) C L(A,2),
t].
(Ve > 0)(36 > 0)(Vx € D\ {a})(dx(a, x) < § = dy(A, f(x)) < &).

Pisemo da je Ii_r>n f(x)=A, ili f(x) = A x = a.
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[TEUTLERER RN  Definicija grani¢ne vrednosti funkcije

Dakle, za svaku e—okolinu tatke
A, postoji 6—okolina tatke a koja
se sva, izuzev tatke a, preslikava u 4+€
e—okolinu tatke A. A

Primetimo da u ta&ki a funkci- 4-¢
ja ne mora da bude definisana, a
ako je i definisana, A ne mora da
bude f(a), jer u definiciji granitne
vrednosti isklju¢ena je tatka a iz
okoline L(a,d). a-8 a ats x
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[GERTNERVEL IO RTLINGIIM  Definicija grani¢ne vrednosti funkcije

Napomena

Kod sto kod nizova ng zavisi od ¢, tako i ovde § zavisi od €. Kako se € menja tako
se i & menja.

Napomena

Kao i kod nizova, kada je re¢ o realnim funkcijama ili funkcijama jedne ili vise
realnih promenljivih, uvek éemo posmatrati metri¢ki prostor R, odnosno R" i to
posebno neCemo naglasavati.
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[TEUTLERER RN  Definicija grani¢ne vrednosti funkcije

e Za graninu vrednost realne funkcije jedne realne promenljive, tj. gde je
X =Y =R, definiciju lim f(x) = A moZemo zapisati u obliku
X—a

(Ve > 0)(36 > 0)(Vx € D\ {a})(|x —a| < d = |f(x) — Al <e).

e Za grani¢nu vrednost realne funkcije n realnih promenljivih, tj. gde je X = R",
Y =R, definiciju lim f(x) = A, x = (x1, X2, ..., Xn), a = (a1, az, ..., a,) moZemo
X—a

zapisati u obliku

(Ve > 0)(36 > 0)(Vx € D\ {a} CR")(d(x,a) < d = |[f(x) — A| <¢),

gde je d(x,a) = /(x1 — a1)2 + ... + (X — an)%
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[IEUILERER RN TN Veza granitne vrednosti funkcije i graniéne vrednosti niza

Vazi Hajneova® teorema (veza grani¢ne vrednosti funkcije i grani¢ne vrednosti
niza)

Tvrdenje

Neka su (X, dx) i (Y, dy) metri¢ki prostori i neka je data funkcija f : D — Y,
DcC X. Tada f(x) - A€ Y, x — a € X ako i samo ako za svaki niz
{x»} C D\ {a} koji konvergira ka a, sledi da niz {f(x,)}, konvergira ka A.

5Hajne, E. (Eduard Heine, 1821-1881) - nematki matematitar
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[IEUILERER RN TN Veza granitne vrednosti funkcije i graniéne vrednosti niza

Dokaz. (=) Pretpostavimo da iz x — a, imamo da f(x) — A. Tada vaZi:
(Ve € RT)(36 € RT)(vx € D\ {a})(dx(a,x) < § = dy (A, f(x)) < €).
Ako niz {x,} C D\ {a} teZi ka a, tada
(3ne € N)(¥n > no) dx(a, xp) < 9.
Tada za sve n > ng vazi da je
dy (A, f(xn)) <ce,

pa sledi da niz {f(x,)} tezi ka A.
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[IEUILERER RN TN Veza granitne vrednosti funkcije i graniéne vrednosti niza

(<) DokaZimo obrnut stav. Pretpostavimo da f(x) ne teZi ka A, kada x — a.
Tada

(Fe e RT)(Vn e N)(Ix, € D\ {a})(x, € L <a, %) = f(xy) & L(A,¢g)).

S obzirom da niz {x,} € D\ {a}, teZi ka a to prema pretpostavci sledi da i niz
{f(xn)}, tezi ka A, sto je nemoguce po konstrukciji samog niza, jer otvorena lopta
L(A, ) ne sadrzi ni jedan €lan niza {f(x,)}. O
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[IEUILERER RN TN Veza granitne vrednosti funkcije i graniéne vrednosti niza

Na osnovu Hajneove teoreme se moze dokazati kao i kod grani¢ne
vrednosti nizova, da ako funkcija f : D — Y ima grani€nu vrednost A u
tacki a, da je ta granitna vrednost jednoznatno odredena.
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Grani¢na vrednost funkcije [EgnEY]

Primeri:

1. Ako je f : D — Y konstantna funkcija, tj. f(x) = c, za svako x € D, tada je

lim f(x) = c.

X—a
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Grani¢na vrednost funkcije [EgnEY]

lim (2x + 1) = 3,
€

jer za proizvoljno € > 0, birajuci §(¢) = 5, imamo da je

3

[(2x+1)=3|=2x-2|=2|x - 1| <e < |x-1| < 5

U ovom primeru imamo da je funkcija definisana u tacki a, tj. f(1) = 3, i postoji
Iim1 f(x) = 3 i ta grani¥na vrednost je jednaka ba¥ vrednosti funkcije u toj tagki.
X—
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Grani¢na vrednost funkcije [EgnEY]

3. Za funkciju

je
XIEP1 f(x)= linl(2x +1)=3.
Dakle,

- funkcija je definisana u tatki 1, tj. (1) =0;
- postoji lim f(x) = 3;
x—1
- grani&na vrednost nije jednaka vrednosti funkcije u datoj tacki.
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Grani¢na vrednost funkcije [EgnEY]

4. Funkcija

1
f(x) = xsin —

nije definisana u tacki 0, a ima grani¢nu vrednost. Zaista, kako za proizvoljno
e > 0, birajuéi § = ¢, imamo

1 1
xsin——O‘— xsin—‘ <|x|=|x-0| <e,
x X

to vazi da je

. 1
lim xsin— =0.
x—0 X
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Granitna vrednost funkcije [N

5. Neka je
o1
f(x)—sm;.
y
48 o (g 11
T 2 3 T2
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Grani¢na vrednost funkcije [EgnEY]

Funkcija nije definisana za x = 0.
Ne postoji ni IimO sin % Ako bi A bila grani¢na vrednost funkcije f u tacki 0, tada
X—>
(Ve e RT)(F6 € RY)(Vx € R\ {0})(|x] < 6 = |f(x) — Al < ¢).
S obzirom da za svako oo € RT U {0} niz {a,(c)}, gde je

1

an(a) = o+ 2nm

tezi ka nuli i
f(an(e)) = sin(a + 2n7) = sinq,

pa bi u zavisnosti od « imali razli¢ite grani¢ne vrednosti, $to je nemoguce, jer je
grani¢na vrednost jedinstveno odredena.

108 / 569



Grani¢na vrednost funkcije [EgnEY]

6. Neka je

sinl, x#0
f(X)_{l ) Xi()

Tada je funkcija f definisana za x =0, £(0) = 1, ali ne postoji
lim f(x) = lim sin L.
x—0 x—0 X
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Grani¢na vrednost funkcije [EgnEY]

7. Funkcija f : R? — R definisana sa

(o)
f(x’”{o, (x.y)

(0,0)
(0,0)

I

nema grani¢nu vrednost u tatki O(0,0). Posmatrajmo niz

an(K) — (1 5) |

lim an,(k) =(0,0), a lim f(an(k)) ne postoji jer je

n— oo n—oo

F(an(K)) = Tkkz
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[FEUTLERER LR R IR  GraniZne vrednosti nad skupom

Grani¢ne vrednosti nad skupom

/

-1

8. Za funkciju f datu sa

F(x) = 2x + 1, x<1
)= —2x+3, x>1"

vidimo da lim f(x) ne postoji.
x—1

Ovde ima smisla ispitati ponaSanje

e funkcije za x > 1iza x < 1, tj.

posmatrati funkciju f i sa leve i sa
desne strane tatke 1.

Vidimo kada x — 1, pri €&emu je x > 1, da f(x) — 1, a kada x — 1, pri &emu je

x <1,daf(x) —3.
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Granina vrednost funkcije [EEUTIIRVECHIEINELEISITEL

9. Ako posmatramo funkciju f : R — R definisanu sa

|1, xe@
f(x){o, xeR\Q ~

vidimo da funkcija f nema grani¢nu vrednost ni u jednoj tatki a € R. Medutim,
restrikcija fy funkcije f ima grani¢nu vrednost u svakoj tacki a € R.

Ovi primeri daju nam povod da defini¥emo grani¢nu vrednost funkcije f u tacki a
dok x pripada skupu E, gde je E podskup oblasti definisanosti funkcije f, za koji
je a tatka nagomilavanja.
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Granina vrednost funkcije [EEUTIIRVECHIEINELEISITEL

Definicija

Neka su (X, dx) i (Y, dy) dati metri¢ki prostori i neka je E neprazan podskup
oblasti definisanosti D funkcije f : D — Y. Ako restrikcija fg funkcije f ima
grani¢nu vrednost A € Y u tacki a € X, onda kaZemo da funkcija f ima grani€nu
vrednost A u tacki nagomilavanja a skupa E dok x € E i piSemo da je

lim  f(x) =A.
X — a
xeE
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Granina vrednost funkcije [EEUTIIRVECHIEINELEISITEL

Specijalno, ako je
DCR=XiE=(a00)ND (E=(-00,a)ND)

i ako funkcija f ima grani&nu vrednost A u tacki a dok x € E, onda kazemo da
funkcija f u tatki a ima desnu (levu) grani&nu vrednost A i pisemo da je

lim f(x)=f(a")=A (lim f(x)=f(a")=A).

x—at xX—a~

Koriste se i oznake

lim f(x) = f(a+0) (lim f(x)=f(a—0)).

xX—a+ X—a—

Leva, odnosno desna grani¢na vrednost se jednim imenom zovu jednostrane
granicne vrednosti.
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Granina vrednost funkcije [EEUTIIRVECHIEINELEISITEL

e Ako funkcija f : D — R, D C R u taki a ima grani¢nu vrednost A, tada

- postoji bar jedna jednostrana grani¢na vrednost koja je jednaka broju A, tj.
grani¢noj vrednosti funkcije f u ta&ki a;

- ako postoje obe jednostrane grani¢ne vrednosti, one su jednake grani¢noj
vrednosti funkcije u tacki a, tj.

lim f(x)= lim f(x) = lim f(x) = A.

xX—a~ X—a xX—a
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Granina vrednost funkcije [EEUTIIRVECHIEINELEISITEL

e Ako funkcija f u tatki a ima obe jednostrane grani¢ne vrednosti, ona ¢e imati
graniénu vrednost samo onda ako su jednostrane grani¢ne vrednosti jednake, tj.
lim f(x) postoji ako
X—a
lim f(x)= lim f(x)=A
x—a~ x—at

i tada je lim f(x) = A.
X—a

Kao 8to smo videli u primeru 8. postoji leva grani¢na vrednost u tatki x = 1, tj.
lim f(x)=1f(17) =3, kao i desna grani¢na vrednost u tatki x = 1, tj.

x—1-

lim f(x) = f(17) =1, ali one nisu jednake, pa funkcija u tatki x = 1 nema

x—1t
grani¢nu vrednost.
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Granina vrednost funkcije [EEUTIIRVECHIEINELEISITEL

10. Ako posmatramo funkciju

vidimo da u tatki x = 0 funkcija nema desnu grani&nu vrednost, jer nije definisana
nad intervalom (0, 1]. Medutim ovde je

lim f(x) = lim f(x)=0.

x—0 x—0—
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Granina vrednost funkcije [EEUTIIRVECHIEINELEISITEL

11. Za funkciju
f(x) = arctg <1 + 1)
X

je
im f(x)=2 i lim f(x)=—

x—07F 2 x—0~ ’

Y

pa funkcija nema grani¢nu vrednost u tacki 0.

118 / 569



Granina vrednost funkcije [EEUTIIRVECHIEINELEISITEL

12. Posmatrajmo funkciju

e (00 £00)
e ={ 57 (o0

iz primera 7. i uzmimo da je E = {(x,2x) : x € R}. Tada vazi

2x2 2

lim f(x,y) = lim —— = <.

(x,y) N (0, 0) x—0 x2 + 4x2 5
(x,y) €E
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Granina vrednost funkcije [EEUTIIRVECHIEINELEISITEL

Tvrdenje

Neka su (X, dx) i (Y, dy) metri¢ki prostori i neka je a € X tatka nagomilavanja za
definicioni skup D C X funkcije f : D — Y. Tada vaZi

a) Ako funkcija f ima grani¢nu vrednost A € Y u tacki a i ako je a tatka

nagomilavanja za neprazan skup E C D, tada postoji  lim  f(x) i vaZi jednakost
X — a
xeE
lim  f(x) = lim f(x).
X — a X—ra
xe€E
b) Neka je a tatka nagomilavanja svakog od skupova Ei, ..., E, C D koji vrie particiju
skupa D\ {a}. Tada ako postoje grani¢ne vrednosti  lim  f(x), za svako
X —a
x € E;
i=1,..,nipri tome su medusobno jednake, tada postoji lim f(x) i vaZi jednakost
X—a
lim f(x)=Ilimf(x),zai=1,..,n
X — a X—a
x € E;
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Granina vrednost funkcije [EEUTIIRVECHIEINELEISITEL

Ako za neko k € R\ {0} uzmemo E = {(x, kx) : x € R}, tada za funkciju f iz
primera 7. vaZi:

k
lim fx,y)=—33-
(x.y) = (0,0) L+ Kk
x€eE

S obzirom da za svako k ove grani¢ne vrednosti nisu jednake, to ne postoji

lim  f(x,y), kao 8to smo i pre videli.
(x,¥)=(0,0) (y) P
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[GEUMAERVE RS RN  Granigne vrednosti nad skupom

Definicija
Neka je (X, d) metri¢ki prostor i neka je a € D tatka nagomilavanja za definicioni

skup D C X, realne funkcije f : D — R. Tada
e funkcija f(x) tezi ka oo, tj. f(x) — oo, x — a, ako i samo ako

(VK € RT)(36 € RT)(Vx € D\{a})(x € L(a,6) = f(x) > K).
e funkcija f(x) tezi ka —oo, tj. f(x) = —o0, x — a, ako i samo ako
(VK € R7)(30 € RT)(Vx € D\{a})(x € L(a,0) = f(x) < K).

Ponekad se pise da Ii_r}n f(x) = oo, odnosno Ii_n>1 f(x) = —o0.
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[SERTNER R TCI Granine vrednosti nad skupom
— o0, kada x — 0, jer za

Ako posmatramo funkciju f( ) = &%, vidimo da
svako K > 0, postoji § = \F tako da je

i>K<:>x2<i<:>|x|<i
2 K \/R

Za funkciju f(x) = —%, imamo da f(x) — —oc0, kada x — 0, jer za svako K < 0,

postoji § = \/+7, tako da je

—l<K<:>i> ~K & x? <—i(:>|x|< L
X2 K V=K’

a) b)
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Granina vrednost funkcije [EEUTIIRVECHIEINELEISITEL

Ako posmatramo funkciju
f(x) = 1, vidimo da f(x) ne teZi
ni oo, ni —oo, kada x — 0, tj.
ne postoji okolina 0 koja se &itava,
izuzevsi 0, preslika, iznad (ispod)
prave y = K, gde je K > 0
(K < 0), jer sa leve strane tatke
x = 0 je f(x) < 0, a sa desne
strane tatke x = 0 je f(x) > 0.
Vidimo da f(x) — oo, x = 0%, a
f(x) = —o0, x = 07.
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Granina vrednost funkcije [EEUTIIRVECHIEINELEISITEL

Uopste, ako je a € X tacka nagomilavanja podskupa E, definicionog skupa

D C X, realne funkcije f : D — R i ako restrikcija fg funkcije f, teZi oo, odnosno
—00, kada x — a, tada kaZzemo da f(x) — oo, odnosno f(x) — —oo, kada x — a,
dok x € E.
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Specijalno, ako je D C R, f: D - R, E = (a,00) N D # (), tada f(x) — oo, kad
x — at ako

(VK e R")(36 € RT)(Vx € D)(x € (a,a+6) = f(x) > K),
odnosno f(x) — —oo, kada x — a™ ako

(VK € R7)(30 € RT)(Vx € D)(x € (a,a+ 8) = f(x) < K).

Sligno, ako je DC R, f: D — R, E = (—o00,a) N D # (), tada f(x) — oo, kada
x — a~ ako

(VK e R")(36 € RT)(Vx € D)(x € (a— §,a) = f(x) > K),
odnosno f(x) = —oo, kada x — a~ ako

(VK e R7)(30 € RT)(Vx € D)(x € (a—4,a) = f(x) < K).
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Granina vrednost funkcije [EEUTIIRVECHIEINELEISITEL

Primeri:

1. Za funkdciju f(x) = ex je

B % , x€(0,0)NQ
2. g(X){ -% , x€(0,00)N(R\ Q)
1 X
sh)={ 5 370
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[GELHNERES ISR  Ponasanje funkcije f(x) kada x — + oo

Ponaganje funkcije f(x) kada x — o0

Definicija
Neka je (Y, d) metricki prostor i neka je D C R definicioni skup funkcije
f:D — Y, za koji vaZi da je (Va € R) (a,00) N D # (). Tada

1°) KaZemo da funkcija f(x) ima grani¢nu vrednost A € Y, kada x — oo, ako je
(Ve e RT)(FA € RT)(Vx € D)(x > A = f(x) € L(A,¢)),
odnosno za Y = R, vaZi
(Ve e RT)(3A € RT)(Vx € D)(x > A = |f(x) — A < e).

i to zapisujemo sa lim f(x) = A.
X—»00

128 / 569



[GELHNERES ISR  Ponasanje funkcije f(x) kada x — + oo

Definicija

Neka je (Y, d) metricki prostor i neka je D C R definicioni skup funkcije
f:D — Y, za koji vazi da je (Va € R) (a,00) N D # (). Tada

2°) Ako je Y =R, kaZemo da f(x) — oo, kada x — oo ako

(VK e RT)(3A € RT)(Vx € D)(x > A = f(x) > K).

3°) Ako je Y =R, kaZemo da f(x) — —oo, kada x — oo, ako

(VK e R7)(3A e RY)(Vx € D)(x > A = f(x) < K).

Ponekad se umesto f(x) — oo, tj. f(x) = —oo, kada x — oo,
pise
lim f(x) =00, odnosno lim f(x) = —oc.
X—00 X—r00
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[GELHNERES ISR  Ponasanje funkcije f(x) kada x — + oo

Primer

1

Ako za proizvoljno € > 0, uzmemo da je A = = — 1, to za x > 0, vaZi

X
x+1

<e€

—-ll<e &
‘ [x + 1]
& |x+1 > =
16
S o x+1> -
€

1
S x> -—--—1
g

pa je

X—)oox—|—]_ B
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[GELHNERES ISR  Ponasanje funkcije f(x) kada x — + oo

Primer

Za funkciju
Fx) = (1 X—‘l),xeR\{—l,o,l}

Jje
lim f(x) = (0,0).

X—»00
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Grani&na vrednost funkcije Ponaanje funkcije f(x) kada x — +oo

Definicija
Neka je (Y, d) metricki prostor i neka je D C R definicioni skup funkcije
f: D —Y, za koji vaZi

(Va€eR) (—oo,a) N D #£ 0.

Tada
1°) Funkcija f(x) ima grani¢nu vrednost A € Y kada x — —o0, ako

(Ve e RT)(3A € R7)(Vx € D)(x < A = f(x) € L(A,¢)),
odnosno za Y = R, vaZi

(Ve e RY)(3A e R7)(Vx € D)(x < A = |f(x) — Al < ¢),

i to zapisujemo sa lim f(x) = A.
X——00
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[EUTLERER RN  Ponaganje funkcije f(x) kada x — +oco

Posmatrajmo funkciju

1, xeQ
f(x)_{o . xeR\Q

Da li ona ima grani¢nu vrednost kada x — oo, tj. da li postoji lim f(x)?
X—r 00

Da li ona ima grani¢nu vrednost kada x — oo, dok x pripada skupu racionalnih
brojeva, tj. da li postoji  lim  f(x)?

x—00,xEQ
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[GELHNERES ISR  Ponasanje funkcije f(x) kada x — + oo

Definicija

Neka je (Y, d) metricki prostor i neka je D C R definicioni skup funkcije
f:D—Y, za koji vazi (Va € R) (—oo0,a) N D # . Tada

2°) Ako je Y =R, kaZemo da f(x) — oo, kada x — —o0, ako

(VK e R")(3A e R7)(Vx € D)(x < A = f(x) > K).

3°) Ako je Y =R, kaZemo da f(x) — —oo, kada x — —o0, ako

(VK € R™)(FA € R™)(Vx € D)(x < A = f(x) < K).

Ponekad se umesto
f(x) = oo, odnosno f(x) = —oo kada x — —o0,

pise

Xkrroo f(x) = oo odnosno Xkrroo f(x) = —oc.
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[GELHNERES ISR  Ponasanje funkcije f(x) kada x — + oo

| ovde (uvek!) vaZi Hajneova teorema:

Tvrdenje

Neka su (X, dx) i (Y, dy) metri¢ki prostori i neka je data funkcija f : D — Y, D C X.
Tada vazi

a) Ako je Y =R, tada f(x) — too, x — a ako i samo ako za svaki niz
{xn} C D\ {a}, koji konvergira ka a, sledi da niz {f(x,)} teZi co, odnosno —oo,
n— oo.

b) Ako je X =R, tada f(x) - A€ Y, x — too ako i samo ako za svaki niz
{xn} C D, koji teZi ka +o0, sledi da niz {f(xa)} konvergira ka A.

c) Akoje X =Y =R, tada f(x) = oo (f(x) = —o0), x = too ako i samo ako za
svaki niz {x,} C D koji teZi too, sledi da niz {f(x,)} teZi co (—o0), n — oco.
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[EUTLERER RN  Ponaganje funkcije f(x) kada x — +oco

e MoZe se i ovde pokazati da ako postoji grani¢na vrednost, da je ona
jednoznaéno odredena.

e Ako posmatramo funkciju f(x) = cos x, vidimo da

1) f(x) ne teZi ni oo, ni —oo, kada x — oo jer —1 < f(x) < 1.

2) Ne postoji ILm f(x). Ako bi postojao ILm f(x) = A, tada bi po definiciji
grani¢ne vrednosti, sledilo da

(Ve e R")(FA e RT)(Vx € R)(x > A = |cosx — A| < ).

Ako posmatramo niz {a,} sa op3tim &lanom a, = @ + 2n7, a € R vidimo da

a, — 0o, kada n — 0o, pa u svakom intervalu (a, c0) su skoro svi &lanovi datog
niza. Kako je cos a, = cos, to bi sledilo da je A = cosa, $to je kontradikcija, jer,
ako postoji grani¢na vrednost ona je jednozna¢no odredena.
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[EUTLERER RN  Ponaganje funkcije f(x) kada x — +oco

Ponekad sa
f(x) = +o0, kada x — a,

oznatavamo da
f(x) = o0 ili f(x) = —o0 kada x — a
i ¢esto pisemo

lim f(x) = %o0.

X—a

Sli¢no, ako
f(x) = A kada x = oo ili x = —o0,

Cesto pisemo
f(x) = A, x — too,
odnosno
lim f(x)=A.

x—Fo0
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Ratunske operacije sa grani¢nim vrednostima funkcija
Racunske operacije sa grani¢nim vrednostima funkcija

Tvrdenje

Neka je (X, dx) metricki prostor i neka je a tatka nagomilavanja za definicioni
skup D C X funkcija f : D - R(C) i g : D — R(C). Tada vaZi

a) Ako je Ii_n>1 fx)=Ai Ii_n>1 g(x) =B, to je
1°) lim (F(x) % £(x)) = lim £(x) £ lim g(x) = A+ B,
2°) lim (F(x) - £x)) = lim £(x) - lim g(x) = A- B,

3°) I@a(c~f(x)):c~ Iim f(x)=c-A,
° . . 1 1 1
4°) zag(x)#OIB#O’lTam:WZE’

5 i . f(X) _ liipa f(X)
5°) zag(x) #0iB#0, et limg(x) ~ B’

>
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[FEUILERERLEER TN  Racunske operacije sa graniénim vrednostima funkcija

Tvrdenje
Neka je (X, dx) metricki prostor i neka je a tatka nagomilavanja za definicioni
skup D C X funkcijaf: D - R ig: D — R. Tada vaZi
b) Ako f(x) — o0, kada x — a i g(x) = B (B € RU{o0}), kada x — a, tada
1°) (f(x) + g(x)) — oo, kada x — a,
2°) (f(x) - g(x)) = oo, za B > 0, odnosno (f(x) - g(x)) = —o0, za B < 0.
c) Ako f(x) — —o0, kada x — a i g(x) = B (B € RU{—o0}), kada x — a,
tada
1°) (f(x) + g(x)) = —o0, kada x — a,
2%) (f(x) - g(x)) = —o0, za B > 0, odnosno (f(x) - g(x)) = oo, za B < 0.
d) Ako je X =R, tada osobine a), b) i c) vaZe i kada x — oo, odnosno
X — —00.
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[FEUILERERLEER TN  Racunske operacije sa graniénim vrednostima funkcija

Dokaz. Dokaz sledi iz Hajneove teoreme i odgovarajucih osobina nizova. Ovde
¢emo ipak, radi ilustracije, dati dokaz da je lim (f(x) + g(x)) = A+ B, ne
X—ra
koriste¢i Hajneovu teoremu.
S obzirom da je lim f(x) = Ai lim g(x) = B, to za proizvoljno € € R, postoje
X—a X—a
df, 04 € RT, tako da za sve x € D \ {a}, vaZi
3

dx(a,X) < o = |f(X) — A| < 5

dx(a,x) < o = lg(x) — B| < .
Neka je d¢4g = min{dr, 0z }. Tada vazi:
£

2~ °

(F(x) + £(0) = (A+ B)| < [F(x) — Al + lg(x) — Bl < 5 +

za 0 < dx(a, x) < df4g, odakle sledi dato tvrdenje. O
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Grani&na vrednost funkcije Ratunske operacije sa grani¢nim vrednostima funkcija

Napomena
U formulaciji teoreme smo pretpostavili da je a tatka nagomilavanja za zajednicki

definicioni skup D funkcija f i g, jer iz

lim f(x)=Ai lim g(x) =B,

X—a X—a

ne sledi uvek da je
lim(f(x) + g(x)) = A+ B,

X—a

Sto se vidi iz sledeceg primera.

141 / 569



Grani&na vrednost funkcije Ratunske operacije sa grani¢nim vrednostima funkcija

Primer

Neka su date funkcije f i g sa

Vidi se da je

ne postoji, jer je 0 izolovana tacka, za definicioni skup funkcije f + g.
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Grani&na vrednost funkcije Ratunske operacije sa grani¢nim vrednostima funkcija

Napomena

Tvrdenje teoreme pod a) vaZi i kada su u pitanju kompleksne funkcije.

Primer

Neka su date funkcije

f(x):{ sinQ%, x#0

0, x=0"
cos?l x#0
g(x):{lo : xiO

Njihova grani¢na vrednost u x = 0, ne postoji, dok je

lim (f(x) + g(x)) = li_ngol =1

x—0
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Grani&na vrednost funkcije Ratunske operacije sa grani¢nim vrednostima funkcija

Tvrdenje

Neka je dat metricki prostor (X, d) i neka je a tatka nagomilavanja za definicioni
skup D C X funkcijaf: D — R ig: D — R. Tada, ako je f(x) < g(x) i

A =4
i
fim g(x) = B,

tada je i A < B.
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Grani&na vrednost funkcije Ratunske operacije sa grani¢nim vrednostima funkcija

Tvrdenje

Neka je dat metricki prostor (X, d) i neka je a tatka nagomilavanja za definicioni
skup D C X funkcijaf: D —-Rig: D — R. Tada

a) Ako za funkciju h: D — R, vaZi

f(x) < h(x) < g(x)

i ako je
Jim £ = im0 = A
to jei
Xli_n;a h(x) = A.

b) Sli¢na osobina vaZi i za slu¢aj kada je X = R i kada x — oo, odnosno
X — —00.

Dokaz. Sledi iz Hajneove teoreme i sli¢ne osobine za nizove. ([
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Grani&na vrednost funkcije Ratunske operacije sa grani¢nim vrednostima funkcija

Primer

Na osnovu prethodne i Hajneove teoreme sledi da je

lim <1+l) = lim <1+1) =e,
X—00 X X—r—00 X

kao i da je
lim (1+x)* = e.
x—0
Vazi )
lim X _ 1
x—0 X
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Beskona&no male i beskonagno velike veligine
Beskonacno male i beskonaéno velike veli¢ine

Neka je (X, d) metritki prostor i funkcija f : D — R, ) # D C X.
Definicija
Za funkciju f(x) kaZemo da je beskona&no mala veli¢ina kada x — a, ako je

lim f(x) = 0.

X—a

Definicija
Za funkciju f(x) kaZemo da je beskonatno velika velitina kada x — a, ako

|f(x)| = oo, kada x — a.

Octigledno je da je recipro&na vrednost beskona&no male veli¢ine, beskona&no
velika veli¢ina i obrnuto.
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[GERTAERVEL IO RTLINGIM Beskona&no male i beskonagno velike veligine

e Posmatrajmo dve beskona&no male velitine f(x) i g(x) kada x — a, gde
je g(x) # 0 u nekoj okolini tatke x = a.

1) Ako je I|m % = 0 ili 3to je ekvivalentno sa |£ X)| — oo kada x — a, onda

kaZemo da Je f( ) beskona&no mala velitina viseg reda od g(x) kada x — a,
odnosno da je g(x) beskona¢&no mala veli¢ina nizeg reda od f(x), kada x — a.
KaZemo jo3 i da f(x) brze tezi nuli od g(x) kada x — a, odnosno da g(x)
sporije tezi nuli od f(x), kada x — a.

Na primer, funkcija f(x) = 1 — cos x brZe teZi nuli od funkcije g(x) = x, kada
x — 0, jer je

2 x

N

. 1 —cosx . 2sin
lim ——— = |im
x—0 X x—0 X

=0.
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[GERTAERVEL IO RTLINGIM Beskona&no male i beskonagno velike veligine

Ako je I|m LG, # 0, onda kaZzemo da su f(x x) beskonaéno male
( )
veli¢ine |stog reda kada x — a.

Specijalno, ako je C =1, tj. ako je lim % =1, onda kaZemo da su f(x) i g(x)
X—a

ekvivalentne beskonatno male veli¢ine, kada x — a i to zapisujemo sa
f(x) ~ g(x), kada x — a.

Takode kaZemo da se funkcije f(x) i g(x) isto ponasaju, kada x — a.

Primer

Funkcija f(x) = sinax, a # 0 i funkcija g(x) = x su beskona¢no male velicine

istog reda, kada x — 0, jer je Iim0 S = . Ako je a = 1, tada je sinx ~ x,
X—>

kada x — 0.
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[GERTAERVEL IO RTLINGIM Beskona&no male i beskonagno velike veligine

3) Ako ne postoji ni lim 28 ni lim £%) tada se beskona&no male velitine f(x) i
x—+a 8(x) x—a (%)

g(x) ne mogu porediti, kada x — a, tj. f(x) i g(x) su neuporedive
beskonaéno male veli¢ine, kada x — a.

Na primer, funkcije

X - x(2 + sinx)

su neuporedive beskonatno male veli¢ine, kada x — 0o, jer ne postoji ni

f(x)

lim ——= = lim (2 +sinx),
x—o00 g(x X—»00

ni
lim @ = lim

X—00 f(X) X—00 2+SinX.
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[GERTAERVEL IO RTLINGIM Beskona&no male i beskonagno velike veligine

e Posmatrajmo dve beskonaitno velike velitine f(x) i g(x), kada x — a, tj.
[f(x)] = o0 i |g(x)] = o0, kada x — a.

1) Ako je
lim m =0,
X—ra g(X)
odnosno

@ — 00, kada x — a,
f(x)
gde je g(x) # 0, tada kaZzemo da je g(x) beskona&no velika velitina viseg reda

od f(x), kada x — a, odnosno da je f(x) beskonatno velika veli¢ina nizeg reda
od g(x), kada x — a.
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[GERTAERVEL IO RTLINGIM Beskona&no male i beskonagno velike veligine

2) Ako je I|m % = a # 0, onda kaZzemo da su f(x) i g(x) beskona&no velike
veli¢ine |stog reda, kada x — a.

Specijalno, ako je o =1, tj. I|m % =1, onda kaZemo da su f(x) i g(x)

ekvivalentne beskonatno vellke velitine, kada x — a ili da su f(x) i g(x)
asimptotski jednake, kada x — a. Tada piSemo da je

f(x) ~ g(x), kada x — a.

Na primer, polinomi
Po(x) = apx" + ...+ a1x 4+ a9, Qn(x)=apx", a,#0, n€N,
su asimptotski jednaki, kada x — oo, jer je

lim Pn(x)

=1.
X—00 Qn( )

KaZemo i da se polinom pona%a kao njegov najstariji (vodeci) ¢lan kada x — oo.
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[GERTAERVEL IO RTLINGIM Beskona&no male i beskonagno velike veligine

3) Ako ne postoji ni lim %, ni I|m %, onda kaZemo da se beskona&no velike
X—a
velitine f(x) i g(x) ne mogu uporedltl, kada x — a, odnosno da su f(x) i g(x)
neuporedive beskonaéno velike veli¢ine, kada x — a.
Na primer, funkcije f(x) = x i g(x) = x(2 + sin x) su neuporedive beskonatno
velike veli¢ine, kada x — oo, jer ne postoji ni
f 1
lim f(x) = lim ————
X—00 g(x) x—00 2 4+ sin x’
ni
lim £ = fim (2 + sinx)
im =—= = lim in x).
X—>00 (X) X—>00
Napomena

Analogne definicije za beskona&no male i beskonaéno velike veli¢ine mogu se dati i
kada x — a*, odnosno kada x — a~
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(EETISEPCRIMISIER Definicija neprekidnosti funkcije i primeri

Definicija neprekidnosti funkcije i primeri

Definicija
Neka su dati metri¢ki prostori (X, dx) , (Y, dy) i funkcijaf:D — Y, D C X. Za
funkciju f kaZemo da je neprekidna u ta&ki a € D ako

(Ve € RY)(35 € RT)(Vx € D)(x € L(a,8) = f(x) € L(f(a),¢)),

odnosno

(Ve € R*)(35 € RY)(Vx € D)(dx(a,x) < & = dy(f(a), f(x)) < ¢).

Ako je X = Y = R(C), tada neprekidnost funkcije f : D — R(C) u tacki a
moZemo zapisati na sledeéi nadin

(Ve e RT)(36 € RT)(Vx € D)(|x — a| < 6 = |[f(x) — f(a)] < ¢).
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

Zahtevi za neprekidnost u tacki a i postojanje grani¢ne vrednost u a se
razlikuju u sledec¢im &injenicama:

- za grani¢nu vrednost u tacki a
pretpostavka je da je a tatka na- Y
gomilavanja za D, a kod neprekid- L
nosti da a € D, tj. da je funkcija ﬂa)f(;; /
f definisana u tacki a; fla)-¢

- kod neprekidnosti se za-
hteva da funkcija f otvorenu loptu
L(a,d(e)) preslika u otvorenu loptu
L(f(a),e), dok kod grani¢ne vred-
nosti je zahtev da funkcija f otvo- 0 a-8 a a+d «x
renu loptu L(a, d(e)) bez centra a
preslika u otvorenu loptu L(A, ).
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

Zakljutak je slededi:
- ako je f neprekidna funkcija u tatki a ne mora da postoji lim f(x) (ako je a € D
X—ra
izolovana tatka za skup D, tada je f automatski neprekidna u tacki a, dok u tom
slu€aju ne postoji lim f(x)).
X—a
- ako postoji lim f(x) bez obzira da li je funkcija f definisana u tatki a, funkcija
X—a

ne mora da bude neprekidna u tatki a. Na primer, ako posmatramo funkcije

sin x sinx - x £0
f(X):—a g(X)_{ 5X xiO ’

X

tada vazi IimO f(x) = Iimog(x) = 1. Ni funkcija f, ni funkcija g nisu neprekidne u
X—> xX—
tatki 0, jer f nije definisana u tatki 0, dok je g(0) =5 # 1.
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

Dakle, da bi funkcija f bila neprekidna u tacki a treba da vazi:
1) a € D, tj. funkcija f je definisana u tacki a;

2) ako je a tatka nagomilavanja za D, tada postoji lim f(x) i vaZi jednakost
X—a

lim f(x) = f(a);

X—a

3) ako je a € D izolovana tatka, tada je f neprekidna u tacki a.
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

Ako je a€ D C R (a € D C C) tatka nagomilavanja za definicioni skup D i ako je
Y=R,(Y=C)x=a+Axe D, Ax#0i Ay = f(a+ Ax) — f(a), gde su Ax
i Ay redom prirastaji nezavisne i zavisne promenljive, tada neprekidnost realne
funkcije jedne realne promenljive moZemo izraziti na sledeéi na&in:

(Ve e RT)(36 € RT)(Vx = a+ Ax € D)(|Ax| < § = |Ay| < ¢),

odnosno
lim Ay = 0.
Ax — 0
a+AxeD

Dakle, realna (kompleksna) funkcija jedne realne (kompleksne) promenljive je
neprekidna u taZki a iz domena ako prirastaj funkcije Ay u tacki a tezi ka nuli
kada prirastaj argumenta Ax teZi ka nuli.
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

Ako funkcija f nije neprekidna u taki a, onda kazemo da je funkcija f prekidna
u ta&ki a, odnosno da funkcija f ima prekid u tacki a (tatka a je prekid date
funkcije).

Napomena

Kako je funkcija u izolovanim tatkama neprekidna, to je realni niz (a i svaki
drugi), kao funkcija iz N u R neprekidna funkcija.
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

Definicija
Neka su (X, dx) i (Y, dy) metri¢ki prostori i neka je data funkcija f : D — Y,
DcX.

e Ako je restrikcija fg funkcije f nad nepraznim skupom E C D neprekidna u tacki
a € E, onda kaZemo da je funkcija f neprekidna u tacki a dok x € E.

e Ako je fg neprekidna u svakoj tacki skupa E, onda kaZemo da je f neprekidna
nad skupom E.

e Ako je E = D, tj. ako je funkcija f neprekidna u svakoj tacki definicionog skupa
D, onda kaZemo da je f neprekidna funkcija.

y

160 / 569



(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

Primetimo, da ako je funkcija
f neprekidna nad skupom E, ona

ne mora biti neprekidna u svakoj Y
tacki skupa E. Na primer, ako po-
smatramo funkciju
2 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
x, x<0
f(x) = 1, 0<x<2 1

X, X>2
vidimo da je ona neprekidna nad 0 5 o
zatvorenim intervalom [0, 2], dok /
su krajnje tatke 0 i 2 prekidi date

funkcije.
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

Ako je f: D — Y, D C Ri ako je f neprekidna u tacki a dok
x€ E=DnNla,o) (x€ E=DnN(-o0,al),

tada kaZemo da je funkcija f neprekidna u tatki a sa desne (leve) strane.

Ako postoji lim f(x), tada je funkcija f neprekidna u tatki a sa leve strane ako je
X—a~

lim f(x) = f(a),

X—a~

a ako postoji Iim+ f(x), tada je funkcija f neprekidna u tatki a sa desne strane
X—a

ako je
lim f(x) = f(a).

x—at

162 / 569



(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

Octigledno vazi:

1) Funkcija f jedne realne promenljive je neprekidna u tatki a ako i samo ako je
neprekidna u tacki a i sa leve i sa desne strane.

2) Funkcija jedne realne promenljive je neprekidna nad zatvorenim intervalom
[a, b] ako i samo ako je

- neprekidna u svakoj ta&ki otvorenog intervala (a, b);

- u tacki a je neprekidna sa desne strane;

- u tacki b je neprekidna sa leve strane.
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

Tvrdenje

Ako su realne (kompleksne) funkcije f i g neprekidne u tatki a, tada su u tacki a
neprekidne i sledeée funkcije:

) h=rtg

3) h= é, pod uslovom da je g # 0 u nekoj okolini tacke a.
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(EETISEPCRIMISIER Definicija neprekidnosti funkcije i primeri

Primeri

1. Konstantna funkcija f(x) = ¢ je neprekidna funkcija, jer je
Ay =c—c=0,

pa je
lim Ay =0.
Jlintind
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

2. Funkcija f(x) = sin x je neprekidna za svako x € (—o00, 00). Birajuéi § = ¢, za
proizvoljno € > 0, imamo

|Ay| = [sin(x + Ax) —sin x|
_ 2 sin X cos XX AX
N 2 2
Ax
< 2|—
- 2
= |Ax|<e¢,
tj.
lim Ay =0.
Ay By =0
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

3. Funkcija f(x) = x? je neprekidna za svako x € (—o00,0), jer iz
Ay = (x + Ax)? — x* = Ax(2x + Ax),

sledi da je

lim Ay =0.
it

Sli¢no, stepena funkcija f(x) = x", n € N je neprekidna za svako x € (—o0, ),
pa kako je i konstantna funkcija neprekidna, iz prethodne teoreme sledi da je svaki
polinom P,(x) neprekidna funkcija za svako x € (—o0, 00), dok je svaka

Pn(x)

racionalna funkcija R(x) = neprekidna funkcija u svakoj tagki xp za koju

, T Q)
je Qm(xo) # 0.
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

4. Za funkciju

x—1, x<2
f(X)_{2x, x> 2

je
lim f(x)= lim (x—1)=1=f(27)=f(2) #4 = lim 2x = lim f(x).
xX—2~ xX—2~ x—21 x—21
Dakle, ne postoji u tatki x = 2 grani¢na vrednost, pa je funkcija u taZki 2
prekidna.

Za sve ostale vrednosti od x funkcija je neprekidna.
Primetimo da je funkcija f(x) neprekidna u tatki 2 sa leve strane.
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

5. Za funkciju
_f 2x=3, x#1
Fx) = { 0, x=1

imamo da vaZzi
Iim1 f(x)=lim(2x—-3)=-1#0=f(1),
X—

x—1 o

pa je funkcija f u tacki 1 prekidna.
Za sve ostale vrednosti od x funkcija je neprekidna.
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

6. Funkcija f : R? — R definisana sa

I
f(x’”‘{o, (o) =

nije neprekidna u tatki (0, 0), jer ne postoji

lim  f(x,y).
(x,y)—(0,0) ()
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

7. Funkcija f : R — R data sa

1, xeQ
f(")_{ 0, xeR\Q

ima prekid za svaki realan broj. Ona je neprekidna nad Q, kao i nad R\ Q.
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

8. Sabiranje realnih (kompleksnih) brojeva je neprekidna funkcija.

Zaista, zbog:

(x+y) = (@a+b)| < |x—al + |y = b| <2¢/(x — a2 + (y — b)2,

iz \/ (x —a)? + (y — b)? < 5 sledi neprekidnost sabiranja realnih brojeva.
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

9. MnoZenje realnih (kompleksnih) brojeva je neprekidna funkcija.

Kako je:
Ixy —ab| = [(x —a)(y —b) +a(y — b) + b(x — a)| < [x —ally — b +|ally — b| + |b]|x — 2|

x —a] < V/(x (v =02 |y —bl<V(x—a2+(y- b
to iz\/x—a2—|—(y—b) <4, gde je & = min{1, 7}, sledi da je

e-(L+faf +]b]) _

_ 2 < 1 < =
|xy — ab| < 6%+ dla| +4d|b] < (14 |a| + |b]) < 1+ [a]+b] ’

odakle zakljuujemo da je mnoZenje realnih brojeva neprekidna funkcija.
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(EETISEIPCRIMIRIER Definicija neprekidnosti funkcije i primeri

Iz Hajneove teoreme sledi

Tvrdenje

Funkcija f : D — Y je neprekidna u tacki a € D
ako i samo ako

za svaki niz {x,} C D koji konvergira ka a sledi da niz {f(x,)} C Y konvergira ka

f(a).
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(EETISEIRCRTMIRIER  Vrste tacaka prekida funkcija

Vrste tacaka prekida funkcija

Neka su (X, dx) i (Y, dy) metri¢ki prostori i a tatka nagomilavanja za definicioni
skup D C X funkcije f : D — Y.

Pretpostavimo da u tacki a funkcija ima prekid.

1°) Ako postoji Ii_r}n f(x), onda kaZemo da funkcija f u tatki a ima prividan ili

otklonljiv prekid, odnosno da je a prividan (otklonljiv) prekid.
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(ITISEIPORTMIRIER  Vrste tacaka prekida funkcija

a) Funkcija

ima u taZki O prividan prekid (funkcija u taZki O nije definisana), jer je

sin x

lim — =1.
x—0 X
Ako posmatramo funkciju
B sizx7 X # 0
F) = { 1, x=0"
vidimo da je ona neprekidna u tacki 0, jer smo je u ta&ki 0, definisali bas sa
F0) = lim 2% — 1,
x—=0 X
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(ITISEIPORTMIRIER  Vrste tacaka prekida funkcija

b) Funkcija
| 2x+1, x#0
)= { 2 L2
ima otklonljiv prekid u tacki 0, jer je

lim £(x) = lim (2x 4 1) = 1# £(0) = 1.

Medutim, funkcija
F(x)=2x+1

je neprekidna u ta&ki 0.
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(ITISEIPORTMIRIER  Vrste tacaka prekida funkcija

¢) Funkcija
f(x)=e V=1

ima prividan prekid u tatki —1 (funkcija nije u datoj taZki definisana), jer je

lim e V1 =0.

x——1

Primetimo da u ovom primeru ne postoji desna grani¢na vrednost date funkcije u
tatki —1, jer funkcija nije definisana za x € [—1,0), pa se grani¢na vrednost
poklapa sa levom grani¢nom vredno$¢u u datoj tacki. Funkcija

F(X)—{ eV, xeR\[-10)
0, x=-1

dobijena iz funkcije f je neprekidna u tacki —1.
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(ITISEIPORTMIRIER  Vrste tacaka prekida funkcija

2°) Za X =R, ako postoje leva i desna grani¢na vrednost funkcije f(x) u taZki a,
tj. ako postoji
lim f(x)="f(a")

X—a~

lim f(x) = f(a"),
x—at
pri ¢emu je

f(a™) # f(a"),

onda kaZemo da funkcija u tacki a ima skok, odnosno da je a skok date funkcije.
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(ITISEIPORTMIRIER  Vrste tacaka prekida funkcija

a) Kako za funkciju
f(x) = arctg <1 + 1) ,
X

vazi

to data funkcija ima skok u tacki O.
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(ITISEIPORTMIRIER  Vrste tacaka prekida funkcija

b) Za funkciju
_J 2x+1, x<1
f(")_{ 3x—1, x>1

je
lim f(x)=3=1f(1)
x—1-
i
lim f(x) =2,
x—1+

pa funkcija f u ta&ki 1 ima skok.
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(ITISEIPORTMIRIER  Vrste tacaka prekida funkcija

1) Ako u tatki a funkcija f ima prividan prekid ili skok, onda kaZzemo da data
funkcija f u tatki a ima prekid prve vrste.

I1) Ako je tatka a prekid funkcije koji nije prve vrste, onda kaZemo da u tatki a
funkcija f ima prekid druge vrste.

Ako je (Y, dy) metritki prostor, tada za funkciju f : | — Y koja ima konatan broj
prekida prve vrste nad intervalom | C R, kaZemo da je f neprekidna po
delovima nad intervalom /.
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Neprekidnost funkcija Neprekidnost i grani¢na vrednost sloZene funkcije

Neprekidnost i grani¢na vrednost slozene funkcije

Tvrdenje

Neka su dati metricki prostori (X, dx), (Y,dy) i (Z,dz) kao i funkcije

g:D-Y DCXif:Y—Z

Ako je g neprekidna funkcija u tacki a, f neprekidna funkcija u tacki g(a), tada je
sloZena funkcija h = f o g neprekidna funkcija u tacki a.

#\ /\

glay

\

x/ v
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(ITISEIPORILIRIER  Neprekidnost i grani¢na vrednost slozene funkcije

Dokaz. S obzirom da je f neprekidna funkcija u tatki g(a) i g neprekidna funkcija
u takki a to vazi

(Ve e RT)(36 € RM)(Vu € Y)(u € L(g(a),d) = f(u) € L(f(g(a)),e)),

(Ver € RT)(36; € RT)(Vx € D)(x € L(a,01) = g(x) € L(g(a),e1)).

Tada birajuéi da je e; = §, imamo
(Ve € RT)(361 € RT)(Vx € D)(x € L(a,01) = f(g(x)) € L(f(g(a)),¢)),

odakle sledi da je sloZena funkcija h = f o g neprekidna u tacki a.
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Neprekidnost funkcija Neprekidnost i grani¢na vrednost sloZene funkcije

Posledica
Neka su dati metricki prostori (X, dx), (Y,dy) i (Z,dz) kao i funkcije

g: DY DCXif:Y—Z
Ako su funkcije g i f neprekidne, tada je i sloZena funkcija h = f o g neprekidna.

Tvrdenje
Neka su dati metri¢ki prostori (X, dx), (Y, dy) i (Z,dz) kao i funkcije

g:D=>Y,DCXif:Y—Z
Ako je lim g(x) =« € Y i f neprekidna funkcija u tacki «, tada je
X—a

lim f(g(x)) = f(lim g(x)) = f(a).

X—a X—a
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(ITISEIPORILIRIER  Neprekidnost i grani¢na vrednost slozene funkcije

Dokaz. Funkcija f je neprekidna u tacki «, pa je
(Ve € RT)(36 € RY)(Vu € Y)(u € L(a,d) = f(u) € L(f(a),e)).
Kako je )!iLnag(x) =a, to je
(Ve1 € RT)(361 € RT)(Vx € D\ {a})(x € L(a,d1) = g(x) € L(a, 1)),
a odatle uzimajuéi 1 = ¢ sledi da je
(Ve e RT)(Vx € D\ {a})(x € L(a,61) = f(g(x)) € L(f(c),e)),

tj. lim f(g(x)) = ().

X—a
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(ITISEIPORILIRIER  Neprekidnost i grani¢na vrednost slozene funkcije

Ako je lim g(x) =a i X =R, tada vazi
X—r00

(Ve € RT)(3A € RT)(Vx € D)(x > A = g(x) € L(a,?)).
pa sledi da
(Ve e RT)(Vx € D)(x > A = f(g(x)) € L(f(a),¢)),

tj. lim f(g(x)) = f(a).
X—»00
Sli€no, kao i prethodnom slu¢aju se dokazuje da iz lim g(x) =a i X =R, sledi
X——00
daje lim f(g(x)) = f(a). O
X—r—00
Pretpostavka da je f : Y — Z je bitna, jer ako to nije tatno teorema ne mora da
vaZi §to se vidi iz slede¢eg primera
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Neprekidnost funkcija Neprekidnost i grani¢na vrednost sloZene funkcije

Primer

Posmatrajmo funkcije
f(x) =vx, g(x)=—-x%

Iz neprekidnosti u 0 funkcije f(x) i iz toga da je Iimog(x) = 0 imamo da je
X—

f(lim g(x)) =f(0)=0.

x—0

Kako je
f(g(x)) = v —x2,

to je funkcija f(g(x)) definisana samo za x = 0, pa

lim f(g(x))

x—0

ne postoji.
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Neprekidnost funkcija Neprekidnost i grani¢na vrednost sloZene funkcije

Tvrdenje

Neka su dati metricki prostori (X, dx), (Y, dy) i (Z,dz) kao i funkcije
g:D—=>Y, DCXif:Y — Z Pretpostavimo da
1) g(x) > a €Y, kada x — a;
2) f(u) — B, kada u — «;
3) a) Akoac€ X, (zaslutaj X =R, a€ R, tj. x ne teXi +00), onda
(30" € R*)(¥x € (D \ {a}) N L(,6")) g(x) # o
b) Ako je X =R i g(x) = «, kada x — oo, onda
(36* € RT)(¥x € DN (6%, 00)) g(x) #
c) Ako je X =R i g(x) = a, kada x — —o0, onda
(36" e R7)(Vx € DN (—00,0")) g(x) # .
Tada f(g(x)) — B, kada x — a.
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Neprekidnost funkcija Neprekidnost i grani¢na vrednost sloZene funkcije

Tvrdenje

Neka su dati metri¢ki prostori (X, dx) i (Z,dz) kao i funkcijeg : D - R, D C X
if:R — Z. Pretpostavimo da

1) g(x) —» £oo, kada x — a,
2) f(u) — B, kada u — +co.
Tada f(g(x)) — B, kada x — a.
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Neprekidnost funkcija Neprekidnost i grani¢na vrednost sloZene funkcije

Primer
1

Neka jeu=g(x) =1,y =f(u) = (1+ 1)". Kako g(x) — oo, kada x — 0T i

X

f(u) — e, kada u — oo, to je

lim F(g(x) = lim £(2) = lim (1+x)} = e.

x—07F x—0t X x—07t

Kako g(x) — —o0, kada x — 0~ i f(u) — e, kada u — —o0, to je

1 1
lim f = lim f(=)= lim (1 x =
S feb)) = lim ()= lim (1427 =e,
pa je )
lim(1+x)x =e.
x—0
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Neprekidnost funkcija Neprekidnost i grani¢na vrednost sloZene funkcije

Primer

< 1
Zau=g(x) {2"*1’ xs1 iy_f(u)_{ 73 Y73 amo da je
1

/0 XW 0 u\ 0 x
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(ITISEIPORILIRIER  Neprekidnost i grani¢na vrednost slozene funkcije

1°) Iz neprekidnosti funkcije g u taZki 2 je

ne sledi da je

jer je

lim g(x) =3, (a=3)

x—2
1
lim fu) =2, (3=3),
1
lim 7(g(x) = .

lim f(g(x)) = lim f(3) = 5.

X—2 X—2

Uslov 3) prethodne teoreme nije ispunjen, jer ne postoji okolina tatke 2 tako da je
za svako x iz te okoline g(x) # 3.
2°) lim f(g(x)) ne postoji iako je lim g(x) =3, i lim f(u) = %.

x—1 x—1 u—3
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Neprekidnost funkcija Neprekidnost i grani¢na vrednost sloZene funkcije

Primer
1

Neka jeu=g(x) =1,y =f(u) = (1+ 1)". Kako g(x) — oo, kada x — 0T i

X

f(u) — e, kada u — oo, to je

lim F(g(x) = lim £(2) = lim (1+x)} = e.

x—07F x—0t X x—07t

Kako g(x) — —o0, kada x — 0~ i f(u) — e, kada u — —o0, to je

1 1
lim f = lim f(=)= lim (1 x =
S feb)) = lim ()= lim (1427 =e,
pa je )
lim(1+x)x =e.
x—0
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(EEIISEIPCRIMIRIER  Osobine neprekidnih funkcija

Osobine neprekidnih funkcija

Tvrdenje

Neka su (X, dx) i (Y, dy) metri¢ki prostori i neka je data funkcija f : X — Y.
Tada su sledeca tvrdenja ekvivalentna

a) Funkcija f je neprekidna.

b) Inverzna slika svakog otvorenog skupa U C Y je otvoren skup.

¢) Inverzna slika svakog zatvorenog skupa F C Y je zatvoren skup.
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(EEIISEIPCRIMIRIER  Osobine neprekidnih funkcija

Tvrdenje
Neka je (X, d) metri¢ki prostor i f : D — R, D C X funkcija koja je neprekidna u
tackia e D.

Ako je f(a) > c (f(a) < c), tada postoji pozitivan realan broj e, tako da za sve
x € L(a,e) N D vazi f(x) > ¢ (f(x) < ¢).

Dokaz. Posmatrajmo slu¢aj kada je f(a) > c. Analogno se dokazuje i kada je
f(a) < c. Neka je e = f(a) — ¢ > 0. Kako je f neprekidna funkcija u tatki a, to

(36 e RT)(Vx € D)(x € L(a,d) = |f(x) — f(a)| < ¢),
tj. ¢ = f(a) — e < f(x) < f(a) + ¢. Dakle,
(Vx € D)(x € L(a,0) = f(x) > ¢),

$to je i trebalo da se dokaZe. O
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(EEIISEIPCRIMIRIER  Osobine neprekidnih funkcija

Ako funkcija f ima prekid u tacki a € D, teorema ne mora da vaZi.

y
Na primer, ako posmatramo funkciju
[ x+1, x<0 vidimo da ne
f(X) - { 27 x> 0’ /0 -

postoji okolina (—¢, £) tatke 0, tako da iz x € (—¢, ) sledi f(x) > 3.

Posledica

Ako je funkcija f : D — R, D C X, neprekidna u tatkia€ D i f(a) >0
(f(a) < 0), tada postoji otvorena lopta L(a,d), tako da za svako x € D N L(a,d)
sledi da je f(x) > 0 (f(x) < 0).
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(EEIISEIPCRIMIRIER  Osobine neprekidnih funkcija

Tvrdenje

Ako je funkcija f : [a, b] — Y neprekidna nad zatvorenim intervalom |a, b], onda
Jje ona nad tim intervalom i ogranicena.

Dokaz. Dokaz ¢emo dati za sluéaj kada je Y = R.

Pretpostavimo da f nije ogranitena nad [a, b]. Tada
(Vn € N)(3x, € [a, b]) [f(xa)| > n. (2)

Posmatrajmo niz {x,}. S obzirom da su svi Elanovi niza {x,} iz [a, b], to je dati
niz ograniten, pa postoji konvergentan podniz {x,, } datog niza. Neka je

lim x,, =¢ € [a, b].

k—o00

Kako je f neprekidna funkcija nad [a, b], to je

lim £0m,) = f( lim xn,) = £(¢),

k—o00

odnosno sledi da je niz {f(x,, )} konvergentan, 3to je u suprotnosti sa (2).

Dakle, funkcija f je ogranitena nad [a, b]. O
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(EEIISEIPCRIMIRIER  Osobine neprekidnih funkcija

Obe pretpostavke prethodne teoreme su bitne.

e Ako posmatramo funkciju f(x) = 1, vidimo da je ona neprekidna nad
intervalom (0, 1], ali nad tim intervalom nije ogranitena
(ne postoji sup f(x), dok je inf f(x)=1).

x€(0,1] x€(0,1]

1
e Ako posmatramo funkciju f(x) = { 6’ if(oo’ 1 , vidimo da ona nije
ogranitena nad zatvorenim intervalom [0, 1] (ima prekid u tacki 0).
¥ ¥
0 X 0 X
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(EEIISEIPCRIMIRIER  Osobine neprekidnih funkcija

Definicija
Za neprazan skup A C X kaZemo da je kompaktan u metrickom prostoru
(X, dx), ako za svaki niz {a,} C A postoji tatka nagomilavanja a € A.

Metri¢ki prostor (X, dx) je kompaktan ako je X kompaktan skup u metrickom
prostoru (X, dx).

Prethodna teorema vaZi i kada se zatvoreni interval zameni skupom kompaktnim u
metritkom prostoru (X, dx) :

Tvrdenje

Neka su (X, dx) i (Y, dy) proizvoljni metri¢ki prostori. Akojef:D — Y, D C X
neprekidna funkcija i ako je skup D kompaktan u metri¢kom prostoru (X, dx),
tada je f ogranifena funkcija.
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(EEIISEIPCRIMIRIER  Osobine neprekidnih funkcija

Tvrdenje

Ako je funkcija f : [a, b] — R neprekidna nad [a, b], tada ona bar jednom dostiZe
svoju najvecu i najmanju vrednost (funkcija f(x) ima maksimum i minumum nad
intervalom [a, b]), tj. postoje realni brojevi v, B € |[a, b], takvi da je

m= inf f(x)="f(a) i M= sup f(x)=F(B).
x€[a,b] x€[a,b]

| ova teorema vaZi u opstijem slucaju, tj. vaZi sledeée tvrdenje:

Tvrdenje

Neka je (X, dx) metri¢ki prostor i f : D — R, D C X neprekidna funkcija nad
kompaktnim skupom D. Tada funkcija f dostiZe najvecu i najmanju vrednost nad
skupom D.
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(EEIISEIPCRIMIRIER  Osobine neprekidnih funkcija

Tvrdenje

Ako je funkcija f : [a, b] — R neprekidna nad intervalom [a, b] i f(a) - f(b) < O,
tada u intervalu (a, b) postoji bar jedna nula funkcije, tj. postoji tatka & € (a, b),
tako da je f(£) = 0.

Dokaz. Ako je

tada je

pa je teorema dokazana.
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(EEIISEIPCRIMIRIER  Osobine neprekidnih funkcija

Ako je

f(a—;b) L0,
[a7a—;b} [a—;b’b]

intervala [a, b] izaberimo onaj, koji ¢emo obeleZiti sa [a1, b1], kod koga funkcija na
krajevima intervala ima razli¢it znak.

tada od podintervala
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(EEIISEIPCRIMIRIER  Osobine neprekidnih funkcija

Ponavljajudi isti postupak na intervalu [a;, b1] dobi¢emo da je ili

a+b\ . a+ b
f< 5 )0 ili f( 5 )750.

Ako je
ar+ by
f =0
(257) -
tada je
b
¢=27 2 e(ah)

pa je teorema dokazana.
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(EEIISEIPCRIMIRIER  Osobine neprekidnih funkcija

Ako je
(252) 0

[ ar + bl]
N

tada od podintervala

air+ by
—— b

intervala [a1, b1] izaberimo onaj, koji éemo obeleZiti sa [ag, by], kod koga funkcija
na krajevima intervala ima razli¢it znak.
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Qscbine|neprekidnihifunkeiia
Nastavljajudi taj proces, dobi¢emo da

1) Posle n koraka, ako je f (2522) = 0, tada je £ = 25 pa je teorema
dokazana.

2) Ako je za svako n € N, f(2:£2) +£ 0, tada za niz intervala {[a,, bn]} vaZi:

- |a1, b1] D a2, b2] D ... D [an, bn] D -

- lim (by — a,) = lim 22 =0;
n—o0 n— o0

pa je dati niz, niz umetnutih intervala. Sledi da postoji jedna i samo jedna
zajedni¢ka tacka £ za sve intervale.
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(EEIISEIPCRIMIRIER  Osobine neprekidnih funkcija

Dokazacemo da je f(£) = 0. Pretpostavimo suprotno, tj. da je

f(&)>0 (£(§) <0).

Primetimo pre svega da je funkcija f definisana u tacki £ € (a, b), jer je f
neprekidna nad zatvorenim intervalom [a, b].

Kako je f neprekidna u tatki £ i po pretpostavci je f(£) > 0 (f(£) < 0), to postoji
pozitivan realan broj J, tako da za svako x iz skupa

(§—6,£+0)N[a b]

vazi

f(x) >0 (f(x)<D0).
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(EEIISEIPCRIMIRIER  Osobine neprekidnih funkcija

Kako je

lim a, = lim b, =&,
n—o0o n—o0

to postoji ng € N tako da je za svako n > ng
[an, bn] C (€ —6,£ + ).

Kako je
F(an) - F(ba) < 0,

to funkcija f nije uvek pozitivna (negativna) nad intervalom

(5_555—’—5)

Sto je kontradikcija.

Dakle, £(£) = 0. O
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(EEIISEIPCRIMIRIER  Osobine neprekidnih funkcija

Bitna je pretpostavka teoreme da je funkcija f neprekidna nad datim zatvorenim

intervalom.
)7

Ako funkcija f nije neprekidna nad po-
smatranim zatvorenim intervalom, tada f
ne mora obavezno da ima nulu nad odgo-
varajué¢im otvorenim intervalom. Na pri-
mer, ako posmatramo funkciju

f(x) =

x+2, x<2
—X, x>2 "

vidimo da funkcija f nema nulu u intervalu (0, 3), iako je
f0)=2>0, f(3)=-3<0,

jer funkcija f ima prekid u tagki 2.
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NEIERERCSTMINGIER  Osobine neprekidnih funkcija

Tvrdenje

Ako je f : [a, b] — R neprekidna funkcija nad [a, b] i ako je f(a) # f(b), ona u
tom intervalu uzima sve vrednosti izmedu f(a) i f(b).

Tvrdenje

Ako je f : [a, b] — R neprekidna funkcija, tada je ili za svako x € [a, b], f(x) = ¢
ili f([a, b]) = [c, d].
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(EEIISEIPCRIMIRIER  Osobine neprekidnih funkcija

Tvrdenje

Ako je f : (a, b) — R neprekidna strogo monotona funkcija nad (a, b), tada je
f((a, b)) otvoren interval.

Tvrdenje

Ako je f : | — R neprekidna strogo monotona funkcija nad proizvoljnim intervalom
realnih brojeva |, tada je inverzna funkcija f=1 : f(I) — R neprekidna nad f(1).

211 / 569



Elementarne funkcije

Osnovne elementarne funkcije su sledece funkcije:

e konstantna funkcija y = ¢, c € R,
e stepena funkcija y = x¢, a € R,
e eksponencijalna funkcija y = a*, gdejea>0ia#1,
o logaritamska funkcija y = log, x, gde jea>0ia# 1,
e trigonometrijske funkcije:

y =sinx, y =cosx, y =tgx, y =ctgx,
e inverzne trigonometrijske funkcije:

y = arcsinx, y = arccos x, y = ctg x, y = arcctg x.

Elementarne funkcije uvodimo slede¢om rekurzivnom definicijom.
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(ITSEIRCRIMIIEN Elementarne funkcije

Definicija
@ Osnovne elementarne funkcije su elementarne funkcije.
Q Ako su f i g elementarne funkcije, g # O (O nula funkcija), tada su
elementarne funkcije i f + g, f — g, f-g, g, fog.

@ Elementarne funkcije se mogu dobiti samo kona&nom primenom pravila 1. i
2. ove definicije.

Na primer, elementarne funkcije su: y = 2x? + 3x + 5,
y=3¥—sin’x, y=In(y/x+3),y= arc';‘gxﬁ, y = In(arcsin x?).

Na osnovu poslednje teoreme i osobina neprekidnih funkcija sledi da vaZi slede¢a
teorema

Tvrdenje
Elementarne funkcije su neprekidne u oblasti definisanosti. J
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Uniformna neprekidnost

Definicija
Neka su dati metric¢ki prostori (X, dx), (Y, dy) i funkcijaf : D — Y, D C X.
Funkcija f je uniformno neprekidna nad () # E C D ako

(Ve > 0)(35 > 0)(VX1,X2 € E)(dx(Xl,Xz) <= dy(f(X1)7 f(Xz)) < 6).

Dakle, moZemo reci da je funkcija f uniformno neprekidna nad E ako za svaki
pozitivan realan broj €, postoji pozitivan realan broj ¢, koji zavisi samo od ¢ ali ne
i od x, tako da ako je rastojanje talaka x; i x2 iz E manje od ¢, tada je rastojanje
slika manje od €.
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Neprekidnost funkcija Uniformna neprekidnost

Napomena

Ocigledno je, da ako je funkcija f uniformno neprekidna nad skupom E, ona je
nad tim skupom i neprekidna. Da obrnuto nije uvek tacno pokazuje sledeli primer.

Primer

Funkcija f : (0,1) — R definisana sa

Flx) = 2

X

Je nad intervalom (0,1) neprekidna, ali nije i uniformno neprekidna.
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(EETISEIPCSIMIRIE  Uniformna neprekidnost

Da bi to pokazali pretpostavimo suprotno, tj. da je data funkcija nad intervalom
(0,1) uniformno neprekidna. Tada za 0 < € < 1, postoji § > 0, tako da je

1 1
|X2—X1|<(5:> —— — | <e.
X2 X1
Primetimo da kako x1,x € (0,1), to je § < 1.
Neka je
=6 ¢€(0,1), = € (0,1).
X1 ( ) X2 1+¢ ( )
Tada vazi:
1 € 1 1 1+ 1 €
|X2—X1|—‘1+E—(5‘—61+E<(5:> X_2_X_1 —’ 5 —g’—g>€7

$to je suprotno pretpostavci da je funkcija f uniformno neprekidna. Dakle, f nije
uniformno neprekidna nad (0, 1).
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Neprekidnost funkcija Uniformna neprekidnost

Tvrdenje

Ako je f : [a, b] — R neprekidna nad [a, b], ona je nad tim intervalom i uniformno
neprekidna.

Primer

Funkcija f : (0,1] — R definisana sa f(x) = x je nad intervalom (0,1) neprekidna
i uniformno neprekidna.

Primer

Funkcija f : R — R definisana sa f(x) = x* je nad intervalom (—%, 1) uniformno
neprekidna.
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Definicija izvoda

Posmatramo realnu funkciju y = f(x), f: D =R, ix € D°.

@ Ax # 0 - prirastaj argumenta funkcije f(x) u tatki x € D°

@ ukoliko x + Ax € D° tada je
Ay = f(x + Ax) — f(x)
prirastaj funkcije f(x) u tatki x € D° koji odgovara prirataju argumenta

Ax

A
Kako je prirastaj funkcije Ay = f(x + Ax) — f(x), to koli¢nik A_i nije definisan
za Ax =0.
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Eeiniiializred3
Da li postoji grani¢na vrednost tog koli¢nika kada Ax — 07

Octigledno da je potreban uslov da grani&na vrednost koli¢nika postoji kada
Ax — 0 taj dai Ay — 0 tj. da funkcija f(x) treba da bude neprekidna u tatki x.

Definicija
Ako postoji grani¢na vrednost

. Ay f(x+ Ax) — f(x)
AI>I<T>O Ax  axbo Ax

onda se ta grani¢na vrednost zove izvod funkcije f(x) u tacki x i oznadava se sa
f'(x)iliy.

v
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VRIS EAVEER  Izvod i neprekidnost. Jednostrani izvod

lzvod i neprekidnost. Jednostrani izvod

Teorema

Ako funkcija ima izvod u nekoj tatki x, ona je u toj taki i neprekidna. J
Dokaz. lim Ay = lim &£ .Ax=f(x)-0=0. 0
ohaz. Jimg Ay = lim, &% Ax =100 =0

Obrnuto ne mora da vazi! Primer: f(x) = |x|, neprekidna je za svako x, a nema
izvod u x = 0, jer je

. Ay . f(0+ Ax) —f(0) . |Ax]
f(0) = | — = | = | —_—
(0) axD0 Ax | axbo Ax x50 Ax
pri ¢emu je
B i BX g im BX g ZAX g

m = m — = =
Ax—0t AXx Ax—0t Ax Ax—0— Ax Ax—0— Ax
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VRIS EVEER  |zvod i neprekidnost. Jednostrani izvod

Prethodni primer pokazuje da mogu postojati desna i leva grani&na vrednost,
Ly koje su razli¢ite, pa ima smisla definisati i jednostrane

lim 2L lim 2%
Ax—0t Ax—0—
izvode.

@ Desni izvod funkcije f(x) nad [x,x +¢), § > 0 je

F(x + Ax) — f
flx) = Jim bt AX))< (). X + Ax € [x,x + 6)

@ Levi izvod funkcije f(x) nad (x — d,x], § > 0 je

' (x)=lim f(x—l—Aij—f(x)’ x+ Ax € (x — 0, x]

Ax—0—

f(x) ima izvod u x akko postoje jednostrani izvodi i vazi ' (x) = f{(x) = f'(x)
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VRIS EVEER  |zvod i neprekidnost. Jednostrani izvod

Da iz neprekidnosti funkcije u tacki x ne sledi uvek da postoji bar jedan
jednostrani izvod u posmatranoj takki, pokazuje sledeéi primer.

Primer

o1
Funkcija f(x) ={ "% x#0

nema jednostrane izvode u tacki x = 0.
0 , x=0

Resenje. Funkcija f(x) je neprekidna za svako x. U tacki x = 0 ne postoji ni
jedan jednostrani izvod:

L1
Axsin z- —0

lim = lim sin—  ne postoji,
Ax—0+ Ax Ax—0t  Ax

Axsin 4= — 0 ) ) .
im ——=X—— = |lim sin—  ne postoji.
Ax—0~ Ax ax—0-  Ax
v
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VRIS EVEER  |zvod i neprekidnost. Jednostrani izvod

Funkcija f(x) ima izvod nad intervalom h = [a, b), b = (a, b], 5 = [a, b] ako:
@ funkcija ima izvod u svakoj tatki (a, b)

@ u tacki a funkcija ima desni izvod, za intervale | i /5, piSe se da je
f'(a) = f{(a)
@ u tagki b funkcija ima levi izvod, za intervale k i I, piSe se da je

f'(b) = f' (b)

Primetimo da ako funkcija y = f(x) ima izvod u tatki x vaZi

A A
(0= Jm g = pe =t im0

= Ay =f'(x)Ax+alx, lim a=0

Ax—0
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VRIS EVEER  |zvod i neprekidnost. Jednostrani izvod

MoZe se desiti da funkcija ima izvod u svakoj taZki intervala (a, b), da u tatakama
ai b nema izvod, a da ima izvod nad zatvorenim intervalom [a, b].

Na primer, funkcija

0 , x<0
f(x)=4q sinx , 0<x<73

2x x> 75

s

ima izvod f’(x) nad intervalom [0, Z] iako u krajnjim tatkama 0 i  tog intervala

12
ne postoji izvod, jer je
f.(0) =0, f/(0)=1,

o5 1 (3)-2
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Geometrijska interpretacija izvoda
Geometrijska interpretacija izvoda
y = f(x) je neprekidna funkcija nad (a, b)

YA

B(x+Ax, y+Ay)

Ay

Alx,y)

=Y

Ax

@ A, B su tatke grafika, prava AB je secica krive, tgf = AX
9 ako B — A prava AB postaje tangenta krive u tacki A
@ ako je o # 5 + km, k € Z, ugao koji tangenta zaklapa sa pozitivnim delom

. o f(X"’AX)_f(X)_ '
x-ose tada je tga = AI)lm0 . = f'(x).
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VSRR EVEERl  Geometrijska interpretacija izvoda

@ ako je f'(a) # 0, jednatina tangente u tatki A(a, f(a)) je
y —f(a) =f'(a)(x —a),

a jednatina normale u tatki A(a, f(a)) je

@ jednalina desne tangente u tacki A(a, f(a)) je

y = f(a) = fi(a)(x - a),

a jednatina leve tangente u tacki A(a, f(a)) je
y = f(a) = f1(a)(x — a),

@ ako je ako je f’(a) = 0 jednatina tangente funkcije u tatki A(a, f(a)) je
y = f(a), a jednatina normale je x = a.
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VRISV EERl  Fizicka interpretacija izvoda

Fizi¢ka interpretacija izvoda - brzina i ubrzanje tacke

Neka se tatka krece po pravoj tako da je jednatinom s = f(t) data zavisnost
predenog puta od poletne tatke A.

A B C

U trenutku t neka se tatka nalazi u B, a u trenutku t + At u C.
Predeni put do trenutka t je f(t), a do trenutka t + At je f(t + At).
Srednja brzina v na putu BC je jednaka

_ As _ f(t+ At) —£(2)
At At '

Vs
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VSR IIE RSPl Fizicka interpretacija izvoda

Prirodno je definisati trenutnu brzinu te tatke u B kao grani¢nu vrednost srednje
brzine kada C teZi B. Drugim retima, brzina v(t) u B se definise kao

/)= Jm, G = o)

ako ta grani¢na vrednost postoji.

Sli¢no, ako je u trenutku t data brzina v = f(t), a u trenutku t + At brzina
v = f(t + At), srednje ubrzanje na putu BC je jednako

Avg

a=—

S At )

pa je trenutno ubrzanje u tacki B jednako

ako ta grani¢na vrednost postoji.
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Osobine izvoda

Teorema

Ako funkcije u = u(x), v = v(x) imaju izvod u ta&ki x, tada i funkcije u + v, uv,
z (v(x) # 0 u datoj tacki x) i ¢ - u imaju izvod u tacki x i vaZi da je:
14

1. [u(x) £ v(x)] = v/ (x) £ V/(x),

2. [uC)v(x)]" = v (x)v(x) + u(x)v'(x),
u(x)]" _ v ()v(x) — u(x)v'(x)

18-

v2(x) ’

4. [c u(x)] = ¢ U'(x), c = const.
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Teorema (izvod slozene funkcije)

Neka je data sloZena funkcija y = f(u), u = g(x). Ako g(x) ima izvod u tacki x i
f(u) ima izvod u taki u, tada je

(fog) (x) = (f(g(x))) = f'(u)g'(x).

Teorema (izvod inverzne funkcije)

Neka je f(x) neprekidna strogo monotona funkcija definisana na intervalu (a, b) i
f=1(x) njena inverzna funkcija. Ako funkcija f(x) ima izvod f'(x) u tacki
x € (a,b) i f'(x) # 0, tada funkcija f ~1(x) ima izvod u tatki y = f(x) i vaZi

230 / 569



Neka su nad intervalom | C R definisane realne funkcije

x=p(t), y=v(), tel,
pri &emu za funkciju o(t) postoji inverzna funkcija t = ¢ ~1(x).

Slozena funkcija y = (¢~ 1(x)) = f(x) je definisana nad skupom vrednosti
{p(t) : t € I} funkcije ¢(t).

Tada je sa x = x(t), y = y(t), t € | funkcija f(x) zadata u parametarskom
obliku i promenljivu t zovemo parametrom.

Teorema (izvod parametarski zadate funkcije)

Neka je data funkcija y = f(x) u parametarskom obliku x = x(t),
y = y(t), t € I. Ako neprekidne funkcije p(t) i ¢(t) imaju izvode u tacki
t € (a, b) i ukoliko je ¢'(t) # 0, tada funkcija y = f(x) ima izvod u tacki t i vaZi

IO

=20 =~ X
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Osobine izvoda

Logaritamski izvod

Neka je data funkcija Neka je y = f(x)8*X),  f(x) > 0. Tada je

Iny = g(x) In (),

pa je / !
L =g () + )
odakle je »
"= F(x)8X) [ g'(x)In f(x XfIX
= 10 (/) n ) + ) 52 ) 4
Primer

Odrediti prvi izvod funkcije y = x*.

232 / 569



Diferencijabilnost. Diferencijal.

Neka je funkcija f(x) definisana na skupu D i neka x € D°.
Prirastaj funkcije

Ay = f(x+ Ax) — f(x), x+AxeD°
zavisi od prirastaja nezavisno promenljive Ax.

Definicija
Za funkciju f(x) se kaZe da je diferencijabilna u tacki x ako se Ay moZe napisati

u obliku
Ay = DAx + alx,

pri Cemu o« — 0 kada Ax — 0, dok D ne zavisi od Ax.
Linearni deo prirastaja funkcije, DAx, naziva se diferencijal funkcije f(x) i
obeleZava se sa dy ili df (x), tj.

dy = df (x) = DAx.

v
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Diferencijabilnost. Diferencijal

@ Ako je funkcija diferencijabilna u svakoj tatki skupa A onda se kaZe da je
f(x) diferencijabilna nad skupom A.

@ Ako funkcija f : D — R, D C R ima izvod u svakoj tatki skupa X; C D°,
tada za funkciju ' : x — f/(x), x € X; kaZzemo da je izvodna funkcija
funkcije f.

Primer

Za funkciju f(x) = x? je
Ay f(x + Ax) — f(x)

(x + Ax)? — x2

x? 4+ 2xAx + (Ax)? — x?

2x Ax+ Ax Ax,
~~ -~

D [eY
gde D = 2x ne zavisi od Ax, a « = Ax — 0, Ax — 0, pa je ova funkcija
diferencijabilna.
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Diferencijabilnost. Diferencijal

Teorema

Potreban i dovoljan uslov da funkcija f(x) bude diferencijabilna u tacki x je da
ima izvod u toj tacki.

Dokaz. Uslov je potreban. Pretpostavimo da je funkcija f(x) diferencijabilna u
tacki x. Tada je
Ay = DAx + alAx,

pri €emu o — 0 kada Ax — 0. Sledi da je
. Ay .
Ao Ax =~ Aol P ) =0

Izvod postoji i to je bas D.
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Diferencijabilnost. Diferencijal

Uslov je dovoljan. Ako f(x) ima izvod u tatki, tj. postoji grani¢na vrednost

Ay
lim =L — ¢
Ao Ax (x),
tada je koli¢nik
A
= f(x)+a, lim a=0,

Ax Ax—0

Sledi da je
Ay = f'(x)Ax + alx,

Sto znati da je funkcija f(x) diferencijabilna u ta&ki x.

Treba uotiti da f'(x) ne zavisi od Ax.



Diferencijabilnost. Diferencijal

@ Dakle, diferencijal je dat obrascem dy = f'(x)Ax.
9 Za funkciju y = x je dy = dx pa se i u opstem sluéaju Ax zamenjuje sa dx,
pa je
dy
dy = f'(x)dx = f'(x) = =
y = F(x)de = /() =
§to je Lajbnicova oznaka za izvod.

@ lzvod sloZene funkcije je

dy _ dydu
dx  dudx’
@ lzvod inverzne funkcije je
dy 1
= = .
dx &
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Invarijantnost oblika diferencijala
Invarijantnost oblika diferencijala

o Ako je y = f(u), u= g(x) slozena funkcija, tada je
dy = d(f(g(x))) = (f 0 g)'(x)dx = f'(u)g’ (x)dx
odnosno

dy = f'(u)du

Dakle, diferencijal ima osobinu invarijantnosti oblika, tj. diferencijal ima isti
oblik i kada je u funkcija od x, kao $to bi imao da je u nezavisna promenljiva.
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Geometrijska interpretacija diferencijala
Geometrijska interpretacija diferencijala

YA

—2—

P, Ay
.
fix) /_%M “ 0 v
a >

X x+Ax x

@ Neka u proizvoljnoj tacki M(x, f(x)) kriva y = f(x) ima tangentu. Tada je

PO
dy = f'(x)Ax = tgaAx = —MQ = PQ,
y = f'(x) g 1o MQ = PQ
tj. diferencijal dy je prirastaj ordinate tangente u tatki M(x, f(x)) koji
odgovara prirastaju argumenta Ax.
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Diferencijabilnost. Diferencijal Osobine diferencijala

Osobine diferencijala

Teorema (osobine diferencijala)
Ako su funkcije u = u(x) i v = v(x) diferencijabilne u tatki x tada vaZzi
. d(u(x) £ v(x)) = du(x) £ dv(x),

[y

2. d(u(x)v(x)) = v(x)du(x) + u(x)dv(x),

v(x)du(xgixz(x)dv(x), v(x) £ 0

w

Q
/N
< | S
|~
X | X%
~— |~
N—

Il
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Diferencijabilnost. Diferencijal Primena diferencijala

Primena diferencijala

Kako je
Ay = f'(x)Ax + aAx,

pri ¢emu o — 0 kada Ax — 0, u odredenom smislu prirastaj
Ay = f(x + Ax) — f(x)
mozemo aproksimirati diferencijalom

dy = f'(x)Ax = f'(x)dx

kada Ax — 0, tj.
Ay ~ f'(x)Ax (Ax — 0).

Na osnovu toga sledi da je

f(x +Ax) = f(x) + f'(x)Ax  (Ax — 0).
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Diferencijabilnost. Diferencijal Primena diferencijala

Primer
Odrediti priblizno /8, 01.

Resenje. Za funkciju f(x) = /x imamo da je

1
Vx4 Ax =~ x4+ —=~Ax, Ax—0,x#0.
3v/x2 #

Za x =8 i Ax = 0,01 dobijamo
1

Y8+0,01 ~ v8+——-0,01
%\3/64
2 R
* 1200

2+ 0,00083 = 2,00083.
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Visi izvodi i diferencijali [PAVIIRVILSENEY

lzvodi viseg reda

Neka funkcija y = f(x) ima izvod u svakoj tatki skupa X; C D°.
Njen izvod f’(x) je funkcija nezavisne promenljive x, x € Xj.
Ako ona ima izvod u nekoj tatki x € X; tada njen izvod (f’(x))’ nazivamo

drugi izvod ili izvod drugog reda funkcije f(x) u tatki x.

Sli¢no se definidu ostali visi izvodi funkcije y = f(x) :

y L 00,

y/ — f'/(X)’

y// — (f/ X )/7
) = (D)
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Visi izvodi i diferencijali [PAVIIRVILSENEY

e za parametarski zadatu funkciju x = p(t),y = ¥(t),t € (a, b) :

7%
yi’z(—i)
xt),

e za inverznu funkciju x = f1(y) :

"
Xy

g

1
Y

(

)

X,

/

y

/ !
e

/

t/ ¢t

g

ty

1
Y

mn ! mn ! mn !
r_YeXe = Xe Yo 1 Ve Xe = Xe Wt

"7

)

/

X

(xt)?

!

Xy =

()P

1

w o1 Yx

G2 ve — (A)?
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\SRPAVCE IR O U IIEI  Diferencijali viseg reda

Diferencijali viseg reda

Ako je funkcija f(x) dva puta diferencijabilna nad X; C D° onda se diferencijal
funkcije y = f'(x)dx oznatava sa d?y i naziva drugi diferencijal ili diferencijal
drugog reda funkcije f(x).

Shodno tome se dy = f/(x)dx naziva diferencijal prvog reda ili prvi diferencijal.
e Vazi da je d?f = d(f'(x)dx) = (f'(x)dx)"dx = f"(x)dx>.

e Ako je funkcija f("=1)(x), n > 2 diferencijabilna, tada se diferencijal funkcije
d" 1ty = f("=1(x)dx"~1 naziva diferencijal n—tog reda funkcije f(x) i moZe da se
pokaZe da vazi d"y = f(")(x)dx".
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\SRPAVCE IR O U IIEI  Diferencijali viseg reda

Ako je y = f(u), u = u(x), gde su funkcije y = f(u) i u = u(x) dva puta
diferencijabilne, tada je

d’y = d(dy)
— d(F'(u)du)
= d(f'(u))du + F'(u)d(du)
= d(F'(u))du + F'(u)d(/ (x)dx)
= d(f'(u))du + F'(u)(0" (x)dx?)

= f’(u)du? + f'(u)d?u,

pa diferencijali vieg reda ne poseduju osobinu invarijantnosti oblika!
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Osnovne teoreme diferencijalnog ratuna [EINSISVERISCEIE

Osnovne teoreme diferencijalnog racuna
Rolova teorema

Rolova teorema

Ako je funkcija f : [a, b] — R neprekidna nad zatvorenim intervalom [a, b|, ima
izvod nad otvorenim intervalom (a, b) i ako je f(a) = f(b), tada postoji bar jedna
tacka & € (a, b) takva da je f'(§) = 0.

Geometrijski smisao: Postoji bar jedna tatka £ € (a, b) takva da je tangenta krive
y = f(x) u tacki A(§, f(§)) paralelna sa x—osom.

Mehanicka interpretacija: Tacka se kre¢e po pravoj, u trenutku t se nalazi u tacki
sa koordinatom x(t).

Neka je x = x(t) neprekidna za t € [«, 8] i diferencijabilna za t € (a, ).

Ako je x(a) = x(B) (tj. polozaj tatke u trenutku t = « poklapa se sa poloZajem

tatke u trenutku t = ), tada postoji bar jedna tatka £ € (a, b) u kojoj je brzina

jednaka nuli.
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Relovalteorema
Dokaz Rolove teoreme. Neprekidna funkcija nad zatvorenim intervalom dostize
bar jednom najmanju vrednost m i najveéu vrednost M.

e Ako je m = M, f(x) je konstantna na celom intervalu, pa je f’(x) = 0 za svako
€ (a, b).

e Neka je m < M.
Pp. da je M > f(a) = f(b) (ukoliko je M = f(a) tada je m < f(a)).

Tada postoji bar jedna tatka £ € (a, b), takva da je f(§) = M. Dokazacemo da je
F1(€) = 0. Vazi

f(E+ Ax) < f(£), za £+ Ax € [a, b], tj.
f(€+Ax) —£(8) f(€+ Ax) — f(8)

< i > .
Ax <0,Ax>0i Ax >0,Ax<0
Za tatku &, po pretpostavci postoji f/(£), pa je (&) = /(&) = f'(&).
Iz £(§) <0, f.(§) >0i £ (&) = (&) = (&) sIed| daje f’(¢) = 0. O
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Osnovne teoreme diferencijalnog ratuna [IETEUFRNEREIIENES

Lagranzova teorema

LagranZova teorema - teorema o srednjoj vrednosti

Ako je funkcija f : [a, b] — R neprekidna nad zatvorenim intervalom [a, b], ima
izvod nad otvorenim intervalom (a, b), tada postoji bar jedna tatka & € (a, b)
takva da je

f(b)—f(a) _
T b_a '(€).

Geometrijski smisao: Postoji tatka & € (a, b) takva da je tangenta u C(, f(&))
paralelna pravoj kroz A(a, f(a)) i B(b, f(b)).

Mehanitka interpretacija: Kod pravolinijskog kretanja tacke po zakonu x = x(t),
t € [o, B] gde je funkcija x(t) neprekidna za t € [«, f] i diferencijabilna nad (e, )
postoji tatka & € (a, 8) u kojoj je trenutna brzina jednaka srednjoj brzini u
posmatranom intervalu.
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Osnovne teoreme diferencijalnog ratuna [IETEUPRNEREIIENES

@ Ako stavimo

§—a
b—a
tadaje§ =a+60(b—a), 0<80<1,pasetvrdenje
f(b)—f(a) _
= f'(&).
=12 _ pe)

moZe zapisati u obliku

f(b) —f(a)=f'"(a+6(b—a))(b—a), 0<6<1,

a uzimajuéi a = x i b= x + h dobija se

f(x+h)—f(x)=hf'(x+60h), 0<6<1.
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Posledice Rolove i LagranZove teoreme
Posledice Rolove i LagranZove teoreme

Posledica
(Rolov metod za razdvajanje korena funkcije) Ako za funkciju f : [a, b] — R vaZi:
a) f(x) je neprekidna nad zatvorenim intervalom |[a, b],
b) f(x) je diferencijabilna nad intervalom (a, b) i pri tome je f'(x) # 0 za
x € (a, b),
c) f(a)-f(b) <O
tada postoji samo jedna nula funkcije nad intervalom (a, b).

Posledica
Ako je funkcija f : [a, b] — R diferencijabilna nad intervalom (a, b) i ako su

1,6 € (a,b), c1 < ¢ dve uzastopne nule prvog izvoda, tada nad intervalom
(c1, ¢2) funkcija f(x) ima najvise jednu nulu.
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[OEVATR T IR ISP A SXIEN  Posledice Rolove i Lagranzove teoreme

Primer

Pokazati da jednatina x* — 3x + 3 = 0 nad intervalom (—1,1) ima ta&no jedno
reSenje.

Resenje. Posmatrajmo funkciju f(x) = x® — 3x + 3.
f'(x) =3x> =3 =3(x - 1)(x + 1)
flfix)=0 & x=1vx=-1
f(—1):—1+3+% > 0, f(1):1—3+%<0

pa na osnovu prethodne teoreme nad intervalom (—1, 1) funkcija f(x) ima tatno
jednu nulu.
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Osnovne teoreme diferencijalnog raéuna Posledice Rolove i LagranZove teoreme

Posledica
Ako za funkciju f : [a, b] — R vaZi:
a) f(x) je neprekidna nad [a, b],
b) f(x) je diferencijabilna nad intervalom (a, b) i pri tome je f'(x) = 0 za svako
x € (a, b),
tada je funkcija f(x) konstantna funkcija nad |a, b].

Posledica

Ako funkcije f(x) i g(x) imaju jednake izvode: f'(x) = g'(x), x € I, tada se one
razlikuju za konstantu nad intervalom |.
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[OEVATR T IR ISP A SXIEN  Posledice Rolove i Lagranzove teoreme

Primer
Pokazati da je arcsin x +arccosx = 5, x € [—~1,1]. J

Resenje. Posmatrajmo funkciju f(x) = arcsin x + arccos x.
Ona je neprekidna nad [—1,1].
Diferencijabilna je nad (—1,1) i pri tome je

! 1
VI J1I-x2

pa je funkcija f(x) konstantna funkcija nad intervalom [—1,1], tj. f(x) = c,
x €[-1,1].

f'(x)

=0, xe(-1,1)

c="

arcsin 0 + arccos0 = 0 + T_

.
2 2 7
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[OEVATR T IR ISP A SXIEN  Posledice Rolove i Lagranzove teoreme

Primer

Da i postoji konstanta c tako da je arcctg% — arctg x = ¢, za svako x # 07 J

Resenje. Za funkciju f(x) = arctg x je

f'(x) = Tlx% x € R.

Za g(x) = arcctg L je

g0 =gy %) =me x#0

Za x > 0 je funkcija arcctg% — arctg x konstantna, pri ¢emu raéunajuéi njenu
vrednost npr. u tatki x = 1 dobijamo da je
arcctg L — arctgx =0, x>0

Za x < 0 je funkcija arcctg% — arctg x konstantna, pri ¢emu raéunajuéi njenu
vrednost npr. u tatki x = —1 dobijamo da je

arcctg L —arctgx =m, x <0.
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Osnovne teoreme diferencijalnog raéuna Posledice Rolove i LagranZove teoreme

Posledica
Neka je funkcija f : [a, b] — R neprekidna nad [a, b] i diferencijabilna nad (a, b).
Ako postoji

lim £'(x) (Iim f’(x)>,

x—at x—b~

tada postoji i f{(a) (f.(b)) i vaZi jednakost

lim £(x) = £ (a) < lim £/(x) = fi(b)).

x—at x—b~

Posledica

Ako funkcija f : | — R ima izvod nad intervalom |, tada izvod f'(x) ne moZe
imati prekide prve vrste nad tim intervalom.
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Rosledice|Rolovelillagranovelteoreme
Da izvod moZe imati prekide druge vrste pokazuje sledeci primer.

Primer

Pokazati da za funkciju

x?sinl | x#£0
f(X)_{O X : Xio

prvi izvod f'(x) ima prekid druge vrste u tatki x = 0.

Resenje. Kako je f'(x) = 2xsin2 —cosl za x #0i
_ (Ax)?sin

f(0) = lim ~—2—Ax _
O=Jm, & =%

s obzirom da grani¢ne vrednosti lim f’(x) i lim f’(x) ne postoje, to funkcija
x—0F x—0~

f’(x) ima u tatki x = 0 prekid druge vrste.
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Osnovne teoreme diferencijalnog ratuna [INCSISERIIIENES

Kosijeva teorema

Darbuova teorema

Ako funkcija f : [a, b] = R ima izvod nad intervalom [a, b] i ako je f'(a) # f'(b),
onda f'(x) uzima sve meduvrednosti izmedu f'(a) i f'(b).

KoSijeva teorema
Ako su funkcije f(x), g(x) neprekidne nad zatvorenim intervalom [a, b], imaju

izvode nad (a, b) i za svako x € (a, b) je g’(x) # 0, tada postoji bar jedna tatka
£ € (a, b), takva da je
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Osnovne teoreme diferencijalnog ratuna [INCSISVERIIIENES

Dokaz. Primetimo da je g(b) — g(a) # 0, jer bi inake funkcija g(x) ispunjavala
uslove Rolove teoreme, pa bi postojala tatka ¢ € (a, b) takva da je g’(¢) =0, to
je suprotno uslovu da je g’(x) # 0 za svako x € (a, b).

Funkcija

h(x) = (f(b) — f(a))g(x) — (g(b) — g(a))f(x)
je neprekidna nad intervalom [a, b], ima izvod u svakoj tatki x € (a, b) i
h(a) = h(b) = f(b)g(a) — g(b)f(a).

Prema Rolovoj teoremi postoji £ € (a, b), takvo da je

(€)= (f(b) — f(a))g"(€) — (g(b) — g(a))f'(§) = 0.
Sledi da je

$to je i trebalo dokazati. O
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Osnovne teoreme diferencijalnog ratuna [INCSISERIIIENES

Dokaz Lagranzove teoreme.

LagranZova teorema je specijalan slu¢aj Kosijeve.

Naime, stavljajuéi u Kosijevu teoremu

dobija se
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Osnovne teoreme diferencijalnog ratuna [EESEHEVRIEWI

Lopitalovo pravilo

f(x)

2

ima neodredeni oblik " g kada x — a ako vazZi

lim f(x) = lim g(x) =0,

X—a X—a

f(x) 00

9 ima neodredeni oblik " —" kada x — a ako vaZzi
g(x) 00

f(x) = too0, g(x) = oo, x—a
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Osnovne teoreme diferencijalnog ratuna [EESEHEVRIEWIY

Lopitalova teorema

Neka su funkcije f, g : (a, b) — R diferencijabilne nad (a, b),

g'(x) #0, x € (a, b) i neka je lim f(x)= lim g(x) =0
X—a X—a

< lim f(x)= lim g(x) —o). Tada:

x—b~ x—b~

f , ;
1. Ako postoji. lim ) _ A lim ZX — B | tada postoji lim ) _ A
x—at g'(x) xmb— &) ()

< lim % = B) i vaZi jednakost

x—b— &

) W% WA ) N
i 50 = G = (L 55 = 2).

f(x) _ )

2. Ako — 400,x —a" (x = b7), tada i

£ (e b7), tada it
x—at(x—b7).
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Osnovne teoreme diferencijalnog ratuna [EESEHEVRIEWIY

Dokaz (dela 1. kada x — a*). Za funkcije
_ [ f(x) 5 xe(ab) _[ &), xe(ab)
Foo={ g0+ 12 G- { 8 <

vaZi da su neprekidne nad [a, b),
diferencijabilne nad (a, b) (F'(x) = f'(x), G'(x) = g'(x) #0),
pa za svako x € (a, b) zadovoljavaju uslove Kosijeve teoreme nad intervalom [a, x].

Sledi da postoji £ € (a, x) tako da je
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Osnovne teoreme diferencijalnog ratuna [EESEHEVRIEWIY

f‘/
Kako je lim (x) = A, za svako € > 0 postoji 6 € RT, tako da
x—at gl(X)
fl
a<x<a+d<b= /(X) —A‘ <e.
g'(x)
Za x € (a,a+ d) na osnovu
f(x) ‘ f'(€) ’
— —Al=|—>X-Al<¢
’g(X) g'(€)
zaklju€ujemo
!
jim 00 _ iy £
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ILEP Lopitalovo pravilo

1
Za slu¢aj da je a = —oo uvodimo smenu t = — :
X
ofo L F(D)
lim = lim I
x——o0 g(x) t—0- g (1)

I

>3
=
e

-
T
o
g
~
— |

~+ |

SN—" S— | —
|
=] T
SN—

-
-~

5
Uq\
—
[y
S~—
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Osnovne teoreme diferencijalnog ratuna [EESEHEVRIEWIY

Teorema
Neka su funkcije f, g : (a, b) — R diferencijabilne nad (a, b) i g’(x) # 0,
)

x € (a,b) i neka f(x) — oo i g(x) = +oo kada x — at(f(x) — £oo i
g(x) = +oo kada x — b™). Tada:

1. Ako postoji li ;
P it xl)rratr x—b— & )

g'(x)

lim £ = B i vaz jednakost
x—b— & x)
! !
IlmﬁzlimM:A Iim@:IimM:B .
x—at g(x)  x—at g'(x) x—b= g(x)  x—b- g'(x)
f! f
2. Ako /(X) — 400, kada x — at (x = b7), tada i (x) — 400, kada
g'(x) g(x)

! : f
() _ 4 ( lim £ — B) . tada postoji lim % —A
X—a X
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Osnovne teoreme diferencijalnog ratuna [EESEHEVRIEWIY

Primer
Odrediti lim *5"%

X—$00 X

Resenje. Ovde ne moZemo da koristimo Lopitalovo pravilo, jer
. 1+ cosx
lim ——

X—r00

ne postoji, dok je

im XS <1+Siﬂ) —1.
X

X—00 X X—»00

@ Dakle, Lopitalova pravila daju dovoljne, ali ne i potrebne uslove za postojanje
grani¢ne vrednosti.
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Osnovne teoreme diferencijalnog raéuna Lopitalovo pravilo

| ostali neodredeni izrazi oblika 0 - 0o, 00 — 00, 0%, 00%, 1°° mogu se odredivati
koriste¢i Lopitalova pravila.

Primer
Odrediti:

a) lim xInx,
x—0

1 1
b) lim (= — ——
)m( ex_l)’

c) lim x*.
x—0
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Osnovne teoreme diferencijalnog raéuna Tejlorova i Maklorenova teorema

Tejlorova i Maklorenova teorema

Tejlorova teorema

Neka su funkcija f(x) i svi njeni izvodi do (n — 1)-vog reda neprekidni nad [A, B] i
neka f(x) ima n—ti izvod nad (A, B).

Neka je a € [A, B] proizvoljna tacka. Tada:

za svako b € [A, B], b # a, postoji bar jedna tatka ¢ € (a,b), b > a

(tj. postoji bar jedna tatka & € (b,a), a > b),

takva da je
f(b) _ f(a) + b;af’(a) + (b;a)2 f”(a) Tt (b(;i):)Tl f(n—l)(a) + Rn,
B n—1 f(i)(a)(b_ a)i TR
= i n
i=0
_(b=23)"
R, = L= 2L ste)
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Osnovne teoreme diferencijalnog ratuna [ERISIEVEREVEI TN EVER LI B

Za b = a+ h Tejlorova formula je oblika

h h2 hn—l
flath)=f(a)+ f' () + 5@+ + e f=(a) + Ry,
hn
Ra(x) = Ff(">(a +6h), 0<6<1.

Za b = x Tejlorova formula je oblika

f(x) = f(a) + Xl—_!af’(a) + %f”(a) 4t %ﬂ"”(a) + Rn(x),
Rn(x) = (x ;!a)n fM(a+0(x—a)), 0<6<1.
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Osnovne teoreme diferencijalnog ratuna [ERISIEVEREVEI TN EVER LI B

Kada je funkcija f(x) predstavljena kao

(x — a)' Tejlorov polinom

@ Ry(x) = %f(”)(a—i— O(x — a)),0 < 6 < 1 ostatak ili greska
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Osnovne teoreme diferencijalnog ratuna [ERISIEVEREVEI TN EVER LI B

U specijalnom slu¢aju za a = 0 imamo Maklorenovu formulu

Xn—l

F(x) = £(0) + TF/(0) + 5 (0) + -+ i O+ R0,

Ra(x) = %f(”)(ﬁx), 0<6<1.

x' Maklorenov polinom

n—1 0]
. Mnfl(x):zf -|(0)

I

@ R,(x) ostatak ili gretka aproksimacije funkcije Maklorenovim polinomom
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Osnovne teoreme diferencijalnog raéuna Tejlorova i Maklorenova teorema

Primer

Napisati Maklorenove formule za funkcije:

a) f(x) = e~

b) f(x) =sinx,

c) f(x) = cosx,

d) f(x) =In(1+ x),

&) f(x) = (1+x)°
Resenje. a) Kako je f(x) = f/(x) = --- = f(N(x) = &
if0)=Ff0)=---=fD0)=e" =1, FI(hx)=e",
to Maklorenova formula za funkciju f(x) = e* glasi

N X X2 Xn—l
e —1+ﬂ+a+"'+m+Rn(X),

n

Ro(x) = =€ 0<f<1, xecR.
n!
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Osnovne teoreme diferencijalnog ratuna [ERISIEVEREVEI TN EVER LI B

Primer
Napisati polinom P(x) = 1+ x — 3x2 + 4x® po stepenima od x — 1. J

Resenje. Kako je

i pri tome
P(1) =3,
P'(x)=1-6x+12x> = P/(1)=7
P"(x) = —6 + 24x = P’(1) =18,
P"(x) =24 = P"(1) =24,

toje P(x) =34+ 7(x — 1)+ 9(x — 1) + 4(x — 1)3.
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Napomena u vezi definicije izvoda

Napomena u vezi definicije izvoda

Pri definiciji izvoda funkcije f : D — R, D C R, pretpostavka je da je x € D°.
Mogli smo definisati i izvod u tac¢ki x € D, ali uz pretpostavku da je x tacka
nagomilavanja skupa D, jer grani&nu vrednost

, f(x + Ax) — f(x)
lim
Ax—0,x+AxeD Ax

moZemo traziti bez obzira da |i je funkcija definisana u nekoj okolini tacke x.

Na primer, tada bi funkcija f(x) = x?, x € Q, imala "izvod" u svakoj tatki x € Q,
dok ona izvod, onako kako smo ga definisali, nema ni u jednoj tacki x € Q.
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Napomena u vezi definicije izvoda

Cesta je situacija da funkcija f(x) u tatki a ima otklonjiv prekid, tj. postoji
lim f(x) = A, pri ¢emu ili funkcija f(x) nije definisana u tacki a, ili ako je
X—a

definisana A # f(a).
Tada funkcija nema izvod u tatki a (morala bi da bude neprekidna u a).

Mogli bismo definisati
= . fla+Ax)—A
f'(a) = lim —
(2) axDo Ax ’

ako ta grani¢na vrednost postoji i nazvati je nepravi ili kvazi izvod.

Ako postoji f'(a), tada postoji i f/(a) i vazi jednakost f'(a) = /(a).
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Napomena u vezi definicije izvoda

Funkcija u tac¢ki a moZe da ima nepravi izvod, a da nema izvod:

Za funkciju f(x) = ? ne postoji f'(0), dok je

sin Ax .
— Aax 1 sin Ax — Ax
f’ = lim & " — |jm —— _—°
(©0) ASo T Ax Ao (Ax)?
— im cosAx—1 lim —sin Ax — 0
T axbo 28x a2 U

£7(0) je u stvari izvod funkcije

,_.
x
I

o

u nuli, tj. F'(0) = f/(0) = 0.
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Napomena u vezi definicije izvoda

Ista je situacija kod jednostranih izvoda. Pretpostavimo da je funkcija
f: (a,b) — R definisana nad intervalom (a, b) i da postoji
lim f(x) = f(a"), ( lim f(x)= f(b)) :

x—b~

x—at

Ako postoji

Ax—0— Ax

. f(a+ Ax)—f(a") (
lim ,
Ax—0* Ax

f(b+ Ax) —f(b™
b+ Ax) — f( )7>
onda tu grani¢nu vrednost mozemo nazvati nepravi desni (nepravi levi) izvod u
takki a (b) i obeleZiti ga f{(a) (f.(b)).

Ne interesuje nas da li je funkcija definisana u datim tatkama, niti, ako je
definisana, da li je neprekidna sa desne (leve) strane.

Nepravi desni i nepravi levi izvod jednim imenom zovemo jednostrani nepravi
izvodi.
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Napomena u vezi definicije izvoda

Ako funkcija u tatki ima desni (levi) izvod, onda ona ima u toj tatki desni nepravi
(levi nepravi) izvod i oni su jednaki.

Obrnuto nije ta¢no: Funkcija

sin x

— , x<0
X

cosx — 1

f(x) =

, x>0
X

nije definisana u nuli, pa nema u nuli ni desni ni levi izvod.

Kako je .
sin x
f(07)= lim f(x)= lim — =1
( ) X—IH)]* (X) X_I:’EL X ’
to je _
= . f(Ax) = f(07) . Enbhx g
7 _ _ Ax —
F(0) = Alino— Ax Alino— Ax 0.
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Napomena u vezi definicije izvoda

Sli¢no, kako je

-1
F(0F) = lim f(x) = lim <=X"= —0,
x—0t+ x—0t X
to je
— _ f(Ax) = £(01) sl 1
/ _ — X —_ __
fi(0) = Al@m Ax AJ(IL?O* Ax 2
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Monotonost

Definicija
Funkcija f : D — R, D C R je nad intervalom | C R
1. monotono rastuca ako za svake dve tacke x1, xo € | vaZi
x1 < x = f(x1) < f(x),
2. monotono opadajuca ako za svake dve tacke x1, xo € | vaZi
x1 < x = f(x1) > f(x),
3. monotono nerastuca ako za svake dve tacke x1, x> € | vaZi
x1 < x = f(x1) > f(x),
4. monotono neopadajuca ako za svake dve tatke x1, xo € | vaZi
x1 <x = f(x1) < f(x).

U svakom od navedenih sluajeva funkcija je monotona, u slu¢ajevima 1 i 2 je
strogo monotona.
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[ECLIERTLICTEN  Monotonost

Teorema

Neka funkcija f(x) ima izvod nad intervalom |. Ako je f(x) monotono
neopadajuéa funkcija nad intervalom | tada je f'(x) > 0, za x € I, a ako je
monotono nerastuca funkcija nad intervalom | tada je f'(x) <0, zax € I.

Dokaz (za monotono neopadajucu funkciju). Za proizvoljno x € I, s obzirom da je
f(x) monotono neopadajuéa funkcija je

f(x 4+ Ax) — f(x)

Ax >0, x+Axel,
odakle sledi da je
. f(x+ Ax) —f(x)
f'(x) =1 > 0.
(x) A>I<T>O Ax 20
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[ECLIERTLICTEN  Monotonost

Teorema

Neka funkcija f(x) ima prvi izvod nad intervalom I. Ako je f'(x) > 0, funkcija
f(x) je monotono rastuca nad intervalom |, a ako je f'(x) < 0, funkcija f(x) je
monotono opadajuca nad intervalom I.

Dokaz. Neka je [x1,x2] C I proizvoljan podinterval intervala /. Funkcija f(x) nad
intervalom [xi, x2] zadovoljava sve uslove LagranZove teoreme, pa postoji tatka
& € (x1, x2) takva da je
f(xe) — f(3a) = f'(§) (e — x1).
Ako je f'(x) > 0, tada je i (&) > 0, pa je
f(x2) > f(x1).

Dokaz je sli¢an kada je f'(x) < 0. O
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Ispitivanje funkcija Monotonost

Definicija
Neka je funkcija f(x) definisana u nekoj okolini tacke a.
Funkcija je rastuca u tacki a ako postoji okolina tacke a u kojoj za svako x iz te
okoline vaZi

f(x)>f(a) zax>a, f(x)<f(a)zax<a.
Funkcija je opadajuca u tacki a ako postoji okolina tatke a u kojoj za svako x iz te
okoline vaZzi

f(x) < f(a) zax>a, f(x)>f(a)zax<a.

Teorema
Ako je funkcija f(x) rastuéa (opadajuca) u tatki a i ako postoji f'(a), tada je
f'(a) >0, (f'(a) <0).

Teorema

Neka funkcija f(x) u tacki a ima izvod f'(a) # 0. Ako je f'(a) > 0, funkcija f(x)
Je rastuéa u tacki a, a ako je f'(a) < 0 ona je u tatki a opadajuéa.
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[ECLIERTLICTEN  Monotonost

Primer

X4+ x%sind x#0
2 X ’

0 , x=0
okolini nule. Da li je ova funkcija rastuc¢a u nuli?

Pokazati da funkcija f(x) = nije monotona ni u jednoj

1 inl _ 1
Resenje. f'(x) = { ? axsing mcosy . x 70 ;
b 5 X = O
f'(0) = 2 > 0, pa je funkcija rastu¢a u nuli.

Ako posmatramo nizove sa opstim &lanovima

1 b 1 1 1
an:—7 n:77 Cn:_—) n:_77
2nm @n+ )7 2nm @2n+ )7
moZemo primetiti da je I|m ap, = lim b, lim ¢, = I|m d, =0,
n—o00 n—o00
1 3

f'(an) = f'(ca) = —5 f'(bn) = f'(dy) = >

pa ne postoji okolina nule u kojoj je prvi izvod stalnog znaka, te funkcija nije
monotona ni u jednoj okolini nule.
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[ECLIERTLICTEN  Monotonost

Dovoljan uslov za monotonost:

Teorema

Neka funkcija f(x) ima prvi izvod u okolini tatke a i neka je f'(x) neprekidna
funkcija u tacki a. Ako je f'(a) > 0, funkcija f(x) je monotono rastuca u nekoj
okolini tatke a, a ako je f'(a) < 0, funkcija f(x) je monotono opadajuéa u nekoj
okolini tatke a.

Darbuova teorema

Ako funkcija f : [a, b] — R ima izvod nad intervalom |a, b] i ako je f'(a) # f'(b),
onda f'(x) uzima sve meduvrednosti izmedu f'(a) i f'(b).

@ funkcija f'(x) ne mora biti neprekidna nad [a, b], f'(x) moZe imati prekid
druge vrste
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YETEETEE:
Dokaz. Neka je f'(a) > f'(b) i f'(a) > C > f'(b).
Posmatrajmo funkciju g(x) = f(x) — Cx.

g'(x)="f"(x)—C, paje
g'(a)=f"(a) — C>0>f(b)— C=g'(b).

g’'(x) je neprekidna nad [a, b], pa nad njim dostiZe svoju najvecu vrednost, tj.
postoji £ € [a, b] da je f(§) = m[aﬁ] f(x).

x€|a,
Stavige, £ # a jer je g'(a) > 0 (g(x) je rastuéa u a) i £ # b, jer je g’(b) < 0.
Dakle, ¢ € (a, b).

Kako je tu ekstrem, mora biti g’(£) =0, tj. 7'(¢) = C. O
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Ispitivanje funkcija Ekstremne vrednosti funkcija

Ekstremne vrednosti funkcija

Definicija
Ako je realna funkcija f(x) definisana u nekoj okolini tatke a € R, tada kaZemo da
funkcija f(x) u tacki a ima lokalni minimum ako postoji § > 0 takvo da

x € (a—1d,a)U(a,a+9) = f(x) > f(a),
a lokalni maksimum ako postoji § > 0 takvo da

x€(a—0d,a)U(a,a+9d) = f(x) < f(a).

@ tacka a je tada lokalna ekstremna vrednost i to je najmanja ili najveéa
vrednost funkcije u nekoj okolini tatke a.

@ akojezax=a+ Ax € (a—4d,a)U(a,a+ 9) prirastaj funkcije
Ay = f(a+ Ax) — f(a) > 0 tada funkcija u tagki a ima lokalni minimum, a
ako je Ay < 0 ima lokalni maksimum
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Ispitivanje funkcija Ekstremne vrednosti funkcija

Teorema

Ako funkcija f(x) ima u tatki a ekstremnu vrednost i ako postoji f'(a) tada je
f'(a) = 0.

@ uslov je potreban, ne i dovoljan (primer funkcije x3)

@ stacionarne tatke - tatke u kojima je f/(x) =0

@ funkcija moZe imati ekstremnu vrednost u x = a, a da f’(a) ne postoji
(primer funkcije |x|)

@ kriti¢ne tatke

Teorema
Ako je funkcija u tatki a neprekidna i postoji § > 0 takvo da je

f'(x) >0 (f(x)<0), =zaxe(a—4d,a),

f'(x) <0 (f'(x)>0), zaxe(aa+d),

onda funkcija u tatki a ima ekstremnu vrednost i to maksimum (minimum).

v
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[EERIERTLISTEN  Ekstremne vrednosti funkcija

Dokaz (za maksimum).
Ako za x € (a — 4, a) vazi f'(x) > 0, funkcija je monotono rastu¢a nad (a — ¢, a).

Ako za x € (a,a+ 0) vaZi f'(x) < 0, funkcija je monotono opadaju¢a nad
(a,a+9).

Ako bi postojala neka tatka x; € (a — d, a) takva da je f(x1) > f(a), sledilo bi da
postoji tatka & € (x1, a) takva da je

0> f(a) = f0a) = F(§)(a —x).

Moralo bi biti f/(£) < 0. Kontradikcija.

Sli¢no se pokazuje da ne postoji tatka x; € (a,a+ 9) takva da je f(x1) > f(a). O
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[EERIERTLISTEN  Ekstremne vrednosti funkcija

Primer

2 1
(24 sing) ng ima ekstremnu

Proveriti da Ii funkcija f(x) = { 0

vrednost u tacki x = 0.

Resenje. Kako je

)

iy J Ax+2xsind —cosi | x#0

f(X){ 0 , x=0
1 2 1 1 1

f'(x) =4 +2sin= — —cos— — —sin—,x #0,
x x x x2 x

to je f/(0) = 0, pa je x = O stacionarna tatka. ”/(0) ne postoji.

Pokazimo da ne postoji 6 > 0 takvo da je u intervalu (—4,0), odnosno u intervalu
(0,9) prvi izvod istog znaka.
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[EERIERTLISTEN  Ekstremne vrednosti funkcija

Ako posmatramo nizove se opstim &lanovima

an = L b, = ! Ch = L d !
" 2nr’ " @n+)x’ " 207’ " (2n+ D’

vidimo da vazi

lim a, = lim b, = lim ¢, = lim d, =0.
n— o0 n— o0 n— o0 n— o0

Dakle, u svakoj okolini nule su skoro svi &lanovi posmatranih nizova.
Kako je
Fllan) = = —1<0, f(by)= ——
" nr ’ Y (2n+ D
2 4
fllca) =———-1<0, f'(d))=——
(cn) nm <% (chn) 2n+ 1w

sledi da za svako & > 0 postoji ny € N, takav da za svako n > ng

+1>0,

+1>0,

an,bp € (0,6) A cp,dn€(=9,0).
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[EERIERTLISTEN  Ekstremne vrednosti funkcija

Dakle, sledi da za svako § > 0 u intervalima (—4,0) i (0,0) postoje tatke u kojima
je prvi izvod pozitivan i tatke u kojima je prvi izvod negativan. Dakle, prvi izvod
ne menja znak prolazeéi kroz tatku x = 0.

Na osnovu do sada utvrdenih kriterijuma ne moZemo reéi da li funkcija u tagki
nula ima ekstremnu vrednost ili ne.

Kako je f(0) =0 f(x) > 0 za svako x # 0, sledi da funkcija f(x) u tatki nula

ima minimum.
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[EERIERTLISTEN  Ekstremne vrednosti funkcija

Teorema
Neka je f'(a) = f"(a) = --- = f("=Y(a) = 0 i f(")(a) # 0,n > 2. Ako je n paran
broj, funkcija f(x) ima u tacki a ekstremnu vrednost i to:

@ maksimum ako je f("(a) < 0 odnosno,

o minimum ako je f(")(a) > 0.
Ako je n neparan broj funkcija f(x) nema ekstremnu vrednost u tacki a. U tom
slu&aju ako je f(")(a) > 0 funkcija je u talki a rastuca a ako je f("(a) < 0
funkcija je u tacki a opadajuca.

Dokaz (za slutaj f(")(a) > 0): Iz Tejlorove formule
n—1
fa+Ox) = F(a) + 22F/(a) + BL () - + B F-D(a + 0Ax),
0<axl1
i uslova teoreme sledi

(Ax)nfl

f(a+ Ax) —f(a) = (=1

fr-Y(a+0Ax), 0<a<l.
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[EERIERTLISTEN  Ekstremne vrednosti funkcija

Ako je f("(a) > 0 tada je f("~Y)(x) rastuca funkcija u tatki a, pa je
fD(a+0Ax) > F" V(@) =0, Ax >0,

Fr(a+008x) < f7D(a) =0, Ax<O0.

Ako je n parno, izraz
(Ax)" £(n—1)
(n—1)!
(a onda i prirastaj funkcije) je za svako dovoljno malo Ax pozitivan, tj. funkcija u
tacki a ima minimum.
Ako je n neparno, izraz

(a+ 0Ax),

(Ax)"! £(n-1)

(=D (a+ 0Ax),

nije stalnog znaka (pozitivan je za Ax > 0, a negativan za Ax < 0) i ekstremne
vrednosti u a nema. U
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[EECUIERILICTEN Tangenta i normala krive

Tangenta i normala krive

Videli smo ve¢ da ako funkcija f(x) ima izvod u tagki a,
jednatina tangente u tatki A(a, f(a)) je

y = f(a) =f'(a)(x - a),

a jednatina normale u tatki A(a, f(a)) je

y— fla) = —%u—a),

ako je f’(a) # 0, odnosno normala je x = a ako je f'(a) = 0.
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[ESEVEUISTNINSIER  Tangenta i normala krive

e Tangenta funkcije u tatki A(a, f(a)) moZe da bude paralelna sa y-osom, ako

A LA
—y—>00||| —y—>—oo kada Ax — 0:
Ax Ax
YA YA
y=fix) y=fx)
fta} Afa, fla)) fla) Afa, fla))
a x a *

U ovim slugajevima tangenta u tacki A(a, f(a)) je prava x = a, a normala je prava
y = f(a).
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[EECUIERILICTEN Tangenta i normala krive

e MoZe da se desi da ne postoji f'(a), ali postoji f{(a) ili f’(a) :

Ako postoji f{(a), prava

y —f(a) = fi(a)(x - a)

je tangenta na desnu granu funkcije u
tatki A(a, f(a)) (desna tangenta). fa)
Ako postoji f/(a), prava

Afa, fla))

y—f(a) = F(a)(x — 2) y

je tangenta na levu granu funkcije u tagki ¢
A(a, f(a)) (leva tangenta)

=Y
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[EECUIERILICTEN Tangenta i normala krive

e ako % — o0 ili B — —00 kada Ax — 0 prava x = a je tangenta na desnu
granu funkcije u tacki A(a, f(a)),

e ako % — oo ili % — —oo kada Ax — 0~ prava x = a je tangenta na levu

granu funkcije u tacki A(a, f(a)),

e ako je prava x = a tangenta i na levu i na desnu granu funkcije u tagki
A(a, f(a)), prava x = a je tangenta funkcije u tatki A(a, f(a)).

YA YA
y=fix) y y
y=fx) ) =10
(@ Atafla)  Ha) Ala,fray Ala, fia)
y=f(x)
fla) Ala, fla))
a ; a } a X a X
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[EECUIERILICTEN Tangenta i normala krive

e Ako ne postoji f{(a), a postoji nepravi
desni izvod ?;(a) u tatki a, prava

—

y—f(a") =f,(a)(x - a)

je tangenta na desnu granu funkcije u
tatki A(a, f(a)).
e Ako ne postoji ' (a), a postoji nepravi
levi izvod 7_(a) u taZki a, prava

—

y—f@a)=7_(ax-a)

je tangenta na levu granu funkcije u tagki

A(a, f(a)).

YA
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[ESEVEUISTNINSIER  Tangenta i normala krive

f(a+ Ax) —f(a™)

e ako — o0, kada Ax — 0T, prava x = a je tangenta na

X
desnu granu funkcije u tacki A(a, f(at))
2ko fla+Ax)—f(a”)

X
levu granu funkcije u tatki B(a, f(a™))

— Fo00, kada Ax — 07, prava x = a je tangenta na

=Y
a
»Y

301 / 569



[EECUIERILICTEN Tangenta i normala krive

Pretpostavimo da funkcija ima izvod u tatki a i da je f/'(a) # 0.

YA
e deo tangente od tatke A do pre-
seka sa x—osom naziva se duZina
tangente, T, a duZina njene projek-
cije na x—osu naziva se subtan-
genta, St. flay Ata.fia))
e deo normale od tatke A do pre-
seka sa x—osom naziva se duZina

normale, N, a duZina njene pro- MA( F B
jekcije na x—osu naziva se subnor- ¢ B>
mala, Sy.
f(a)| 5/\/ .
sz’a:toz:| = sledi
(@)= ltgal = 2 =
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Ispitivanje funkcija Konveksnost, konkavnost, prevojne tatke

Konveksnost, konkavnost, prevojne tacke

Definicija
Funkcija f(x) definisana nad intervalom | je konveksna nad | ako za proizvoljne
dve tatke x1,x € |,x1 # xp za svako x, x; < x < xp vaZi

F(x) < f(x1) + %(x —x) = ;2 __Xxl f(x1) + XX2__XX11 f(x2).
Ako je
() > o) + LT

funkcija je konkavna.

303 / 569



[EVCLIERTILISTEN  Konveksnost, konkavnost, prevojne tatke

Geometrijska interpretacija: Ako postavimo seticu kroz tatke A(xi, f(x1)) i

B(x2, f(x2)), x1 < x» grafik funkcije je uvek ispod setice nad intervalom (x1,x2) u
slu¢aju konveksnosti, odnosno iznad setice u slu¢aju konkavne funkcije nad

(Xl, X2).

YA YA

y=fix)
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Ispitivanje funkcija Konveksnost, konkavnost, prevojne tatke

Definicija
Neka je funkcija f(x) definisana u nekoj okolini tatke a i neka je u tacki a
diferencijabilna. Funkcija f(x) je konveksna (konkavna) u tacki a ako postoji
okolina (a — 0,a+ &) tatke a, takva da je

F(x) > ye(x) (F(x) < ye(x)),
za svako x € (a—d,a+ 9) \ {a}, gde je

ye(x) = f(a) + f'(a)(x — a)

Jednat&ina tangente na datu funkciju u tacki A(a, f(a)).
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Ispitivanje funkcija Konveksnost, konkavnost, prevojne tatke

Definicija

Za tatku P(a, f(a)) se kaZe da je prevojna tacka funkcije f(x) ako postoji okolina
(a—0,a+ 0) tacke a, takva da je funkcija f(x) nad intervalom (a — ¢, a)
konkavna, a nad intervalom (a,a+ 0) konveksna ili obrnuto.

YA YA

fla) fla)
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[EVCLIERTILISTEN  Konveksnost, konkavnost, prevojne tatke

Ako postoji izvod funkcije f(x) nad intervalom [ tada konveksnost i konkavnost
moZe da se defini¥e na dva (ekvivalentna) natina:

Definicija 1
Funkcija f(x) je konveksna nad | ako za svakoc € | i x € I\ {c}

f(x) > yi(x), gde je y: = f(c) + f'(c)(x — ¢) jedna&ina tangente na krivu u tacki
C(c,f(c)) (u slu¢aju konkavnosti je f(x) < y(x.))

| ‘ x

Definicija 2
Funkcija f(x) je konveksna (konkavna) nad | ako je f’(x) monotono rastuca
(opadajuéa) funkcija nad |.

307 / 569



[EVCLIERTILISTEN  Konveksnost, konkavnost, prevojne tatke

Teorema

Ako funkcija ima izvod nad intervalom |, tada su Definicija 1 i Definicija 2
konveksnosti (konkavnosti) ekvivalentne.

Dokaz. Pokazimo da Definicija 1 = Definicija 2, za slu¢aj konveksnosti:

Neka je funkcija f(x) konveksna nad intervalom [ u smislu Definicije 1. Neka su
X1 i Xp, x1 < xp proizvoljne tatke iz intervala /. Neka su

yi = fa) + f'(xa)(x — x),

i = )+ f'()(x — x),
tangente na datu funkciju u tatkama A(xy, f(x1)) i B(x, f(x2)). Tada vaZi

f(x2) > f(xa) + ' (x1) (e — x1),

f(x1) > f(x) + f (x)(xa — x).
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[EVCLIERTILISTEN  Konveksnost, konkavnost, prevojne tatke

Sabiranjem ovih nejednakosti dobija se
fx) + f(x1) > f(xa) + f(x) + f(x) (2 — x1) + f(x)(a — x),

tj.
(f'(x) = f'(31)) (2 — x1) > 0,

odakle sledi
fI(X2) > f/(Xl),

pa je f’(x) monotono rastuéa funkcija nad intervalom /.
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[EVCLIERTILISTEN  Konveksnost, konkavnost, prevojne tatke

Teorema

Ako je f''(x) > 0 (f"(x) < 0) nad intervalom I, tada je funkcija f(x) konveksna
(konkavna) nad intervalom |.

Ako postoji f""(x) nad | i ako je funkcija f(x) konveksna (konkavna) nad I, tada
je f"(x) >0 (f"(x) <0) nad I.

Dokaz. Ako je
f(x) >0 (f"(x)<0),

tada je f/(x) monotono rastu¢a (opadajuéa) funkcija, pa je f(x) konveksna
(konkavna) nad intervalom /.

Ako je je f(x) konveksna (konkavna) nad intervalom /, tada je f’(x) monotono
rastuca (opadajuca) funkcija nad intervalom /, pa je

f'(x) >0 (f"(x)<0)

nad intervalom /. O
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[EVCLIERTILISTEN  Konveksnost, konkavnost, prevojne tatke

Teorema

Ako je P(a, f(a)) prevojna tacka funkcije f(x) i ako postoji f'(a), tada je
f"(a) =0.

Dokaz. f’(x) ima ekstremnu vrednost u taZki a! O

Obrnuto ne mora da vazil  Funkcija
f(x) = x* ima drugi izvod

f(x) = 12x° y=x*

za koji je
f"(0) =0,
a tatka O(0,0) nije prevojna tatka. |

(8]
~
~
LIS}
=Y
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[EVCLIERTILISTEN  Konveksnost, konkavnost, prevojne tatke

Za funkciju f(x) = (x — 1) je A(L,0)
prevojna tacka, jer je

f(x) =6(x — 1)

pa je
f(x) >0zax>1

f’(x)<0zax<1

3

f(1) = 0.

Y

=(x-1)°
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[EVCLIERTILISTEN  Konveksnost, konkavnost, prevojne tatke

Tatka a moze da bude prevojna tatka funkcije a da u taki a ne postoji drugi

izvod.

Ako u tatki a drugi izvod f”(x) menja znak (bez obzira da li postoji f”(a) ) i ako
je funkcija f(x) definisana u tacki a, tada je P(a, f(a)) prevojna tatka date

funkcije.

Primer je funkcija
Fx) = V3 1
za koju je P(1,0) prevojna tatka,

-2

M= o=

menja znak prolazeéi kroz nju, a
(1) ne postoji.

yi

"
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[EVCLIERTILISTEN  Konveksnost, konkavnost, prevojne tatke

Teorema

Ako je f(a) >0 (f"(a) <0), funkcija f(x) je konveksna (konkavna) u ta&ki a. J

Ako je f"/(a) > 0, ne postoji uvek okolina tatke a nad kojom je funkcija konveksna!

Ako "(x) postoji u nekoj okolini tatke a i ako je neprekidan u a, onda iz
f"'(a) > 0 sledi da postoji okolina tatke a nad kojom je funkcija konveksna.

Teorema
Ako postoji & > 0 takvo da je u intervalu (a — 6, a) funkcija ispod (iznad) tangente

funkcije f(x) u tacki A(a, f(a)), a u intervalu (a,a + 8) funkcija iznad (ispod)
tangente funkcije f(x) u tacki A(a, f(a)) i ako postoji f"’(a), tada je f"(a) = 0.
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[EVCLIERTILISTEN  Konveksnost, konkavnost, prevojne tatke

MoZe se desiti da je u intervalu (a — d, a) funkcija ispod (iznad) tangente, a u
intervalu (a, a+ ¢) funkcija iznad (ispod) tangente funkcije f(x) u taZki
A(a, f(a)), a tatka A(a, f(a) nije prevojnal

Primer

Ispitati da Ii je tatka O(0,0) prevojna tatka funkcije

[ X3(2+sink) . x#0
fx) {o , x=0

oy J 6x*+3x%sink —2cos 5, x#0
f(x)_{o , x=0"

f"(x) = 12x + 6xsin % — 2 cos & — L sin L, za x # 0, a f”(0) ne postoji.

Posmatraju se nizovi s opstim €&lanovima

1 1 1 1
an=—p—, bp= ————,Cc, = — dy = ————.
" Vene? TN J@nt)r " 2nm? V@n+1)r
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[EVCLIERTILISTEN  Konveksnost, konkavnost, prevojne tatke

Teorema
Neka je f"(a) = f"'(a) = --- = f(""Y(a) = 0, f("(a) # 0, n > 3.
Ako je n neparan, tada je P(a, f(a)) prevojna tatka funkcije f(x).

Ako je n paran, tada je funkcija u okolini tatke x = a konveksna za f(")(a) > 0, a
konkavna za f("(a) < 0.

Dokaz. (za prevojnu tatku) Neka je n =2k + 1, k € N. Kako je
FEKI(a) = (F)%D(a) £0,

to sledi da je f”/(x) rastuca funkcija u tatki x = a za (f")?~1)(3) > 0, a
opadajuca funkcija za (f”)?*—1)(a) < 0.
Sledi da postoji 6 > 0 tako da je

f(x) < f"(a) =0 (f"(x)>f"(a)=0), zax € (a—4,a),

F'(x) > f"(a) =0 (f"(x) < f"(a) = 0), za x € (a, + — 9).

Dakle, nad intervalom (a — §, a) je funkcija konkavna (konveksna), a nad
intervalom (a, a 4 &) konveksna (konkavna), pa je A(a, f(a)) prevojna. O
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[ECLIERTLICTEN  Asimptote funkcija

Asimptote funkcija

Definicija

Neka je funkcija f(x) definisana nad intervalom (a,00) ( (—o0,a) ), a € R.
Funkcija ¢(x) je asimptota funkcije f(x) kada x — oo, ako je

lim [f(x) — ¢(x)] = 0.

X—r 00

Sli¢no, funkcija ¢(x) je asimptota funkcije f(x) kada x — —o0, ako je

lim [f(x) — ¢(x)] = 0.

X—r—00

f(x) se asimptotski ponasa kao ¢(x), kad x — oo (tj. x — 00), §to pisemo

F(x) ~ ¢(x)

Geometrijski smisao: postoji b € R takav da je razlika ordinata krivih
y = f(x) i y = ¢(x) proizvoljno mala za x > b (x < b).

J
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[ECLIERTLICTEN  Asimptote funkcija

Ako je asimptota funkcije prava ¢(x) = mx + n, tada funkcija y = f(x) ima:
@ za m # 0 ima kosu asimptotu ¢(x) = mx + n,

@ za m = 0 ima horizontalnu asimptotu ¢(x) = n.

Po definiciji je za x — oo

lim [f(x) = (mx +n)] = 0ili lim [M —m— 5] =0,

X—>00 X—>00 X X

pa je

m=lim @, n= lim [f(x) — mx].
x—o0 X X—»00

Definicija
Funkcija y = f(x) ima vertikalnu asimptotu u tacki nagomilavanja x = a

definicionog skupa, ako funkcija bar sa jedne strane tacke a teZi oo odnosno —oc.
Za pravu x = a kaZemo da je vertikalna asimptota funkcije f(x).
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[EERIERILISSTER Ispitivanje toka funkcija

Ispitivanje toka funkcija

Obavezna grupa zahteva:

¢ & ¢ ¢ ¢

]

odredivanje oblasti definisanosti

odredivanje nula funkcije

odredivanje intervala monotonosti i ekstremnih vrednosti
odredivanje intervala konveksnosti, konkavnosti i prevojnih tataka

odredivanje asimptota funkcije i ispitivanje poloZaja grafika u odnosu na
asimptote

tangente funkcije u tatkama gde ne postoji f/(x) i njegovo ponaganje u tim
tatkama

skiciranje grafika funkcije

Neobavezna grupa zahteva:

]

]

J

znak funkcije
parnost i neparnost funkcije
periodi¢nost funkcije
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Funkcije vise promenljivih

Funkcije n realnih promenljivih

Posmatramo realne funkcije n realnih promenljivih, tj.
f:-D—-R, DCR", neN, n>1

Vrednost funkcije f : D — R u tatki X = (x1,x2,...,%,) € D
o n>3 z=F(X)="(x1,x,...,Xn)
e n=3, u=fFf(X)="F(xy,2),

o n=2 z=f(X)="(x,y)
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Parcijalni izvodi

/\/I(X,y)EDCR2, f:D%R,Z:f(X,y)

@ ako M € D nije izolovana tatka oblasti definisanosti D funkcije z = f(x, y)
tada je

Az = f(N) — f(M) = f(x + Ax,y + Ay) — f(x,y),

N(x + Ax,y + Ay) € D, (Ax,Ay) # (0,0) totalni prirastaj funkcije
z="f(x,y)
9 ako D1 = DN {(v,y) : v € R} nije jednotlan skup tada

Az = f(Mx+Ax) — f(M) = f(x+Ax,y) - f(X,y),

M, iax(x + Ax,y) € D1, Ax # 0 je parcijalni prirastaj po promenljivoj x u
tacki M,

@ ako Dy = DN {(x,v) : v € R} nije jednotlan skup tada
A}’Z*f( y+Ay) F(M) =f(x,y + Ay) — f(x,y),

Myiny(x,y + Ay) € D, Ay # 0 je parcijalni prirastaj po promenljivoj y u
tatki M.
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Rercijzlnilizvodi
M(xt,....,.xn)) EDCR", n>2, f:D—-R, z="1f(x1,...,%n)

@ ako M € D nije izolovana tatka oblasti definisanosti D funkcije
z=f(x1,x,...,x,) tada je
Az = f(N)— (M)
= fxa+Axy, x4+ Axa, ...y X+ Axp) — F(x1, X2, - -+, Xn),s
N(x1 + Axi, x2 + Axa, ..., xp + Ax,) € D, (Axq, ..., Ax,) #(0,0,...,0)
totalni prirastaj funkcije z = f(x1, X2, . . ., Xn)
@ ako D; =D N{(x1,- , Xi—1,V, Xit1,---, Xn) : V ER i =1,...,n} nije
jedno&lan skup tada
AX,'Z = f(MXi+AXi) - f(M)
= (X1, Xie1, Xi + AXiy Xig1s -+ -5 Xn) — F(x1,%2, ..., Xn),

Myt ax (X1y -« o5 Xi—1, Xi + AXiy Xig1, -+ -5 Xn) € Diy  Ax; # 0 je parcijalni
prirastaj po promenljivoj x; u tatki M.
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Funkcije vise promenljivih [EUSIEREEVERH

Za svako x; € R, i =1,...,n, posmatrajmo restrikciju f; : D; — R funkcije f nad
skupom D;.

Definicija

Ako funkcija fi(x;), x; € D;, i € {1,2,...,n} ima izvod u tacki
M(x1,x2,...,xn) € D° onda taj izvod funkcije f;(x;) zovemo parcijalni izvod
funkcije f(xi, ..., xn) u tacki M po promenljivoj x;. Ozna&avamo ga sa

0
a;(M) ili 2, (M)
i vaZi
0z i A,z
= lim =%
6x,- Ax;—0 AX,'
. f(Xl, ey Xim1, Xi F DXy X1, - ,Xn) — f(Xl,Xz . ,Xn)
= lim
Ax;—0 AX,'

323 / 569



Funkcije vise promenljivih [EUSIEREEVERH

Ako funkcija fi(x;), x; € Dj, i € {1,2,...,n} ima desni (levi) izvod u taZki
M(x1,xa, ..., Xn), onda taj izvod funkcije f;(x;) zovemo desni (levi) parcijalni
izvod funkcije f(x1,%2 ..., Xs) u tatki M po promenljivoj x; i obelezavamo ga sa

G (M) i 2 (M) (G2 (M) i 2 (M)

U tom slucaju je

e desni parcijalni izvod funkcije f(x1, X2, ...,%,) po promenljivoj x;

otz I Az

2 = lim

BX,' AX,'—)OJr AXi
e levi parcijalni izvod funkcije f(x1, %2, ..., X,) po promenljivoj x; je

+ . JAN

e = lim FZ

i Ax—0— B

Funkcija ima parcijalni izvod po promenljivoj x;, i € {1,2,...,n} u tatki M

(unutrasnja!) ako i samo ako ima i levi i desni parcijalni izvod po promenljivoj x;
i ako su oni jednaki.
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Funkcije vise promenljivih [EAVISSNERSTTINI

Vektorske funkcije

Sa E oznalimo skup tafaka tro-

dimenzionalnog prostora.  Neka

#1) je O fiksna tatka (koordinatni

potetak). Vektor @, gde je P

promenljiva tatka iz E, je vektor

/o y poloZaja tatke P u odnosu na dati
koordinatni sistem.

X

Oznatimo sa Xp(E) = {O? : P € E}. Preslikavanje f : E — Xp(E) dato sa
f(P) = OP, P € E je bijekcija. Skup Xo(E) éemo krace oznatavati sa Xp.
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Funkcije vise promenljivih [EAVISeNENSTTISI

Definicija
Nekaje #D CR inekasux:D —R, y: D — R, z: D — R tri realne
funkcije realne promenljive. Svako preslikavanje ¥ : D — X, definisano sa

7(t) = x(¢)7 + y(t)j + z(t)k, te D,

zovemo vektorskom funkcijom jedne skalarne promenljive.

Definicija
Akoje) AD CR"iakosux:D —R,y:D— R, z: D— R tri realne funkcije
n realnih promenljivih, tada se preslikavanje ¥ : D — X, zadato sa

Il

() = x(2)7 + y(t)j + 2(t)k, teD,

zove vektorska funkcija n realnih promenljivih.
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Funkcije vise promenljivih [EAVISeNENSTTISI

Definicija

Ako je a € R" tatka nagomilavanja oblasti definisanosti ) # D C R" vektorske
funkcije ¥ : D — Xy, tada za vektor ¢ kaZemo da je grani¢na vrednost vektorske
funkcije 7 u takki a ako

(Ve € RY)(36 € RY)(Vt € D\ {a})(d(a, t) < 6 = |F(t) — &| < &).

Pisemo da je lim 7(t) = C.
t—a

Iz same definicije grani¢ne vrednosti vidimo da je

lim F(t) = lim x(t)i + tlmy(t)] + tlmz(t)k.

t—a t—a
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Funkcije vise promenljivih [EAVISeNENSTTISI

y4
/// S™ Ako oko vrha M vektora &
(7T e opisemo otvorenu loptu L(M,¢)
)N —M——”/' polupre¢nika ¢, to sledi da postoji
AN § € RT, tako da za svako t €
L(a,6) \ {a}, vrh S vektora r(t)
2
pripada L(M, ¢), tj. svi vektori MS
V" leZe u otvorenoj lopti L(M, ¢).
X
Napomena
Ako je ¢ = (c1, ¢2, c3) i ako za svako t € D sa 7(t) ozna&imo vrh vektora r(t),
tada vaZi

tlm?(t) =& !Lrl;’r(t) = (C17C2, C3).
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Funkcije vise promenljivih [EAVISeNENSTTISI

Definicija
Za vektorsku funkciju 7D Xo, D C R", kaZemo da je neprekidna u tacki
ae D ako

(Ve € R*)(30 € RY)(Vt € D)(d(a, t) < 6 = |7 (t) — P(a)] <e).

Vektorska funkcija 7D Xo, D C R" je neprekidna ako je neprekidna u
svakoj tacki a € D.

Iz same definicije neprekidnosti sledi da je funkcija 7 neprekidna u tacki a ako i
samo ako su komponente x : D - R, y: D — R, z: D — R funkcije
7D = X neprekidne u tacki a.
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Funkcije vise promenljivih [EAVISeNENSTTISI

Kao i kod skalarne funkcije, sledi da je vektorska funkcija N neprekidna u ta&ki
nagomilavanja a € D ako i samo ako vaZi da je

lim 7 (t) = 7 (a),

t—a

a ako je a € D izolovana tatka definicionog skupa D vektorske funkcije 7, tada je
7 automatski neprekidna u datoj tacki.

Vektorska funkcija 7:.D— Xo, D C R”, je neprekidna nad skupom E C D ako
je restrikcija funkcije 7 (7 £(t) = 7(t), t € E) neprekidna funkcija za svako
teE.
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Funkcije vise promenljivih [EAVISeNENSTTISI

Definicija
Ako je D =1 =[a, b] C R i ako je 7 . | = Xo neprekidna funkcija, tada skup
tacaka

L=A{T(t):tel}

zovemo kriva u prostoru, odnosno hodograf vektorske funkcije 7.

Primetimo da je L kriva ako i samo ako je T : [a, b] — R neprekidna funkcija.

x = x(t)
Kriva L je parametarski datasa L:{ y=y(t) ,t € [a,b],
z=z(t)

a u vektorskom obliku sa 7 = 7 (t), t € [a, b].
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Funkcije vise promenljivih [EAVISeNENSTTISI

Ako je
M((x(a), y(a), z(a)) = N(x(b), y(b), z(b))

za krivu L kaZemo da je zatvorena.

Ako sve tactke krive L leZe u jednoj ravni, onda kaZemo da je L ravna kriva.

Definicija
Ako je (X, d) metri¢ki prostor, spojnicom (lukom) u prostoru X nazivamo svako
neprekidno preslikavanje s : | — X intervala | = [0,1] C R u prostor X.

Ako su tatke a = s(0) i b= s(1) razli¢ite, tada kaZemo da spojnica s povezuje
tacke a i b.
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Funkcije vise promenljivih [EAVISeNENSTTISI

Teorema

Skup L C R3 je kriva ako i samo ako je spojnica.

Dokaz. Ako je L spojnica, ocigledno je da je L kriva.
Neka je L = {7(t) : t € [a, b]} kriva u prostoru. Tada je 7 : [a, b] — R3
neprekidna funkcija. Ako posmatramo funkciju h : [0,1] — [a, b] zadatu sa

h(x) = (b—a)x + a,

vidimo da za nju vaZi
- h je bijekcija,
- h je neprekidna funkcija nad [0, 1],
- h~! je neprekidna funkcija nad [a, b].

Preslikavanje f = 7 o h je neprekidno preslikavanje zatvorenog intervala [0, 1] na
tatke krive L, pa je L spojnica. O
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Funkcije vise promenljivih [EAVISeNENSTTISI

Definicija

Za skup ) # A C X kaZemo da je povezan (lu€&no povezan) u metri¢kom
prostoru (X, d), ako za svake dve razli¢ite tatke a, b € A, postoji spojnica
s : | — A koja povezuje tatke a i b.

Ako je skup X povezan u metri¢kom prostoru (X, d), tada kaZemo da je metri¢ki
prostor (X, d) povezan.

Definicija

Ako je skup A C X istovremeno otvoren i povezan u metri¢kom prostoru (X, d) i
A1 C A*, tada za skup AU A; kaZemo da je oblast. Specijalno, ako je A1 = (),
tada se za A kaZe i(ltvorena oblast, a ako je Ay = A*, tada se za

AUA; = AU A* = A kaZe i zatvorena oblast.
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Funkcije vise promenljivih [EAVISeNENSTTISI

Iz same definicije zatvorene oblasti ne sledi da je svaki neprazan zatvoren skup,
zatvorena oblast.

Primer

Skup A = {(x,x) : x € [0,1]} je zatvoren, ali nije zatvorena oblast, jer je A° = 0.0

v

Definicija

Za skup L C E = R3? kaZemo da je Zordanova® kriva ili Zordanov luk sa krajevima

ako:

1°) postoji interval | = [a, b] i preslikavanje T : | — E, tako da je
L={r(t):tel};

2°) 7 je bijektivno preslikavanje intervala | na L;

3°) 7 je neprekidno preslikavanje.

Tatke A= 1(a), B = 7(b) zovemo krajevi krive L.

aZordan, K. (Camil Jordan, 1838-1922) - francuski matematitar
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Funkcije vise promenljivih [EAVISeNENSTTISI

Ako umesto 2°) uzmemo da vaZi

2*) 7 je bijekcija skupa [a,b) na L i 7(a) = 7(b),
onda kaZemo da je L zatvorena Zordanova kriva.

Tvrdenje
Ako je Ly = {M(x,y) : x> + y*> = 1}, tada je kriva L zatvorena Zordanova kriva
ako i samo ako postoji preslikavanje f : Ly — L, tako da vaZi

1) f je bijektivno preslikavanje skupa Ly na L;

2) f je neprekidno preslikavanje;

3) f~1: L — Ly je neprekidno preslikavanje.
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Funkcije vise promenljivih [EAVISeNENSTTISI

Tvrdenje

Neka je L C 7 = R? ravna zatvorena Zordanova kriva. Tada
1) R?2\ L=, UQy, gdesu Qi iy dve disjunktne otvorene oblasti;
2) L=07 =;
3) Jedna od oblasti, npr. uzmimo da je to Q1, je ograniten skup i nju zovemo

unutrasnjost krive L, dok je druga €2, neogranien skup i nju zovemo
spoljasnjost krive L.

Za ravnu oblast G C 7 = R? kaZemo da je jednostruko povezana ako unutragnjost
svake Zordanove krive L C G pripada oblasti G.
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[FLLEIERENIINTVIN  Parcijalni izvodi (nastavak)

Funkcija z = f(x1,%2,...,%n), f: D — R ima parcijalni izvod po
xi, i €{1,2,...,n} nad E C D, pri €&emu je skup E unija neke otvorene oblasti
E; i dela njenog ruba ako

1. postoji a—z(xl,X2, ..., %n) po prethodnoj definiciji;
Xi
2. za rubnu tatku M(x1,x2,...,x,) € E ako ne postoji 62 (M), tada:
X
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[FLLEIERENIINTVIN  Parcijalni izvodi (nastavak)

a) ako postoji £; > 0 sa osobinom da je

Lo, = {x1, %0, - .y Xi—1,Xi — €j, Xi41s---,Xn} C E
postoji
0~z
—(M).
o (M)

Ako je za svako g; > 0

D, = {x1,x0,..., Xi—1,X; + €i, Xi1,..., Xn} € E,

tada je
y M(x,y)
0z 0~z E
— (M) = —(M).
8X,'( 8X,'( )
Mix, y) >
0 x
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[FLLEIERENIINTVIN  Parcijalni izvodi (nastavak)

b) ako postoji £; > 0 sa osobinom da je

DE,' = {X17X27" '7XI'717XI' +EiaXi+17" 'aXn} C E

postoji
otz
—(M).
o M)
Ako je za svako ¢; > 0
Lo, = {x1, %2, ...y Xi—1,Xi — €j, Xi41,-- - Xn} € E,
tada je
y M(x,y)
0z 0rz E
— (M) = —(M).
5 M = 5 M)
M(x, y) >
0 x
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[FLLEIERENIINTVIN  Parcijalni izvodi (nastavak)

c) ako za svako ; > 0
Lo, = {x1,%0, - .y Xi—1,Xi — €j, Xi41s---sXn} € E

D, = {x1,x0,..., Xi—1,X; + i, Xi1,..., Xn} € E,

tada ako postoji

%(N), za svako N € L(M,e) N E; = E; # (), za neko € > 0,

uzimamo po definiciji da je

y
22y im Zw
0x; N— M Ox
NeE
i=1,2,...,n. 5

341 / 569



[FLLEIERENIINTVIN  Parcijalni izvodi (nastavak)

Napomena
1
2 .
Za funkciju z = f(x,y) = Xsm;—f—y ;, x>0,y=>0
y , x=0,y>0
postoji
9z 9tz _ f(Ax,1) = £(0,1)
—(0,1) = —(0,1)= |
8x(0’ ) Ox 0.1) ) _A>I<Tio Ax
— i BPsinac ko1
Ax—0 Ax

0 1 1
a kako je —Z(x,y) =2xsin— —cos—, x>0,y >0,
% X

Ox
.. . 0z
ne postoji lim —(x,¥).
(x,y) = (0,1) O~
x>0,y>0
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[FLLEIERENIINTVIN  Parcijalni izvodi (nastavak)

Primer
Nadi parcijalne izvode funkcije z = /(1 — x2 — y?)3. J

Funkcija z = /(1 — x2 — y2)3 je definisana za x> + y? < 1.
Za svaku tatku M(x,y) za koju je x2 + y? < 1 (M je unutra¥nja tatka oblasti

definisanosti) je
0z = —3xy/1—x2 —y2,

Ox
% = —3yy/1—x2—y2
Yy
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[FLLEIERENIINTVIN  Parcijalni izvodi (nastavak)

U rubnoj tatki M(x,y) za koju je x2 +y?> =1, x # 0, y # +1

0z 07z
ox "= W(M) 2 2Y)3
= lim \/(1_(X+AX)AX_(1_X)) _020, za x > 0,
Ax—0—
0z 0"z
g(M) = E)—X(M) 2 __
= AIim0+ \/(1_(X+AX)AX_(1_X)) _0:0, za x < 0.
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[FLLEIERENIINTVIN  Parcijalni izvodi (nastavak)

U tatkama M(0,1) i N(0,—1) je

%(M) = lim —3xy/1—-x2—-y2=0,

Ox (x,y) = (0,1)
x*+y? <1

%(N) = lim —3xy/1—x2 —y2=0.
(va) - (07_1)
x2+y?<1

Sli¢no se ralunaju parcijalni izvodi po y u rubnim ta¢kama.
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Geometrijska interpretacija parcijalnih izvoda
Geometrijska interpretacija parcijalnih izvoda

@ Povrs S zadata jednatinom z = f(x,y)
@ nad skupom D funkcija je neprekidna i ima parcijalne izvode
@ Mo(x0,¥0) € D, odgovara tatki No(xo, Yo, f(x0, ¥0)) € S

ZA

v

XL

P .
N
P N
N
Sy .
T (X X )
Ve
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(LSRRI Geometrijska interpretacija parcijalnih izvoda

Pri traZenju parcijalnog izvoda 8_2 u tatki My posmatra se funkcija z = f(x, y)
X

kao funkcija jedne promenljive x, a y se tretira kao konstanta y = yp, to jest
z = f(x, y0) = fi(x). Funkcijom z = fi(x) definisana je kriva L dobijena presekom
povrsi S i ravni y = yp.

0
f(x0) = tg o = 5~ (M),

je koeficijent pravca tangente u tatki Ny krive L dobijene presekom ravni y = yq i
povrdi z = f(x,y).

Sligno, funkcijom z = f(y) = f(xo, y) definisana je kriva L; dobijena presekom
povrsi S i ravni x = xp, pa je

0
f(vo) = tg 8 = a—;(/\/’o)

koeficijent pravca tangente u talki Ny krive Ly dobijene presekom ravni x = xp i
povrdi z = f(x,y).
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Diferencijabilnost

Definicija
Neka je M(xi, ..., x,) unutrasnja tatka oblasti D C R", n > 2 na kojoj je
definisana funkcija z = f(x1,...,x,) = f(X), X € D. Funkcija f(x1,...,%n) je
diferencijabilna ngé_kiﬂﬂ@go sedijen. ,t%alp/'[pg;,r)ﬁtaj( X1,y Xn),

gde N(xy + Axqy, ..., xa+ Axy) € D, (Axq,...,Ax,) # (0,...,0)

koji odgovara prirastajima Ax, ..., Ax, promenljivih x, . .., x, moZe napisati u
obliku Az = DiAxy + -+ DyAx, + a1 Axy + -+ - + o, Axp,
pri &emu D; ne zavise od Ax; i lim a; =0.

(Axy,...,Ax,)—(0,...,0)
Linearni deo prirastaja je totalni diferencijal funkcije z u tatki M, u oznaci
dz(M) = df (M) = DiAxy + - - - + Dy Axp.
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(LSRRI  Diferencijabillnost

Na primer, za funkciju z = x? + y? imamo da je

Az = (x+Ax)*+(y+Ay)> — (x> +y?)
x2 + 2xAx + (Ax)? + y? + 2y Ay + (Ay)? — x% — y?
= 2x Ax+ 2y Ay + Ax Ax+ Ay Ay.

Dy D, a1 %

Teorema

Neka je funkcija z = f(xq, ..., x,) diferencijabilna u tatki M. Tada

a) funkcija f je neprekidna u tacki M,

b) postoje parcijalni izvodi 0z 0z 0z
) I 1zvodi ..
postoje parcy 8é)xl7 Oxp’ 8x,,a
i vai jednakost Dy = a—;(M), o Dy = 8;(/\4).
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(LSRRI  Diferencijabillnost

Dokaz.
n
a lim Az = lim D; + a;j)Ax; = 0, pa je
) (Axy,...Ax,)—(0,...,0) (Axy,...Ax,)—(0,...,0) ,:Z:]_( ) pa)
funkcija z = f(x1,...,x,) neprekidna u tatki M.

o)
b) PokaZimo npr. da je D; = —Z(l\/l) (ostalo analogno).

axl
Iz diferencijabilnosti funkcije z u tatki M je za Axy # 0,
Axo = Axz3 =--- = Ax, =0,

AXIZ = Dlel + O[lel.

Sledi da je
Agz _
AXI14)0 AX]_ o A!(IlriO(Dl + al) o Dl.
. 0z . e sy . Oz
Odavde sledi da —— postoji u tatki M i da je =—— (M) = D;. O
ox1 Ox1

350 / 569



Diferencijzbillnost
Kako je dz = dx; = Ax; za funkciju z = x;, i = 1,..., n, to totalni diferencijal
moZemo zapisati u obliku

0z 0z 0z
dz = a—deX]_ + a—xdeQ + -4 8—Xnan.

Ako sa

p=(Dx1)2 + (Bx2)2 + - + (Ax,)2 #0
oznalimo rastojanje tacaka

M(x1, %2,y xn) 1 N+ Axy,xo + Axp, ..., Xy + Axp)

tada izraz
a1Ax1 + o Axo + -+ - + apAx,

moZemo zapisati u obliku

. Axq Axp Axp
wp, gdeJew:a17+o¢27+...+a" p .
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(LSRRI  Diferencijabillnost

Kako je
Ax; .
} X <1 zasvako i=1,2,...,n
P
i kako je
lim a; =0,
(Axy,...Ax,)—(0,...,0)
sledi da je
lim w = 0.
p—0

Iz tog razloga, da je funkcija z = f(x1, x2, . . ., X,) diferencijabilna moZemo
zapisati i u obliku

Az = D1Axy + DoAxe + - - - + D Ax, + wp,

gde Dy, D5, ..., D, ne zavise od Axy, Axp, ..., Axy, a Iimow =0.
p—
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(LSRRI  Diferencijabillnost

Suprotan smer prethodne teoreme ne vaZi uvek - neprekidnost funkcije u tatki M i

postojanje njenih parcijalnih izvoda u ovoj tatki ne garantuje diferencijabilnost
funkcije u toj tacki.

Primer

Funkcija

X2y
z=flxy)={ @iy 0 # 00

0 , (xy)=(0,0)

Je neprekidna u tacki O(0,0), ima parcijalne izvode u u tacki 0(0,0), a nije
diferencijabilna u tacki O(0,0).
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(LSRRI  Diferencijabillnost

Iz
X2y
f(x,y) = £(0,0)] = 252 <yl <Vx2+y?
i
\/m<€:5
sledi da je

[f(x,y) = f(0,0)] <,
pa je funkcija f(x, y) neprekidna u tatki O(0,0).
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(LSRRI  Diferencijabillnost

Funkcija ima parcijalne izvode u tatki O(0,0) :

(Ax)%-0 —0
%(0’ 0) = lim &% "
Ox Ax—0 Ax
0z siag O
_ f— 1 y =
oy 00 = Ay 70
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(LSRRI  Diferencijabillnost

Ona nije diferencijabilna u toj tatki. Ako bi bila, njen priradtaj bi mogao da se
napise u obliku

Ax)2A
Az = (Bx)"Ay 5 —0=0-Ax+0-Ay +w/(Ax)2 + (Ay)?,

(Ax)? + (Ay)

pri ¢emu je lim w = 0, 8to nije tacno, jer za Ax = Ay > 0 imamo
(&x,Ay)—(0,0)

(Ax)°

w(Ax, Ax) = W’

pa je

AILQOW(AX’ Ax) = Wik

Sto je kontradikcija.
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(LSRRI  Diferencijabillnost

Teorema

Ako funkcija z = f(x1, ..., X,) ima parcijalne izvode u nekoj §—okolini tatke M i
ako su ti izvodi neprekidni u samoj tacki M, tada je funkcija diferencijabilna u M.

Neprekidnost parcijalnih izvoda nije potreban uslov za diferencijabilnost:

Primer

Funkcija

. (xy) #(0,0)
, (x,y)=1(0,0)

. 1
(X2 + y2) sin )(27

z="f(x,y) = + y?
0

Je diferencijabilna u tatki O(0,0), a oba parcijalna izvoda imaju prekid u tacki
0(0,0).
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(LSRRI  Diferencijabillnost

0z . 1 2x 1
v 2x sin YR cos — yvl za (x,y) # (0,0),
0z . 1 2y 1
ZZ _9 _
8_}/ ySInX2+y2 X2+y2 COSX2+y27 Za (va)¢(0’0)7
Ax)?sin Lt — 0
92 (0,0) = Tim (B s 0 _ 0,
Ox Ax—0 Ax
Ay)?sin 0
92 6,0) = lim (By)"sin @,y 0,
0 Ay—0 Ay
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(LSRRI  Diferencijabillnost

Az =z(Ax,Ay) = 0-Ax+0-Ay
1
Axsi A
+ X sin (A )2—|—(Ay)2 X
1
Ay si A
T\ ey )
1
li = li AXxsi =0
(Ax,A)I/?L(O,O)a (AX,A}I/r)na(O,O) xS (Ax)? + (Ay)? ’
1
li = li Ay si =0
(Bx,A) 5(0,0) 5 (Bxa 00 T (BXZ+ (By)?

pa je funkcija diferencijabilna u O(0,0).

z z
lim — i lim — ne postoje, pa su oba parcijalna izvoda
(B ay) 5(0.0) DX (Bx.dy)5(00) Dy | oo e P parel

prekidna u 0(0,0) (a, = (—2—,0) — (0,0), n — o0; 22(a,) = —o0, n — 00
\V2nm Ox
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(LSRRI  Diferencijabillnost

o funkcija z = f(xq,...,x,) je diferencijabilna nad skupom A C D° ako je
diferencijabilna u svakoj tatki skupa A

@ ako funkcija z = f(x, ..., x,) ima neprekidne parcijalne izvode u taZki
M C D° onda kazemo da je ona neprekidno diferencijabilna u tatki M

@ ako funkcija z = f(xq, ..., x,) ima neprekidne parcijalne izvode u svim
tatkama skupa A C D° onda kaZemo da je ona neprekidno diferencijabilna
nad skupom A

@ za dovoljno male prirastaje Axy, Axa, ..., Ax, vaZi da je Az =~ dz
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(LSRR IV zvod sloZene funkcije

|zvod sloZene funkcije

Neka je dato n funkcija

u = gol(xlv"'vxm)a
= w2(x1, 5 Xm),
Up - gon(xlv"'vxm)a

koje preslikavaju skup D; C R™ na skup D C R.
Neka je z = f(u1, ..., un) definisana nad D". Tada je funkcija

z="1F(o1(x1, -, Xm)s -, Pn(X1, .y Xm))

sloZzena funkcija od funkcija
Olye-ynif,

pri ¢emu je oblast definisanosti ove funkcije skup D; C R™.
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(LSRRI zvod sloZene funkcije

Teorema
Neka funkcije u; = pi(x1,...,Xm), I = 1,...,n imaju parcijalne izvode po svim
promenljivama xi, . .., Xm u tacki M(x, ..., Xm).
Ako je funkcija z = f(uy, ..., u,) diferencijabilna u tacki
N(p1 (X1, s Xm)s s @n(X1y -« s Xm)),s
tada sloZena funkcija z = f(u1, ..., u,) ima sve parcijalne izvode po

promenljivama x; u tacki M pri &emu vaZe jednakosti

2 — z% 4+t E 9up
Ox1 ouy Oxq Jup 0x1
Oz Ozom 0z Ou
Oxm  Oui Oxm Oup OXm

362 / 569



(LSRRI zvod sloZene funkcije

Dokaz. (za slutaj z = f(u,v), u = u(x,y), v=v(x,y))

Kako je funkcija z diferencijabilna u ta¢ki M, to je

0z 0z
Az=_—Au+ —A A A li = li =0.
Jdu + vy +alu+ S, (a u,Alvr)]L(o,o) @ (Au,A\I/SnH(O,O) g

Za Ay =0 Ax # 0, iz diferencijabilnosti funkcije f sledi

sz_%Axu_’_%Axv Au
Ax  du Ax ov Ax

Za Ax — 0jei (Axu, Acv) — (0,0), pa je

lim aa= lim g=0.
Ax—0 Ax—0
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(LSRRI zvod sloZene funkcije

Dakle,
% _ lim Axz
Ox Ax—0 Ax
— Im (%M_F%AXV ozAXu—i—ﬁAXv)
Ax—0 \ Ju Ax ov Ax Ax Ax
0zOu 0z dv
T Oudx | Ovox
Sli¢no se pokazuje da je
0z 0z0Ou  0zO0v
dy Oudy  dvoy
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Funkcije vise promenljivih Izvod vektorske funkcije skalarne promenljive

lzvod vektorske funkcije skalarne promenljive

Definicija

Ako za vektorsku funkciju

postoji

onda kaZemo da vektorska funkcija ¥(t) ima izvod u tacki t koji se obeleZava sa
dr(t)

ili sa 7(t), t.
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(LSRRI zvod vektorske funkcije skalarne promenljive

Otigledno je Z—f = %H ‘Zﬁr %E = x()7 + y(t)] + z(t)k,

pa vaze sli¢na pravila kao kod izvoda realne funkcije jedne realne promenljive:
3) SR+ xom) = 004, 02
o) S B =9 I

c)i(FxF)*ﬁxr—f—r ><dF2
dt T T gy 2T g
d dr du
4) < (Fu(e) = S5
d A dr  du_
e) E(Ur) E—FE

pri Cemu izvodi sa desne strane postoje po pretpostavci.
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(LSRRI zvod vektorske funkcije skalarne promenljive

Geometrijska interpretacija izvoda:

—

d .
Pretpostavimo da je d_;(to) =71 #0.

Tada je AF(t) = AB.
A je vrh vektora 7(tp),
B je vrh vektora F(to + At),

A7
pa je ko) = AC.

At
Grani&na vrednost .
I Af(to) o,
im =T
At—0 At 0

je vektor koji leZi na pravoj koja prolazi kroz tatku A koju ¢emo definisati kao
tangenta krive L u tacki A.

367 / 569



(LSRRI zvod vektorske funkcije skalarne promenljive

Tangenta krive L u tacki A je prava

Xon :}/f}/o _ Zfzo, to £ 0,
X0 Yo 20
a ravan
xo(x = x0) = yo(y — yo) = 20(z — 20),

koja je normalna na p zovemo normalna ravan krive L.
(stavljeno je da je x(to) = %o, y(to) = w0, z(t0) = 2)

Vektor ¥ ima smer tamo kuda skalar raste.
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(LSRRI zvod vektorske funkcije skalarne promenljive

—

. dar .. .
Intenzitet vektora — zavisi od izbora parametra t.

Ako uzmemo da je t = a1, o # 0, prema d) je tada

dr
dr

1

«

dr

ar| _|drdr
dt

T ldr dt

)

pa moZemo izabrati parametar tako da taj intenzitet bude jednak 1.
ObeleZi¢emo tu vrednost parametra sa s.

) () )

b
Sledi da je ds = \/(dx)2 + (dy)? + (dz)2, tj. s = [ /X2 + y2 + 2. Dakle, s je
a
duZina luka krive L od neke fiksne tatke M. Prema geometrijskoj interpretaciji
izvoda sledi da je 7(s) = d;(:) = tp, ort tangente na krivu L u posmatranoj ta&ki
sa smerom porasta skalara t.

dr
ds
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(LSRRI zvod vektorske funkcije skalarne promenljive

Za jedinini vektor ¢ = ¢&(t) je ¢- ¢ =1, odakle sledi da je

€erd ez g
da

B

Dakle, izvod jedini¢nog vektora ¢ normalan je na vektor ¢. Za r = riy (Fy je ort) j

d_?iﬂ;,_’_rd_ﬁ)
dt — dt " dt’

Ako je ry konstantan vektor, tada vektor

dr dr_,
— = —r
dt — dt’
ima pravac jedini¢nog vektora, a ako je r konstantnog intenziteta, tada vektor
dr drg
el
dt dt

ima pravac koji je normalan na vektor rp.
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(LSRRI zvod vektorske funkcije skalarne promenljive

Mehanicka interpretacija jednostranih izvoda:

Ako materijalna tacka tokom kretanja udari u
prepreku, odbija se i nastavlja kretanje. U tre-
nutku tg sudara sa preprekom, funkcija ¥ nema
izvod, ali postoje desni i levi izvod u taéki ty :

5 . At+ A —TF) . . F(t+ At) —F(t)
)= | _ " (to) = | —_—
7y (to) Atlglo+ At » (0) Atm)* At

Oni daju brzinu tatke pre i posle udara u prepreku. Odgovaraju im desna i leva
tangenta na krivu L u tacki udara A :

X—Xo:y—)/oi

Z— 2 X=X Y=Y Z—2
. 9 — - .

Xo+ Yo+ Zo+ Xo— Yo- 20~
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Tangentna ravan i normala povrsi

Neka je povr$ S data jednatinom F(x,y,z) =0.

@ M(x,y, z) je regularna(nesingularna) tatka povrsi S ako postoje sva tri

F OF
parcijalna izvoda —, a—, 8_ u tatki M koji su neprekidni u tatki M i
Ox’ 0y’ 0z
OF OF OF
(ga a_ya E) # (070a0)

@ Ako tatka M(x, y, z) nije regularna tatka povrsi S, onda za nju kaZemo da je
singularna tatka povrsi S.
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[HLLEITERE VI Tangentna ravan i normala povrsi

Neka je skup L tataka povrsi S (u daljem tekstu kriva L u parametarskom obliku)
dat sa

x = ¢(t)
L:{ y=19(t), tela,p]
z = w(t)

9 , 1, w imaju neprekidne izvode za svako t € [«, ]
o ©2(t) +¥"?(t) + w?(t) # 0, za svako t € [a, (]
Tada vektor ' _ . . .
o = r5(to) = x(to)i + y(to)j + z(to)k

leZi na tangenti krive L u tatki P(xg, Y0, 20)-
Tangenta krive L u tacki P je tangenta povrsi S u tacki P.

373 / 569



[HLLEITERE VI Tangentna ravan i normala povrsi

Jednatina povrdi je F(x,y,z) =0tj. F(p(t),¥(t),w(t)) =0 jer L leZi na S.
Diferenciranjem po t dobijamo

OF dx OF dy OF dz

~Z -0
Ox dt | Oy dt = 0z dt ’
Ar
pri ¢emu je
OF- OF- OF -
@ i =gradF = —i+ —j + —k, ne zavisi od oblika krive, jedino od
Ox dy 0z
koordinata tatke P i funkcije F(x,y,z),
. d d dz
e r= d_); i+ d_); + d—k leZi na tangenti krive L u tacki P

Kako je P regularna tatka povrsi S, to je

. OF\? [0F\? [0F\?
'g“dF"'”"V () +(5) +(5) #°
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[HLLEITERE VI Tangentna ravan i normala povrsi

Iz 7i- 7 = 0 sledi da su vektori 7 i 7 ortogonalni. Ovo zna&i da je vektor 7, koji leZi
na tangenti krive L u tacki P, normalan na vektor i u ta&ki P.

n=grad F

Ovo se moZe primeniti na bilo koju krivu L koja leZi na povrsi S i prolazi kroz
tatku P.
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Funkcije vise promenljivih Tangentna ravan i normala povrsi

Definicija
Ravan formirana od svih tangenti povr$i S kroz datu regularnu tatku P € S je
tangentna ravan povr$i S u tacki P.

Vektor
OF OF OF p )

i(P) = [ Z=(P), 2= (P), <=
i(P) = (G(P). 5(P). S (P)
je vektor normale tangentne ravni povrdi F(x,y,z) = 0 u tacki P.

Jednatina tangentne ravni u regularnoj tacki Po(xo, yo, 20) je

%(Po)(x —x0) + 0

Ox a_;_(PO)(y_YO)—F E(Po)(z_zo) -0

0z

376 / 569



[HLLEITERE VI Tangentna ravan i normala povrsi

Ako je povrs S data jednatinom z = f(x, y), moZemo da je napiemo kao
F(x,y,z) = f(x,y)—z=0.

Tada je
oF of OF of OF

ax  0x’ By 9y 0z
pa je jednatina tangentne ravni u tatki Po(xo, ¥0, 20), 20 = (X0, ¥0)

of of
a(XO,YO)(X —xo) + 8—y(Xo,}/0)(y - Yo)

-1

3

zZ— Zy.
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[HLLEITERE VI Tangentna ravan i normala povrsi

Geometrijska interpretacija totalnog diferencijala
Zamenom x — xg = Ax i y — yo = Ay, prethodna jednadina tangentne ravni se
svodi na

of of
z—z = a(XOaYO)AX + 8—y(Xo,yo)Ay

of of
= a(xo,)/o)dx + 8—y(Xo,)/o)d)/-

Desna strana gornje jednakosti je totalni diferencijal funkcije z = f(x, y), u ta&ki
Mo(xo, yo) ravni xy, pa je

z—2zy = dz.
Sledi da je vrednost totalnog diferencijala funkcije z = f(x, y) u tatki Mo(xo, ¥0)
koji odgovara prirastajima Ax i Ay jednak priradtaju po aplikati z tangentne ravni
u ta&ki Po(xo, Yo, 20) dobijenog pri pomeranju iz tatke Mo(xo, yo) u tatku
M(xo + Ax, yo + Ay).
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[HLLEITERE VI Tangentna ravan i normala povrsi

Definicija
Prava koja prolazi kroz tatku Po(xo, yo, 20) povrsi F(x,y,z) =0 i koja je
normalna na tangentnu ravan povrsi u tacki Py je normala povrsi u tacki Py i data
Jje jedna&inom

X — X0 Y—Y Z—2

8E(Po)  IL(Po)  BL(Py)

Ako je povrs S zadata jednatinom z = f(x, y), jednatina normale povrsi u tatki
Po(x0, Y0, 20) postaje

X—X _ Y=W _2-%
9 (x0, ¥0) %(XO,YO) -1
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Parcijalni izvodi viSeg reda

of
Neka f: D — R, D C R", postoji 3

za neko i € {1,2,...,n} u svim tatkama
Xi

nepraznog podskupa D; C D.

je realna funkcija definisana nad skupom Dy, : D1 — R, pa se moze

tj. —
6x,- / 8X,'
postaviti pitanje postojanja parcijalnog izvoda te funkcije po promenljivoj x; u
nekoj tatki M € D;.

Definicija

f
Ako postoji parcijalni izvod 8i (g ) (M) tada je to drugi parcijalni izvod ili
Xj \ OXi

parcijalni izvod drugog reda funkcije f(x1, x2,...,x,) u tatki M po promenljivama
X, x;j (tim redom!) i oznaZavamo ga sa

O*f
Ox;0x; (M).
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(LSRRI Parcijalni izvodi viseg reda

... O o0*f
@zai=jje 6x,-('9x,-( )_a_x?(M)
0 zai#jje Of ——— (M) me3oviti parcijalni izvod
za | VITI | I 1ZV
Ji Dx;0x; parcy

O%f . O*f
ax,-axj(M) ! 8)g8x,-(M)

@ u opstem sluéaju mogu imati razli¢ite vrednosti

Primer

22
Funkcija z = f(x,y) ={ 32+ y2 (x,y) #(0,0)
0 , (x,y)=1(0,0)

ima meSovite parcijalne izvode u svim tatkama, pri Eemu oni nisu jednaki u
0f 0?f

koordinatnom pocetku, t 0,0 0,0

rdinatnom p ”Jaa()iaa()
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(LSRRI Parcijalni izvodi viseg reda

Teorema

O*f . O°f
AL
Ox;0x;  Ox;0x;
tatke M(xy,...,xn) i ako su oni neprekidni u datoj tatki M, onda su oni i jednaki
u toj tacki, tj. vaZi jednakost

Ako postoje drugi meSoviti parcijalni izvodi u nekoj 6—okolini

O%f B O%f
Ox;0x; - Ox;Ox;

Parcijalni izvodi viseg reda defini¥u se induktivno:

@ parcijalni izvod reda m ili m-tog reda funkcije f(x1, o, ..., x,) u tatki
M(x1,x2, ..., x,) po promenljivama x;, X, ..., x;, (tim redom!) oznaZava se
sa

omf M)
8X,'18X,'2 .o .aX,'m( ’

pri ¢emu neki od indeksa mogu biti jednaki.
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(LSRRI Parcijalni izvodi viseg reda

Redosled traZenja parcijalnih izvoda u op$tem slucaju uti¢e na njegovu vrednost.
U slu¢aju da su izvodi neprekidne funkcije u nekoj tatki, na osnovu prethodne
teoreme, redosled viSe nije bitan.

C™(D,R) je skup svih funkcija takvih da su svi parcijalni izvodi m-tog reda
neprekidni nad skupom D.

Posledica
omf

Za f € C™(D,R) se vrednost izraza m

(M) ne menja pri proizvoljnoj

permutaciji indeksa iy, i, ..., iny.

Funkcije klase C™(D,R), gde je D otvorena oblast su m puta neprekidno
diferencijabilne. Za m-ti parcijalni izvod takve funkcije koristi¢emo oznaku
omf

X102 ... Oxp"

gdeag,...,apn€Z, 0<a;<m, ar+ax+---+a,=m
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LSRRIV Totalni diferencijal viseg reda

Totalni diferencijal viseg reda

Za diferencijabilnu funkciju z = f(x1, X2, . . ., X») nad skupom D je totalni

diferencijal prvog reda (prvi totalni diferencijal) funkcije z = f(x1, X2, ..., Xp) U

tatki M(x1,x2,...,%,) € D koji odgovara prirastajima dx, dxa, . .., dx,

promenljivih x1, x2, ..., x, dat formulom
0z

dZZ—Xm—deXg—l—'-'—l— 0z

_d ns
6X1 8X2 aXn X

gde su dx; = Ax;, i = {1,2,...,n} proizvoljni prirastaji nezavisnih promenljivih,
tj. proizvoljni brojevi nezavisni od x;, i = {1,2,..., n}.

@ Xx1,X2,...,X, mozemo da menjamo tako da pri tome dxi, dxo, ..., dx, ostanu
konstantni

@ za date dxj, dxo, . .., dx, totalni diferencijal dz je funkcija od x1,x2,..., X,
koja takode moZe da bude diferencijabilna
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(LSRRI Totalni diferencijal viseg reda

Definicija

Totalni diferencijal d(dz) u tacki M(x1,x2,...,xn) koji odgovara prirastajima
nezavisnih promenljivih dxy, . .., dx, se zove drugi totalni diferencijal (totalni
diferencijal drugog reda) funkcije z = f(x1,xo, ..., xn) u tatki M, u oznaci d?z.

Ako funkcija z = f(x, y) ima neprekidne parcijalne izvode prvog i drugog reda u
otvorenoj oblasti D, tada je totalni diferencijal dz funkcije z = f(x, y)
diferencijabilna funkcija pa u D postoji d?z. Kako su dx i dy konstantni, sledi

0z 0z
2, _ — &z it
d’z = d(dz)—d(axdx—i—aydy
0 [0z 0z 0 [0z 0z
0%z, 0z z 0z , ,
= 3 S dx” + 8y8ded + %0 dxdy + 8y2dy
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(LSRRI Totalni diferencijal viseg reda

: 0 0 I
Ako sa d oznalimo d = —dx + —dy, tada se moZe pisati

Ox Ay

(9 9 (0 a \°
dz = <adx+ 8_ydy> z, dz= <8de+ 8ydy> z

Opéstije,
ako funkcija z = f(x1, x2, . . ., X, ) ima neprekidne parcijalne izvode prvog i drugog
reda u otvorenoj oblasti D, tada je totalni diferencijal dz funkcije
z = f(x1, %, ..., x,) diferencijabilna funkcija pa u D postoji d?z. Kako su
dxi, dxy, ..., dx, konstantni, sledi
27 = did)=d( Laa+ Loyt 4 2
- - O 1T 0% 22 Oxn
&z 0°z 0%z | 4
= 8 2OIX]_ a 2dX2+ —|—8—Xﬁdx,,—|—
0%z 0%z
2 dxq d. + ——dx,—1d)
+ <a o e e e X")
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(LSRRI Totalni diferencijal viseg reda

Ako sa d oznagimo

0 0 0
d= a—)qu1+a—)<2dX2+"'+a—Xnan,

prethodna formula se moZe zapisati kao

0 0 0 2
2, [ =2 — o
d°z < X dx; + - dxo + + . dx,,) z,

a prvi totalni diferencijal moZemo zapisati u obliku

0 0 0
dz = <5_X1dX1 + 5_X2dX2 +o 4+ 5_Xndxn> z.

@ totalni diferencijal m-tog reda ili m-ti totalni diferencijal, m > 3, definidu se
induktivno

@ za m-ti totalni diferencijal, m > 2, kaZemo da je totalni diferencijal viseg reda
ili vi$i totalni diferencijal
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(LSRRI Totalni diferencijal viseg reda

Teorema
Ako funkcija z = f(x1, x2,

x,) € C™(D,R), D je otvorena oblast, tada postoji
totalni diferencijal d™z m—tog reda koji je dat obrascem

d a— <8_X1dX1+8_X2dX2++8_ndX"> Z.
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Funkcije vise promenljivih [RCSLIRPETN]

Lokalni ekstremi

Definicija

Neka je f : D — R, D C R", n > 2 definisana na nekoj okolini L(A, ¢) tatke
A€ D (sledi da je A € D°).

@ Ako je za svaku tatku X € L(A,e) \ {A} ispunjeno
F(X) < f(A),

tada funkcija f u tacki A ima lokalni maksimum jednak f(A).
o Ako je za svaku tatku X € L(A,e) \ {A} ispunjeno

f(X) > f(A),

tada funkcija f u tacki A ima lokalni minimum jednak f(A).

Lokalne maksimume i lokalne minimume zovemo lokalni ekstremi.
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Funkcije vise promenljivih [RCSLIRPETN]

Drugim re¢ima, funkcija z = f(xg, X2, . . ., Xp) u tacki
A(x1, %2, ..., xn) € D°
ima lokalni ekstrem ako za svako i € {1,..., n} postoje &; > 0 takvi da je
za svako |Ax;| < &;, (Axy,Axp,...,Ax,) #(0,0,...,0),

B(x1 + Axy, ..., %+ Ax,) €D

prirastaj funkcije
Az =Ff(xg+ Dxt, .oy xn+ Dxp) — (X1, -0y Xn)

u tagki A ili pozitivan (lokalni minimum) ili negativan (lokalni maksimum) (o
rubnim ekstremima bie reti kasnije).
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Funkcije vise promenljivih [RCSLIRPETN]

Funkcija z = f(x,y) = x*> + y? u tatki O(0,0) ima lokalni minimum:

Z4

z=x2+y?

<y
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Funkcije vise promenljivih [RCSLIRPETN]

Funkcija z = f(x,y) = 1 — x? + y? u tatki O(0,0) ima lokalni maksimum:

Z A

<Y
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Funkcije vise promenljivih [RCSLIRPETN]

Funkcija

ty? L Pyt #0
Zf(va){l , X*y:O
u tatki 0(0,0) ima lokalni maksimum:
ZA
P I"‘\\
e y
1
2
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Funkcije vise promenljivih [RCSLIRPETN]

Potreban uslov za postojanje lokalnog ekstrema:

Teorema
Neka funkcija f : D - R, D C R", n > 2 u tatki A(a1, az,...,an) € D° ima sve
parcijalne izvode prvog reda i neka u toj tacki ima lokalni ekstrem. Tada je
of of of
(A= —(A) ==
ox1 0xo Oxn

(A) = 0.

Specijalno, ako je f(X), X € D diferencijabilna funkcija u nekoj okolini tatke
A € D°, onda je

df(A) =0, (dxi,dxs,...,dx,) # (0,0,...,0).
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Funkcije vise promenljivih [RCSLIRPETN]

Dokaz. Neka je L(a,e) otvorena lopta u kojoj je definisana funkcija
z = f(x1,x2,...,Xn) i U kojoj vaZi da je

f(X) < f(A) (F(X) > f(A)) za sve x € L(a,e) \ {A}.
Za proizvoljno i € {1,2, ..., n} posmatrajmo funkciju
fi:(ai—e,ai+¢) =R
definisanu sa
fi(x;) = f(a1,a2,...,8i—1,Xi,di+1,---,an), za x; € (a; — €, a; + €).

Ta funkcija jedne promenljive ima lokalni ekstrem u taZki a;, pa je

, of
f/(a) = 5 (A) = 0.
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Funkcije vise promenljivih [RCSLIRPETN]

Navedeni uslov nije i dovoljan za postojanje ekstrema:

0 0
Funkcija z = x> — y? ima izvode gz _ 2x, vz _ —2y, koji su jednaki nuli za

Ox dy
x=y=0. z

Kako je f(O) = f(0,0) =0, Az=f(x,y)—f(0,0)=x>—y? toje

Af>0 , x#0,y=0
Af<0 , x=0,y#0

pa ova funkcija nema lokalni ekstrem u tacki O(0, 0).
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Funkcije vise promenljivih [RCSLIRPETN]

9 stacionarne tacke - unutradnje tatke oblasti definisanosti diferencijabilne
funkcije z = f(x1, x2,...,x,) u kojima su svi parcijalni izvodi prvog reda
jednaki nuli

Dovoljni uslovi za postojanje lokalnog ekstrema (2 teoreme):

Teorema

Neka je D C R", n > 2 otvorena oblast i neka A(a1,...,an) € D, f E C2(D R),
pri &emu je A stacionarna tatka funkcije f(xa, ..., Xp), tJ df (A) =
(dxi, dxa, ..., dxn) # (0,0,...,0). Tada

2
1. Ako je dzf(A) = (a%ldxl + e+ a%ﬂdxn) f(ai,...an) <0 za
(dxi,...,dxp) #(0,...,0), tada f u A ima lokalni maksimum.

2. Ako je d*f(A) >0 za (dxi,...,dx,) # (0,...,0), funkcija f u tatki A ima
lokalni minimum.

3. Ako d?f(A) menja znak za (dxa, ..., dx,) # (0,...,0), funkcija f u tatki A
nema lokalni ekstrem.
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Funkcije vise promenljivih [RCSLIRPETN]

Teorema

Neka je D C R? otvorena oblast i neka A(a, b) € D, f € C3(D,R) i

of of
pfa(avb)*oa 78_y(ajb)70
O2f O2f O2f

W(a, ), 5= 8X8y(a’ b), t = 8—)/2(3’ b). Tada:

1. Ako je r > 0(t > 0) i rt — s> > 0, funkcija f(x,y) u tacki A(a, b) ima lokalni
minimum.

2. Ako je r < 0(t < 0) irt—s?>0, funkcija f(x,y) u tacki A(a, b) ima lokalni
maksimum.

3. Ako je rt —s? <0, f(x,y) u tacki A(a, b) nema lokalni ekstrem.

4. Ako je rt —s? =0, potrebna su dalja ispitivanja (posmatra se znak prirastaja
funkcije u tatki A(a, b)).

Ozna&imo sa r =
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Funkcije vise promenljivih [RCSLIRPETN]

Primer
Odrediti ekstremne vrednosti funkcije z = f(x,y) = x* + 2xy + y? J

9 B
Iz 2 = 2x +2y =0 2= = 2x + 2y = 0 dobijamo stacionarne tatke A(x, —x),

Ox Ay
tj. sve tacke prave y = —x su stacionarne tatke. Kako je
Pz Pz %z )
ox2 oxoy T oy 7
to je uvek

rt—s?=4-4=0

il
d*f(A) = 2(dx + dy)? > 0,

pa na osnovu ovih kriterijuma ne moZemo zaklju€iti da |i data funkcija u tatkama
A(x, —x) ima lokalni ekstrem.
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Funkcije vise promenljivih [RCSLIRPETN]

U svakoj okolini tatke A(x, —x) ima i drugih tataka
B(y,—y), pri temu je A # B,
pri ¢emu vaZzi da je

f(B) — f(A) = 0.

Dalje, za sve tactke &
X(x,y), gde je x #y

hY
/
=Y

je {
f(x,y) = £(0,0) = (x +y)* > 0,

pa zakljutujemo da je f(X) — f(A) > 0, za tacke X € L(A,¢), pa zaklju¢ujemo da
funkcija ni u jednoj tatki A(x, —x) nema lokalni ekstrem.
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(LSRRI Vezani (uslovni) ekstremi

Vezani (uslovni) ekstremi

Kod odredivanja ekstremnih vrednosti funkcija vise promenljivih promenljive mogu

biti vezane nekim dodatnim relacijama (ne mogu slobodno da se menjaju u oblasti
definisanosti funkcije).

Primer

Odrediti ekstremne vrednosti funkcije z = f(x,y) = x*> + y? pod uslovom da je
x+y=1

z=x2+y?
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(LSRRI Vezani (uslovni) ekstremi

Iz date veze sledi da je y = 1 — x, pa je u odgovarajué¢im tatkama
1\? 1
f(va)_f(Xal_X)_2X2—2X—|—1—2(X_§) _|_§

1
Funkcija f(x,1 — x) ima minimum za x = = (paiy = 5)

N =

. o1
Minimalna vrednost je —.

11
Sama funkcija z = f(x,y) = x? + y? u svakoj okolini tatke <§, 5) ima i manjih

1
vrednosti od —.

Inae, njena najmanja vrednost je 0.
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(LSRRI Vezani (uslovni) ekstremi

Ograni¢imo razmatranja na funkciju dve promenljive, z = f(x, y). Neka je
f: D — R, definisanana D C R? i ¢ : D — R. Neka je

B ={(x,y) € D:¢(x,y) =0}
neprazan skup odreden uslovom ili vezom ¢(x,y) = 0.
Definicija
Funkcija z = f(x,y) u tatki nagomilavanja A(x, y) € B skupa B ima uslovni

(vezani) lokalni maksimum (uslovni (vezani) lokalni minimum) pri uslovu
¢(x,y) =0, ako

(e > 0)(¥X € BN (L(A,e)\ {A)) F(X) < F(A) (F(X)> F(A)).

Uslovni lokalni minimum odnosno uslovni lokalni maksimum jednim imenom
zovemo uslovni ili vezani ekstremi a jedna&ina p(x,y) = 0 zove se jednacina veze.

v
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(LSRRI Vezani (uslovni) ekstremi

Ako je jednatina krive L : ¢(x,y) = 0, problem odredivanja uslovnih ekstrema
funkcije z = f(x, y) na krivoj L moZe se formulisati kao: odrediti uslovne
ekstreme funkcije z = f(x,y) nad skupom D, pod uslovom ¢(x,y) = 0.

LagranZov metod za odredivanje uslovnog ekstrema:

Neka je My = (xo, yo) potencijalna tatka uslovnog ekstrema funkcije z = f(x,y)
sa jednatinom veze ¢(x,y) = 0.

Pp. da funkcije f(x, y) i ¢(x,y) imaju neprekidne parcijalne izvode prvog i drugog
reda u nekoj okolini tatke My(xo, yo) i da je bar jedan od parcijalnih izvoda

de 899

8X(MO) dy

- (Mo)

razli¢it od 0 (neka je npr. Z—QP(MO) #0.)
y
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(LSRRI Vezani (uslovni) ekstremi

Iz p(x,y) = 0 sledi da je y = 1(x), pa je z = f(x,¢(x)) = h(x) funkcija jedne
promenljive. Potreban uslov da funkcija

z = f(x,9(x))
: , . . dz o
u tatki M(xo, ¥ (xo)) ima ekstremnu vrednost je da je a(l\/lo) = 0. Sledi da je
of of
= df(Mp) = — (M, — (M =0.
dZ(/\/Io) d ( o) 8X( 0)dX—|— ay( o)dy 0 (3)
Iz jednaline veze se dobija
dio(Mo) = @x(Mo)dx + ¢y (Mo)dy = 0. (4)

MnoZenjem jednakosti (4) sa A i dodavanjem jednakosti (3) dobijamo
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(LSRRI Vezani (uslovni) ekstremi

X

of 0 of 0
(a—(xo,)/o) + /\a—i(xo,)/o)> dx + (a—y(Xo,)/o) + Aa—t(xo,)/o)) dy = 0.

Iz g(XOvYO) + Aa—@(xo,yo) =0 izrazimo \:

Ay dy
g(Xo ¥0) 0
)\:_8}/77’ _(p(XanO)#()'
g—f(XOaYO) dy
Dakle, jednakosti
of 0 of 0
a(XO,YO)‘F)\a—f(Xo,YO) =0, 8_y(X°’y0)+)\8_t(Xo’yo) =0

daju potrebne uslove za nevezane ekstreme u tacki Mo(xo, yo) funkcije

F(x,y) = f(x,¥) + Ap(x,y) (LAGRANZOVA FUNKCIJA).
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(LSRRI Vezani (uslovni) ekstremi

Dakle, uslovni ekstrem funkcije f(x,y), ako je ¢(x,y) =0, je obavezno
stacionarna tatka LagranZove funkcije

F(x,y) = f(x,y) + Ap(x, y),

pa se tacke koje mogu biti uslovni ekstremi funkcije f(x, y), ako je p(x,y) =0,
dobijaju tako $to se formira Lagranzova funkcija i njeni prvi parcijalni izvodi

oF  oF
Ox’ Oy

izjednale sa nulom. Dobijamo sistem od tri jednacine

OF
g = &(va)—’—)‘()ox(xay)zo
5_y = f,(x,¥)+Apy(x,y) =0

¢(x,y) =0,

&ijim reSavanjem odredujemo A, x i y mogucih tacaka ekstrema.
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(LSRRI Vezani (uslovni) ekstremi

Postojanje i prirodu uslovnih ekstrema odredujemo pomocu znaka drugog totalnog
diferencijala Lagranzove funkcije
0’F 0’F 0’F

d*F(x,y) = dez + 2ax8y dxdy + a—y2dy2,

za skup vrednosti xg, yo, A dobijenih iz prikazanog sistema jednacina pod uslovom

¢ op . _
B dx + Dy dy =0, za (dx, dy) # (0,0).

@ d%F(x0,y0) < 0 u tatki (xo, yo) funkcija f(x,y) ima uslovni maksimum
o d’F

(%0, ¥0) > 0 u taki (xo, yo) funkcija f(x,y) ima uslovni minimum
@ d?F(xo,y0) u tagki (xo, o) menja znak funkcija f(x,y) nema uslovni ekstrem
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(LSRRI Vezani (uslovni) ekstremi

Primer

Odrediti ekstremne vrednosti funkcije z = f(x,y) = x*> + y? pod uslovom da je
x+y=1

Fx,y,A\) =x*+y* + Mx +y—1),

% = 2x+A=0,
a—f = 2y+ =0, éx:y:%,)\:—l.
x+y—-1=0
Kako je $£ =2,86 =2 2L — 0idx+dy =0, to je
d?F (3,1) = 2dx* +2dy?

= 2dx? +2(—dx)? = 4dx? > 0, (dx, dx) # (0,0),

pa funkcija u tagki A (3, 3) ima uslovni minimum pod uslovom x + y = 1.
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(LSRRI Vezani (uslovni) ekstremi

Primer

Odrediti ekstremne vrednosti funkcije z = f(x,y) = xy pod uslovom da je
y—x=0.

F(Xaya)‘):Xy+>‘(y_X)a

F
a_ = y_)‘zov
B _ A0 (S X=y=0A=0.
oy ’
y—x=0
2F P 2F
Kakojea—zoa :0a—zlidy—dx:O,tojed2F(O,0):dx2>O,

Ox? " Oy? " Ox0y
za dx # 0. Kako je d?F (0,0) > 0, to funkcija u tatki O (0,0) ima uslovni lokalni
minimum. Primetimo da je rt — s%(0,0) = —1 < 0, dakle funkcija moZze imati
uslovni ekstrem i ako je rt — s? < 0.
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(LSRRI Vezani (uslovni) ekstremi

Neka je data funkcija f : D — R, definisana na skupu D C R”, n > 2 i funkcije
wi:D—=R,i=1,2,...,m, za fiksirano m € N, m < n. Neka je

B={XeD:ypi(X)=0,i=1,2,...,m}

neprazan skup odreden sa ¢1(X) =0,¢2(X) =0,...,ps(X) =0.

Definicija

Funkcija z = f(x1,...,xn) u taki nagomilavanja A(ai, az,...,an) € B skupa B
ima uslovni (vezani) lokalni maksimum (uslovni (vezani) lokalni minimum) pri
uslovima o1(x1, ..., %n) = 0, 02(x1, ..., %Xn) =0, ..., 0m(Xx1, ..., Xs) =0 ako

(e > 0)(VX € BN (L(A,e)\ {A})) F(X) < f(A) (F(X)> F(A)).

Uslovni lokalni minimum odnosno uslovni lokalni maksimum jednim imenom
zovemo uslovni ili vezani ekstremi.
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(LSRRI Vezani (uslovni) ekstremi

Ako traZimo uslovne ekstreme funkcije z = f(xq,...,x,), pod uslovima

§01(X17X27 cee ,X,,) - 07
©a(x1, X2, ..., xn) =0

)

QDm(Xl,X2,...,Xn) 07

gde je 1 < m < n, formiramo LagranZovu funkciju:
m
F(Xt, ooy Xn A1y ooy Am) = F(Xa, .0y Xn) + Z)\;cp,-(xl, ey Xn)s
i=1

uz pretpostavku da funkcije f(x1,...,xp) i @i(x1,...,%p), i =1,..., m imaju
neprekidne parcijalne izvode prvog i drugog reda u nekoj okolini potencijalne tacke
uslovnog ekstrema M(ay, ..., an).
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(LSRRI Vezani (uslovni) ekstremi

Dalje, pretpostavimo da u toj okolini funkcionalna matrica

Op1 O¢1 9p1
oxq Ixo te Oxp
Opa  Op2 9p2
Ox1 Oxz T Oxn
9¢m 9om Oom
oxq Oxo e Oxp

ima rang m. lzjedna€avanjem sa nulom svih parcijalnih izvoda prvog reda funkcije
F(x1,...yXn A1y- .., Am) i uzimajuéi u obzir jednatine veze, dobijamo sistem od
n+ m jednadina:

F
%(xl,--.,xn):o, ie{1,2,...,n

oi(x1,...,%) =0, j€{1,2,...,m}

¢ijim reSavanjem nalazimo Aq,..., A\, i koordinate xi, xo, . . ., x, mogucih
ekstrema.
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(LSRRI Vezani (uslovni) ekstremi

Postojanje i prirodu uslovnih ekstrema odredujemo pomocu znaka drugog
diferencijala Lagranzove funkcije. Ako je u dobijenim ta¢kama

e d?F <0, (dx1,dxa,...,dx,) # (0,0,...,0), funkcija f(x,y) ima uslovni
maksimum

@ d’F >0 (dxi, dxa, ..., dx,) # (0,0,...,0), funkcija f(x,y) ima uslovni
minimum

@ d?F menja znak funkcija f(x, y) nema uslovni ekstrem

lzmedu dxi, dxs, . .., dx, postoje veze

91 ceo4 D1 —
e dxy + -+ B dx, = 0,

Oom e O9m —
e dx1 + -+ Fordxy = 0.
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(LSRRI Vezani (uslovni) ekstremi

Primer
Odrediti ekstremne vrednosti funkcije u = f(x,y,z) = x> + y? + z2 pod uslovom
da je % +b2—|— =1l,a>b>c>0.

c27

2 2 2
F(x,y,z,/\)—x2—|—y2—|—22—|—/\<x —|—%—|—Z 1)

%-F = X425 =2x(1+%)=0=x=0VA=-2

S8 2y+2)\b272y(1+%)—0:>y—0\/)\——b2 -

& = 224205 =22(1+3)=0=z=0VA=—c?
A(a,0,0), —-a,0,0) (A= —-2a%)

a B(
C(0,b,0), D(0,—b,0) (A= —b?)
0 H(0,0,—c) (A= —c?)
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(LSRRI Vezani (uslovni) ekstremi

Kako je
0*F A 0’F A 0*F A
Ox? + a2’ Qy? + b2’ 922 + c?’
OP’F  0°F _ 9*F 0
Oxdy  Ox0z Oydz
to je

A A A
2 2 2 2
dF_2<(1—|—a2>dx +(1+b2>dy +<1+C2)dz).

Za tatke Ai B je

d*F(A) = d°F(B) =2 ((1 - Z—z) dy? + <1 - i—i) dz2> .
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(LSRRI Vezani (uslovni) ekstremi

Diferenciranjem jedna&ine veze dobijamo

2x 2y 2z
—d b2 dy+ —dz =0,

2
odakle uvrstavanjem koordinata tataka A i B dobijamo ia—jdx =0, odakle je
dx = 0.
S obzirom da je (dx, dy, dz) # (0,0,0), bar jedan od diferencijala dy ili dz mora
biti razli¢it od nule.

Kako je
2

a .
1—p <0 1 1—2 <0
sledi da je
d*F(A) = d*F(B) < 0,

pa funkcija u tatkama A i B ima uslovni maksimum.
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(LSRRI Vezani (uslovni) ekstremi

Za tatke C i D je

d*F(C) = d*F(D) =2 ((1 - :—2) dx® + (1 - ?-2) dz2> .

Iz j:i—é’dy = 0 sledi da je je dy = 0. S obzirom da je (dx, dy, dz) # (0,0,0), bar
jedan od diferencijala dx ili dz mora biti razli¢it od nule. Ako je dx = 0 tada je

2
d*F(C) = d*F(D) =2 (1 - %) dz? < 0,
a ako je dz = 0 tada je
2

d*F(C) = d*F(D) =2 (1 - %) dx* > 0,

pa kako d?F menja znak u tatkama C i D, funkcija u tatkama C i D nema
uslovni ekstrem.
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(LSRRI Vezani (uslovni) ekstremi

Za tatke E i H je
2 2 c 2 c? 2
d°F(E)=d°F(H)=2 1—; dx + 1—; dy< | .

2
Iz ic—gdy = 0 sledi da je je dz = 0. Kako je

c? c?

1—;>0 i 1—§>0

sledi da je
d*F(E) = d*F(H) > 0,

pa funkcija u tatkama E i F ima uslovni minimum.
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WELTEEIIIEEEIl  Primitivna funkcija i neodredjeni integral

Primitivna funkcija i neodredeni integral

o f(x) definisana nad intervalom /, tj. f : [ - R
@ ako za funkciju f(x) postoji funkcija F : | — R, koja ima izvod F’(x) nad
intervalom [/, takva da je

F'(x)=f(x), xel
tada je F(x) primitivna funkcija funkcije f(x) nad intervalom /
@ ona nije jednoznaZno odredena, svaka funkcija F(x) + C, C € R je takode
primitivna funkcija jer je
(F(x) + €)' = F'(x) = f(x).
Veza izmedu dve primitivne funkcije F(x) i G(x) funkcije f(x) :

Teorema

Ako su F(x) i G(x) dve primitivne funkcije za f(x) nad nekim intervalom | onda
se one nad tim intervalom razlikuju za konstantu, tj. nad intervalom | je

F(x)— G(x) = C.
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Bantalinieialineediedienlites 2]
Bitna je pretpostavka da se razlika G(x) — F(x) posmatra nad intervalom, a
ne na proizvoljnom skupu:

Primer
1

Pokazati da su funkcije G(x) = — arctg — i F(x) = arctg x primitivne funkcije
X

funkcije f(x) = % za x # 0. Odrediti G(x) — F(x).

+ X2’

@ F(x) je primitivna funkcija funkcije f(x) za svako x € R, jer je

r_
(arctg x) = e

/

1
i a BX # 0, pa je nad svakim od intervala (—00,0) i

(0, 00) funkcija G(x) primitivna funkcija funkcije f(x).

@ Pri tome je G(x)—F(X)—{ 3 ’ ﬁiﬁ&ﬁ}o) '

( 1
o | —arctg -
X
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WELTEEIIRIEEIEIl  Primitivna funkcija i neodredjeni integral

Definicija
Skup svih primitivnih funkcija funkcije f(x) nad nekim intervalom | naziva se
neodredeni integral funkcije f(x) nad datim | i oznatava se sa

/ F(x)dx.

[

f(x) je podintegralna funkcija

€

f(x)dx je podintegralni izraz

/je znak integrala

ako je F(x) jedna primitivna funkcija tada je

©

[

/f(X)dX:F(X)+C:{F(X)+C: C eR}
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WELTEEIIRIEEIEIl  Primitivna funkcija i neodredjeni integral

Da li za svaku funkciju postoji primitivna funkcija?

Teorema

Ako je funkcija f : | — R neprekidna nad intervalom | tada postoji primitivna
funkcija F : | — R nad intervalom |, tj. postoji neodredeni integral funkcije f(x)
nad datim intervalom |.

@ funkcija f(x) ne mora da bude neprekidna da bi za nju postojao neodredeni
integral; funkcija

2xsini —cosl x#0
f(X)_{O X X Xio

za x = 0 ima prekid druge vrste, a jedna njena primitivna funkcija je

x?sind x#0
F(X)_{O’ X Xio
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WELTEEIIRIEEIEIl  Primitivna funkcija i neodredjeni integral

Ako funkcija f : [a, b] — R u nekoj tacki intervala [a, b] ima prekid druge
vrste, da li za nju uvek postoji primitivna funkcija nad posmatranim
intervalom?

Primer

1, xeQ
0, xeR\Q

Proveriti da Ii Dirihleova funkcija x(x) = { ima primitivnu

funkciju nad proizvoljnim intervalom |I.

NE. Ako bi nad proizvoljnim zatvorenim intervalom [a, b] postojala funkcija
F : [a, b] = R, koja ima izvod nad I, pri &emu je F'(x) = x(x), tada vazi
F'(x)=1, za x € [a, 5] N Q,
F'(x) =0, za x €[a,b] N (R\ Q),
a ne postoji £ € [a, b] sa osobinom da je (na primer) F'(§) =
teorema), ¥to zna&i da F(x) nije primitivna funkcija funkcije x

(Darbuova
x) nad [a, b]. b

NI=

—~
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WELTEEIIRIEEIEIl  Primitivna funkcija i neodredjeni integral

@ ako funkcija f : I — R ima prekid prve vrste u ¢ € | tada za nju ne postoji
primitivna funkcija F(x) nad intervalom | (ako funkcija f(x) ima izvod u
svakoj ta&ki intervala /, tada taj izvod ne moZe imati prekide prve vrste)

@ ako neodredeni integral date funkcije postoji, on se ne moZe uvek izraziti u
kona&nom obliku (preko kona&nog broja elementarnih funkcija) - neki primeri:

foru [Lu [
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Osobine neodredenog integrala
1 ([ f(x) dx)" = f(x)
2. d [ f(x) dx = f(x) dx

3. [dF(x) = F(x) + C;

specijalno: [ F'(f(x))f'(x)dx = [ dF(f(x

4. [af(x)dx=a[f(x)dx, acR

5. [(A() + -+ fa(x)) dx = [ A(x) dx + -

6. Ako je [ f(

x) dx = F(x) + C, tada je
J f(ax + b) dx =

"
~Flax+b)+C, a#0

Primitivna funkcija i neodredjeni integral

) = F(f(x)) + C

+ [ fa(x) dx
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WELTEEIIRIEEIEIl  Primitivna funkcija i neodredjeni integral

Tako je, na osnovu osobine 3.

X = + C.

/ arctg? x 4 arctg’ x
14 x2 3

@ Tablica neodredenih integrala

@ ukoliko nije drugadije naglaseno, traZenje neodredenog integrala podrazumeva

nalaZenje datog integrala nad svim intervalima iz oblasti definisanosti date
funkcije
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(LT IRGEEEl  Smena promenljive u neodredjenom integralu

Smena promenljive u neodredenom integralu

Teorema

Neka sirjekcija ¢ : 1 — | C R ima neprekidan izvod razli¢it od nule nad
intervalom Iy i neka za funkciju f : | — R postoji neodredeni integral nad

intervalom |. Tada vaZi

Jf(x) dx = [ fp(t)) ¢'(t) dt;

(posle integracije desne strane se stavi t = ¢~ (x), x € 1.)

Dokaz. Jednakost vaZi jer su izvodi obe strane jednaki:

% J f(x)dx

& [ ()¢ (t)dt

a zbog stalnosti znaka ¢’
funkciju ¢ ~1(x).

(x);

g (J e

g t) &
Fle(t))p

f(()):

t))¢'(t)d
1
o'(t)

()

f(x),

(t) je funkcija (t) strogo monotona, pa ima inverznu
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(LT RGEEEIl  Smena promenljive u neodredjenom integralu

@ Cesto je pogodnije smenu promenljivih umesto u obliku

x = ¢(t)
pisati u obliku
t = $(x), dt = 9/(x) dx
Recimo,
/
/:i((;:)dx /dT In ]+ C = In|p(x)| + C,
V(X)) /
dx —_\/E-I-C:\/’Q/JX + C.
/ 2./0(x) 2Vt )
Primer
Da Ii se u integral / \/%, X > 2, moZe uvesti smena x = arcsin t?
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(LT IRIEEIEIl  Parcijalna integracija

Parcijalna integracija

Teorema
Neka su u(x) i v(x) diferencijabilne funkcije i neka postoji primitivna funkcija
funkcije u'(x)v(x). Tada postoji primitivna funkcija funkcije u(x)v'(x) i vazi

Jjednakost /u(x)dV(X) = u(x)v(x) — / v(x)du(x).

Dokaz. Polazeéi od jednakosti (u(x)v(x)) = u'(x)v(x) + u(x)v'(x) dobija se

odakle je
/u(x)dv(x) = u(x)v(x) — / v(x)du(x).

(konstantu je dovoljno staviti sa jedne strane jednakosti)
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(LT IRIEEIEIl  Parcijalna integracija

Napomena

o [ Pn(x)e®™dx, n > 1 reSava se sa n parcijalnih integracija, uzimajuci
u=Py(x), e dx=dv

o [ Py(x)sin ax dx (f Pn(x)cosax dx), n > 1 reSava se sa n parcijalnih
/ntegracua, uzimajuéi

u= P,(x), sinax dx = dv,(cosax dx = dv)

@ [Py(x)In"x dx, n>1, m € N resava se sa m parcijalnih integracija,
uzimajudi

u=1In"x, P,(x)dx=dv
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Neodredjeni integral [ENISe

Primer

x , x<2

Odrediti neodredeni integral 1(x) funkcije f(x) = { 5 >0

I(x) postoji nad R (f(x) je neprekidna funkcija). Kako je

2

X
dx = — + C
/XX 2—|— 1,
/2dX:2X—|—C2,

to da bi /(x) bila neprekidna funkcija mora da vaZi

24+ G =4+C, 1. G=0GC+2

X2
7+2+C , x <2

2x + C , x>2

pa je I(x) =
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(LT IRIVEEEIl Integrali nekih funkcija

Integrali racionalnih funkcija

P(x)

Q(x)

@ ako je deg P(x) < deg Q(x) - prava racionalna funkcija

@ ako je deg P(x) > deg Q(x) - neprava racionalna funkcija

Racionalna funkcija je R(x) =

Svaka neprava racionalna funkcija moZe se napisati u obliku

Rl(X)
Q(x)”

R(x) = T(x)+ deg Ri(x) < deg Q(x)

@ P(x) je deljiv polinomom x — a ako i samo ako je P(a) =0

@ Svaki polinom stepena n > 1 ima ta¢no n nula, R ili C

@ Ako su ay, ..., an razli¢ite nule polinoma P(x) = ¢,x"+...ca1x+ ¢, n>1
onda je

P(x) = co(x — a1)f(x — @) ... (x — am)*™, ky + -+ kp = n.

@ Ako je kompleksan broj z = a + i koren reda k polinoma P(x) tada je i
z = o — i/ takode koren reda k polinoma P(x).

433 / 569



Integrali racionalnih funkcija

Teorema
Neka je P(x) polinom stepena manjeg od n, a Q(x) polinom stepena n takav da je
Q(x) = calx — a1)™ ... (x — 3p)* (x* + bix + 1) ... (x> + bgx + ¢4)" = n,

gdeje ki+ -+ ky +2(h +---+1g), ai, bj, G ER, b7 —4¢; <0, i=1,...,p,

j=1,...,q. Tada se polinom R(x) = gg; moZe napisati u obliku
A Ap Ap P
RO = (B + o+ o) 4o+ (B o+ o)

Biix+GCui L. Binx+Giy
+ (X2+b1X+C1 + + (x2+bix+c1 )1 RIEEE

Bq1X+Cq1 Bq/qX+quq )
+ (X2+baX+Ca + + (x24box+ca)a

A H Bx+C 2 . C e .. . .
ooy | (Prbera) b° — 4c < 0, se nazivaju prosti ili parcijalni razlomci.
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(LT IRIVEEEIl Integrali nekih funkcija

Bic¢e radeni na veZbama:

[

Integrali prostih razlomaka

[

Integrali nekih iracionalnih funkcija

o [ R(x Vax2 + bx + c)dx (tri Ojlerove smene),

> mdx 270,
s a)\/m neN, a0,
Tk

o fR( ,(f;jg) ,...,(;;1‘;) )dx, ag—bp#£0,n,....n€Q,

o [xM(a+ bx")Pdx, m,n,p€ Q, n,p#0, a,beR, a,b#0,
Integrali trigonometrijskih funkcija

o [ R(sinx, cos x)dx,

o [sin™ x cos” xdx,

o [sinmxsin nxdx, [ sinmxcosnxdx, [ cosmx cosnxdx,

©

[

Integrali nekih eksponencijalnih funkcija
o [R(e")dx,
o [(P(x)e®* cos Bx + Q(x)e™ sin Bx)dx
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Pojam odredenog integrala

Posmatramo [a, b] C R
@ Podela intervala: P = {xg,x1,...,Xn}, a=x <x1 < -+ <X, =0b
@ skup svih podela je P*[a, b]
@ PPC P= Pjefinijaod P', P’ jegrublja od P
o Ax; =x; —xj—1, i=1,2,...,nduZina intervala [x;_1, X;]

@ parametar podele P je max Ax; = A(P)
1<i<n

©

& € [xi—1, xi], €= (&,&,...,&n) € R", skup izabranih tataka £ € R" podele
P je

g(P) :{fGR"If:(fl,...,gn),gi S [X,',l,X,'],I': 1,2,...,n}

[

podela intervala sa izabranom tatkom (P, ¢)
P = PJa, b] skup svih takvih podela

©
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(LI IRl Pojam odredjenog integrala

Definicija
Neka je f : [a, b] — R i neka je (P,£&) podela sa izabranom tatkom intervala [a, b].
Zbir

I(f,P,&) = ng,Ax,

se naziva integralna ili Rimanova suma funkcije f(x) za datu podelu (P, £).
y

MOTIVACIJA 1:

y=fix)

Povrsina krivolinijskog trapeza je
priblizno jednaka integralnoj sumi:

a x1 XX e X xn_léb

& &
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(LI IRl Pojam odredjenog integrala

MOTIVACIJA 2: Na pravolinijskom putu AB deluje promenljiva sila F na
materijalnu tacku. Zavisnost intenziteta sile od puta je F = F(s). Uo&imo podelu
P = {sy,51,...,S,} sa izabranom tatkom ¢ intervala, tj. puta [a, b] (ai b su
koordinate tataka A i B respektivno). Rad sile F na intervalu [s;_1, s;] je pribliZzno
n
> F(&)As;, As; = s; — s;—1. Dakle, rad sile intenziteta F konstantnog pravca na
i=1
pravolinijskom putu priblizno je jednak integralnoj sumi.
Definicija
Broj | je limes (grani¢na vrednost) integralnih suma I(f, P, &) funkcije
f:la,b] = R za \(P) — 0, pisemo
lim [I(f,P, &) =1
A(P)—0 (F, P =1,

ako za svako ¢ > 0 postoji § > 0, takvo da za svaku podelu P i svaku izabranu
tacku & € £(P), kada je \(P) < ¢, vaZi nejednakost

[I(f,P,&)— 1] <e.
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(LI IRl Pojam odredjenog integrala

Ako postoji
li I(f,P, &) =1
\im_ I(F.P.6)
tada
@ f(x) je integrabilna u Rimanovom smislu nad [a, b]

@ | se naziva Rimanov ili odredeni integral funkcije f(x) nad [a, b],

b
I:/f(x) dx

a je donja granica integrala, b je gornja granica integrala
f(x) je podintegralna funkcija
f(x) dx je podintegralni izraz

X je integraciona promenljiva

¢ & ¢ ¢ ¢

R[a, b] skup svih integrabilnih funkcija nad [a,b] (u Rimanovom smislu)
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(LI IRl Pojam odredjenog integrala

Primer

b
Pokazati da je | = [ cdx = c(b — a).

a

Posmatrajmo funkciju f(x) = ¢, x € [a, b]. Neka je P = {x0, X1, ., Xn},
& ={&,&,-..,&n} proizvoljna podela sa izabranom tatkom. Tada je (&) = c,
i=1,2,...,n,paje

n

I(f,P,¢&) = Zf )Ax; = cAx; = c(b— a).
i=1
Dakle,
)\(l,_l,r)nﬁo I(fa P,f) = C(b_ 3)7

t].

b
/cdx =c(b—a).
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(LI IRl Pojam odredjenog integrala

Primer

1, x€Q

0, xeR\Q
integral ni nad jednim zatvorenim intervalom |[a, b].

Pokazati da za Dirihleovu funkciju x(x) = { ne postoji odredeni

Neka su a, b € R proizvoljni, a < b. Uzmimo proizvoljnu podelu
P ={x0,x1,..., X} intervala [a, b] i dve izabrane tatke

é.:{go)fl?"')fn} i 5/:{56551)"'352})
takve da je & € [xi_1, x;] iracionalan, a &/ € [xi_1, x;] racionalan broj,
i=1,2,...,n Tada
I(f,P,&) = Zo Ax; =0, I(f,P,¢) 21 Ax; = b—a,

lim I(f,P toji.
P2 lim (f,P.,&) ne postoji
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(LI IRl Pojam odredjenog integrala

Teorema

Potreban uslov da funkcija f(x) bude integrabilna nad intervalom |a, b] je da
funkcija f(x) bude ograniena nad [a, b].

Dokaz. Neka je funkcija f(x) definisana i neogranitena nad intervalom [a, b]. Za
proizvoljnu podelu P = {xo, ..., x,} postoji interval

[Xk—1,xk), ke{l,...,n}
takav da funkcija f(x) na njemu nije ograniZena.

Na intervalima
[X,'_l,X,'], iE{l,...,k—l,k+1,...,n}

proizvoljno izaberimo tatke & i sa /¥ oznatimo zbir

F =Y (&) bx.

ik
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(LI IRl Pojam odredjenog integrala

Neka je M proizvoljno velik broj. Zbog neograniéenosti funkcije f(x) nad
intervalom [xx_1, xx], postoji tatka & € [xk—1, x«], takva da je

|15 + M

., odakle sledi da je |f(&x)|Axk > [I¥| + M.
AXk

(&)l =
Za integralnu sumu sada vazi

(£, PO = D F(6) - Axi| = [1* + F(g) Bx| = IF(60)] A = 1] = W
i=1

Izaberimo niz { M} takav da My — oo, kada k — oo. Za datu podelu P i za
svako k € N postoji £ tako da je I(f, P,&) > My, pa

A(lly)gol(f, P.&)

ne postoji i f(x) nije integrabilna. O
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(LI IRl Pojam odredjenog integrala

Neka je f(x) definisana i ogranitena funkcija nad [a, b] i P = {xo,
podela. Uvedimo oznake

..., Xn} Njegova

e mi= inf f(x), m= inf f(x)
X€E[xi—1,xi] x€la,b]

o Mi= sup f(x), M= sup f(x)

XE[Xi—1,%] x€[a,b]

e s=s(f,P) é:

m;Ax; donja Darbuova suma za f(x) nad [a, b]

i=1
@ S=5(f,P)=> M;Ax; gornja Darbuova suma za f(x) nad [a, b]
-1

Teorema

Za integralnu i Darbuove sume ograni€ene funkcije f(x) nad intervalom [a, b] vaZi
o m(b—a)<s(f,P) < I(f,P.&§) < S(f,P) < M(b - a)

o inf I(f,P,&)=s(f,P); sup I(f,P,&)=S(f,P).
£€&(P) £€&(P)
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(LI IRl Pojam odredjenog integrala

Takode vaZze tvrdenja:

1) PCP =s(f,P)<s(f,P') < S(f,P') < S(f, P) [

Dokaz. Tvrdenje je dovoljno pokazati u slu€aju da se P i P’ razlikuju za jednu
tatku. Neka je P ={xo,...,xs} i P' = PU{X'}, xk—1 < X < xx. Neka je
sk =3 m;Ax. Tada je

iZk
S(f, P) = sk—l—mk(xk _kal)
s(f,P) = sk+ m (X" — xk—1) + m}(xk — x"),
gde je
m, = inf f(x), m{= inf f(x).
X€E[xk—1,x] xE[x" ,xk]

Kako je me = min{mj, m{}, to je

my(xk — x" + x" — xk—1)
my(xk — x") + my(x" — xk—1)

m(xXe — xk—1) =
< m (= x) + mp(x" = x-1),

odakle sledi s(f, P) < s(f, P’) (ostalo sli¢no). O
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(LI IRl Pojam odredjenog integrala

2) s(f,P) < S(f,P’) za proizvoljne podele P, P’ J

Dokaz. Za proizvoljne podele P i P’ intervala [a, b] neka je P = PU P’. Tada je
PcCP’"iP C P’ paje

s(f,P) <s(f,P") < S(f,P") < S(f,P").

O
3)  Postoje sup s(f,P) i inf S(f,P). J
PeP* Pep*

Dokaz. Skup

{s(f,P): Pe P}
je ogranicen sa gornje strane, a skup

{S(f,P): P e P*}
je ogranicen sa donje strane, pa zbog prethodno pokazane nejednakosti
sup s(f,P)i Ping S(f, P) postoje. O

P~

PP+
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(LI IRl Pojam odredjenog integrala

@ sup s(f,P) = I, je donji Darbuov integral za f(x) nad [a, b]
PP+

° Pian S(f,P) = I* je gornji Darbuov integral za f(x) nad [a, b]
Al

@ Za svaku podelu P intervala [a, b] vaZi

m(b—a) < s(f,P) < I, < I* < S(f,P) < M(b— a).

@ Ako je f : [a, b] — R ograni¢ena nad zatvorenim intervalom [a, b] tada je

l.= lim s(f,P)<I*= lim S(f,P).
A(P)—0 A(P)—0

o f:[a,b] = R je integrabilna ako i samo ako vazi [, = /*.
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(LI IRl Pojam odredjenog integrala

Teorema

Neka je funkcija f(x) ograni¢ena nad intervalom [a, b]. Funkcija f(x) je
integrabilna nad [a, b] ako i samo ako

(Ve > 0) (35 > 0) (VP € P*) A(P) < 6 = S(f,P) — s(f,P) < e.

Dokaz.(«<) |z pretpostavke i niza nejednakosti s(f, P) < I, < I* < S(f, P)
dobijamo da se donji i gornji Darbuov integral funkcije f(x) poklapaju: I, = I*.
Oznatimo njihovu zajednitku vrednost sa /. Tada je

s(f,P) <1 < S(f,P).
Sa druge strane, za proizvoljnu tacku £ podele P vazi
s(f, P) < I(f,P,§) < S(f, P).

Iz poslednje dve relacije i potetne pretpostavke sledi da je |/(f, P,&) — /| < e ako
je podela P € P*[a, b] takva da je A(P) < 4, $to znati da je funkcija f(x)
b

integrabilna i I = [ f(x)dx. O
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Odredjeni integral Pojam odredjenog integrala

Definicija

@ Ako je funkcija f(x) definisana u tatki a onda je

/af(x)dx =0.

b
@ Ako je a < b i [ f(x)dx postoji onda je
a

/af(x)dX:—/bf(x)dx.
b a
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Integrabilnost nekih klasa funkcija
Integrabilnost nekih klasa funkcija

Teorema

Ako je funkcija f : [a, b] — R neprekidna nad [a, b] ona je nad tim intervalom i
integrabilna.

Dokaz. |z neprekidnosti funkcije f(x) nad intervalom [a, b] sledi njena uniformna
neprekidnost, §to zna&i da za svako € > 0 postoji § > 0 tako da
x',x" € la,b],|x —x"| <6 = |f(X)— F(x")] < bL
—a
Izaberimo proizvoljnu podelu P = {xq, ..., x»} intervala [a, b] za koju je A(P) < 4.
Tada vazi

€ .
Mi—mi<——, i=12,...,n
b—a

jer postoje tatke &}, €2 € [x;_1, x/] sa osobinom f(&2) = M;, f(&}) = m;, pa je
M; — m; = f(&2) — f(&') < 5. To znati da je

9
S(f,P) —s(f,P) = ;(M; - mi)Ax; < —

(b—a)=ce.

B

450 / 569



Odredjeni integral Integrabilnost nekih klasa funkcija

Jos dve klase integrabilnih funkcija:

Teorema

Ako je funkcija f : [a, b] — R ograni&ena nad intervalom [a, b] i nad njim ima
konacan broj prekida ona je nad tim intervalom i integrabilna.

Teorema

Ako je funkcija f : [a, b] — R monotona nad intervalom [a, b] ona je nad tim
intervalom i integrabilna.
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[ETEIRLITIEI Integrabilnost nekih klasa funkcija

Napomena

Ogranicena funkcija moZe da ima i beskonalan broj prekida, a da bude
integrabilna, jer vaZi

Teorema Lebega: Ogranicena funkcija F : [a, b] — R je integrabilna nad
zatvorenim intervalom [a, b] ako i samo ako je skup prekida date funkcije nad
zatvorenim intervalom [a, b] mere nula.

Rimanova funkcija

L x="mecZnecNnzd(m,n) =1
f(X)_{ 6, xe]lg\(@

neprekidna je za svako x iracionalan broj, a prekidna u svim racionalnim ta¢kama,
mere nula, pa je integrabilna, na primer nad zatvorenim intervalom [-1,1].
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[ETEIRLITIEI Integrabilnost nekih klasa funkcija

Napomena
Posmatrajmo skup racionalnih tataka iz zatvorenog intervala [0, 1] poredan u niz
A = {an} i neka je a; = 0. Funkcija

fx)=> % x €[0,1]

an<x

Jje oligledno monotono rastuca, ograni¢ena i naprekidna u svim iracionalnim
tatkama datog intervala, a prekidna u svim racionalnim tackama iz posmatranog

intervala, te je time integrabilna nad posmatranim intervalom [0, 1].
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[ETEIRLITIEI Integrabilnost nekih klasa funkcija

1
Primer 17.1. Na¢i [ xdx po definiciji.
0
Resenje. Podintegralna funkcija f(x) = x je neprekidna, pa je integrabilna. Za podelu P

intervala [0,1] uzmimo ekvidistantnu podelu (Ax, = x, —x,_

.. . «
, =—) 1 izaberimo tacku
n

E=(& &, &), pricemuje & =— ie{1,2,.,n} Tadaje

n
NN 1o 1 nn+l) n+n
I(f,rH=——==53i=—F ———=—7—,
-1 n RN n- sl n 2 2n
1 Pin 1
paje'[xdx:limn J:”:—. A
0 ne o 2p” 2
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Odredjeni integral Integrabilnost nekih klasa funkcija

Teorema

b b
1. Ako je f(x) = 0 za svako x € [a, b], tada je [ f(x)dx = [0dx = 0.

2. Ako postoji kona&an skup razli¢itih tataka ci, . .., ck € [a, b] takav da je

[0, xelab\{ca,...,c}
g(X)_{A,-, x=c, i €{1,2,...k}, A #0

b
tada je [ g(x) dx = 0.

455 / 569



Veza izmedju odredjenog i neodredjenog integrala
Veza izmedu odredenog i neodredenog integrala

Njutn-Lajbnicova formula

Ako je funkcija f(x) integrabilna nad zatvorenim intervalom [a, b] i ako funkcija
f(x) ima primitivnu funkciju F(x) nad intervalom |[a, b], tada je

Dokaz. Posmatrajmo realnu funkciju F(x) nad intervalom [a, b]. Ona je
neprekidna i ima izvod nad intervalom [a, b]. Uzmimo da je P = {xg, X1, ...,%n}
proizvoljna podela intervala [a, b].

Primenjujuéi LagranZovu teoremu (teoremu o srednjoj vrednosti) na svakom
podintervalu [xi_1,x], i € {1,2,...,n} dobijamo

F(xx)—F(a) = F(&)xa—a) = f(&)Ax, & €(ax)
Flx) = F(x) = F(&)e—x) = f(&L)Ax, &€ (x,x)
F(b)~ Flunn) = F(E)b—xn1) = F(E)Bxn & € (%o 1,b)
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(LT IRl Veza izmedju odredjenog i neodredjenog integrala

Ako saberemo gornje jednakosti, dobijamo

Zf )AXx;,

&ija je desna strana jedna integralna suma I(f, P, &), £ = (&1, &, ..., &n) funkcije
f(x).
Kako je funkcija f(x) integrabilna nad intervalom [a, b] to je

b

aff(x)dx = )\(&IDY)TLO I(f,P,£)
= (Ilm Zf(ﬁ,)AX,
= A(|,i;)1ﬂ_>0("_(b) - F(a))
= F(b) — F(a).

]
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(LT IRl Veza izmedju odredjenog i neodredjenog integrala

Primer

Odrediti lim [ —— + -1 ...+ 1),
oo \nr1 " nt2 2n

n

Posmatrajmo niz s opstim ¢lanom a, = E ——. Kako je
n+i
Pl
n

Zn_|_, 1+ x

zatvorenlm |ntervalom [0 1], ako posmatramo ekvidistantnu podelu
P ={0,1 - n=1 1} zatvorenog intervala [0,1], Ax; = n, §i =1, toje

nad

|ntegralna suma za funkciju f(x) =

anana"'a

1
Iim
n—>oo n—|—/
0

1
= In( 1—|—X)0:|n2—|n1:|n2.

458 / 569



Odredjeni integral Veza izmedju odredjenog i neodredjenog integrala

Primer

Funkcija
1 2 1
2xsin— — —cos— , x#0
f(x) = x2  x x2 7
0 , x=0
nije integrabilna nad zatvorenim intervalom [—1,1], a nad tim intervalom jedna
njena primitivna funkcija je na primer funkcija

o1
F(x) = x“sin— x#0
0 X =

)
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(LT IIRIETEll  Neke osobine odredjenog integrala

@ Ako je funkcija f(x) integrabilna nad zatvorenim intervalom [a, b], tj.
f € R[a,b], tada je ona integrabilna i nad svakim zatvorenim podintervalom
[c, d] intervala [a, b].

o (linearnost integrala) Ako f,g € R[a,b] tada i f + g € R[a, b], af € R[a, b],
a € Rivazi
b b
(f(x) £ g(x))dx = [ f(x)dx £ [ g(x)dx

a

o

af(x)dx = afbf(x)dx.

a

o

Ve ¥ S

@ Ako je f € R[a, b] i ako se funkcija g : [a, b] — R razlikuje u kona&nom broju
tataka od funkcije f(x) tada je i g € R[a, b] i vazi

/b F(x)dx = /b g(x)dx.
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(LT IIRIETEll  Neke osobine odredjenog integrala

1
o Ako f,g € R[a,b] tada f - g € R[a, b], |f| € R[a, b], 7€ R[a, b] uz uslov
[f(x)| > a>0zax € [a,b].
o (aditivnost integrala) Neka su a, b, ¢ € R krajevi tri zatvorena intervala. Ako

je f integrabilna na najveCem od ovih intervala onda je ona integrabilna i na
ostala dva. Pri tom vazi

@ (monotonost i procena integrala) Ako je f € R[a,b], a< bi f(x) >0,
X € [a, b] tada je i

/bf(x)dx > 0.
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Neheleschinelod e nonlinick I3
@ Ako je f(x) < g(x), x € [a,b], a< b, f,g € R[a,b] onda je

b b

/ F(x)dx < / g(x)dx.

a a

@ Neka je f : [a, b] — R integrabilna i nenegativna (nepozitivna) funkcija. Ako
postoji tatka ¢ € [a, b] takva da je f(c) > 0 (f(c) < 0) u kojoj je funkcija
neprekidna ako ¢ € (a, b), a neprekidna sa leve (desne) strane ako je c = b

(c = a), onda je
/bf(x)dx >0 </ab f(x)dx < 0) .

@ Ako je f € R[a,b], a < b onda vaZi nejednakost

b b
/f(x)dx g/ ()| dx < (b—a) sup |F(x)].

x€Ela,b]
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(LT IIRIETEll  Neke osobine odredjenog integrala

Primer

x , xs0 nad [—-1,2].

Na¢i odredeni integral funkcije f(x) = { 5 x>0

Funkcija f(x) je neprekidna u svim tatkama intervala [—1,2] osim u 0 gde ima
prekid prve vrste, pa je ona integrabilna nad [—1,2] ali nema primitivnu funkciju
pa se ne moze primeniti Njutn Lajbnicova formula. Kako je

ff dx—ff dx—l—ff Ydx i
0

0 0 5 2 2
J f(x)dx = fxdx:%ﬁl :—%, ff(x)dx:dex:5x|g =10 (f(x) =xi
1 0 0

g(x) = 5 se razlikuju nad intervalom [0, 2] samo u jednoj taZki jer je £(0) =0,
g(0) =5, pa imaju isti odredeni integral), to je
2

7f1 f(x)dx = —% +10 = %.
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Odredjeni integral Neke osobine odredjenog integrala

Teorema o srednjoj vrednosti:

Teorema

Neka f,g € Rla, b], a< b, m= inf f(x), M= sup f(x)i
x€la,b] x€[a,b]
g(x) > 0(g(x) <0), za x € [a, b]. Tada postoji m <n < M, takvo da je

b

/b )0k = [ g(x)ax.

a

Ako je jog i f € C°[a, b] (CO[a, b] je skup svih neprekidnih funkcija nad intervalom
[a, b]), onda postoji ¢ € [a, b] takvo da je

/b f(x)g(x)dx = f(c) /b g(x)dx.
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(LT IIRITEIll  Neke osobine odredjenog integrala

Neke osobine odredenog integrala

Dokaz. Bez ogranitenja op¥tosti moZe se pretpostaviti da je funkcija g(x)
nenegativna. Tada iz m < f(x) < M sledi

mg(x) < f(x)g(x) < Mg(x), x € [a,b].

Integracijom se dobija

b b
m [ g( < [f( dX<Mfg x, x € [a,b].

b b
Ako je [ g(x)dx =0, onda je [ f(x)g(x)dx =0, pa jednakost vazi.
a a

b
J f(x)g(x)dx

b
Ako je [ g(x)dx >0, onda je m < =*——— < M, pa se moZe uzeti
a J g(x)dx
b
J F(x)g(x)dx
n="3 U
[ g(x)dx
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(LT IIRIETEll  Neke osobine odredjenog integrala

Posledica

Neka f € R[a,b], m= inf f(x), M= sup f(x). Tada postojim <n < M,
x€la,b] x€|a,b]

takvo da je

f F(x)dx = (b — a).
Ako je f € C°a, b] onda postoji ce [a, b] takvo da je

ff x)dx = f(c)(b — a).
y
Y1) __——
F E
D
A B
a C X
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(LIRS Odredjeni integral kao funkcija granice

Odredeni integral kao funkcija granice

f(x) je integrabilna nad [A, B], a € [A, B] proizvoljna tatka. Za x € [A, B] :

= f f(t)dt je integral sa promenljivom gornjom granicom
a

@ h(x) = [ f(t)dt je integral sa promenljivom donjom granicom
X

Teorema
Neka f,g € R[A, B] i I(x f f(t)dt, x € [A, B], a € [A, B]. Tada vazi:

1) I(x) je neprekidna funkcua nad [A, B]

2) Ako je funkcija f(x) neprekidna u tatki x € (A, B] (x € [A, B)) sa leve
(desne) strane, tada funkcija I(x) ima levi (desni) izvod u tacki x. Pri tome

L) = £(x),  (LL(x) = £(x)).
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(LT IIRITEIM Odredjeni integral kao funkcija granice

Dokaz. Dokazacemo 2), za slu¢aj kad je funkcija f(x) neprekidna nad intervalom
[A, B i x € (A B). Kako je

to na osnovu teoreme o srednjoj vrednosti za integrale, zbog neprekidnosti funkcije
f(x) sledi da postoji tatka & € [x,x + Ax] C [A, B], za Ax > 0, odnosno
€ € [x+ Ax,x] C [A, B], za Ax < 0, tako da je

©

16 dt

L X L AX(e) 7
)= M A Tl A~ Al O =)
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(LT IIRITEIM Odredjeni integral kao funkcija granice

Za funkciju l(x) pod istim uslovima vaZi

o [1(x) je neprekidna nad intervalom [A, B],
o h_/(x) = (~1-(x))' = ~1"(x) = ~F(x),x € (A,B],
by (x) = (~L(x)) = =1+ =(x) = ~F(x), x € [A, B).

Posledica

Ako je f(x) neprekidna funkcija nad [A, B] tada funkcija I(x) ima izvod nad
intervalom [A, B], pri &emu vazi I'(x) = f(x), x € [A, B].

Posledica

Ako je funkcija f(x) neprekidna nad intervalom |, tada je funkcija
X
F(x) = [ f(t)dt, pri &emu je a proizvoljna tacka iz intervala |, primitivna funkcija

a
funkcije f(x) nad .
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(LT IIRITEIM Odredjeni integral kao funkcija granice

Primer
J Shntdt
Naéi lim L
X—00 X
. .. 2+Inx . .
Kako je funkcija f(x) = 34 neprekidna za x > 1, to postoji tatka £ € [1, x]
X
tako da je
/2+Int 2+4+1In¢
=(x—-1) .
3+Int 3+1In¢
1
Kako je f(x) = 2+ Inx onotono rastuca i li 24 Inx (1) = =, sledi
I8 T = 3 x menetone st b I 3 finx 3 !
24+ Inx 2
= — > .
da f(x) 3+|nxe{3,1},zax1
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(LT IIRITEIM Odredjeni integral kao funkcija granice

Sledi da

[24Int 24+ 1n¢

S = (x—1 .
3rimedt ~ X D3 7o X
1

Primenom Lopitalovog pravila dobijamo da je

X
24Int
f 3+Intdt 2+4In x
. 1 .
lim 21— — |jm 3fnx 1
X—00 X X—>00 1
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Odredjeni integral Parcijalna integracija i smena promenljive

Parcijalna integracija i smena promenljive

Teorema

Neka funkcije u(x), v(x) imaju neprekidne izvode nad [a, b]. Tada vaZi

:’ - /b v(x)du(x).

/u(X)dv(x) = u(x)v(x)

Teorema

Neka je funkcija f : [A, B] — R neprekidna, a funkcija ¢ : [ao, Bo] — [A, B] ima
neprekidan izvod. Ako je a € [ag, fol, B € [ao, o], a = w(a), b= (), onda
vaZi jednakost
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(LT IRl Parcijalna integracija i smena promenljive

Dokaz. neka je F(x) primitivna funkcija funkcije f(x), x € [A, B]. Za sloZenu
funkeiju (F o ¢)(t) = F(¢(t)), t € [ao, fo] imamo

d

S Fle(t) = Fo, - ¢ = f(p(t)) - (1)

Dakle, za ag < t < Sy funkcija F(¢(t)) je primitivna funkcija funkcije
f(p(t)) - ©'(t) pa je prema Njutn-Lajbnicovoj formuli

8
/f(w(t)) - @' (t)dt = F(p(B)) — Fp(e)) = F(b) — F(a).

Sa druge strane, iz F/(x) = f(x) sledi

O
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Primena odredenog integrala

POVRSINA RAVNIH FIGURA
@ pravougle koordinate: y = f(x) je neprekidna i nenegativna za x € [a, b]

P_/abf(x)dx

| o x=(t),
@ parametarski oblik: { Y = 0(t) ,t € o, O]
ima neprekidan izvod nad [a, f]
monotono rastu¢a nad [a, ]
neprekidna nad [a, ]
>0, t €, pf]

? gp(t
? gp(t
o Y(t
e P(t

~— — — —

B
p= / (t) ¢/(t) dt

@ polarne koordinate: p = p(¢) neprekidna,a < ¢ < 8, |8 — a| <27

1 [P,
P=3 p°(p) do
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(LIRS Primena odredjenog integrala

DUZINA LUKA RAVNE KRIVE

@ pravougle koordinate: y = f(x), ima neprekidan izvod nad [a, b]

s—/ab\/l—f—f’?(x) dx

@ parametarski oblik: { );zﬁ((?)’ st e [a,f]

o (t), ¥(t) imaju neprekidan izvod nad [«, 5]
s ¢'(t) >0 nad [a, f]

s-/jdwq(t)—!—cp'z(t) dt—/jq/xq(t)—i—ylz(t) dt

@ polarne koordinate: p = p(¢),a < ¢ < 3, p ima neprekidan prvi izvod nad

(o, 5] )
s= / 2(9) + p2(9) dp
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(LIRS Primena odredjenog integrala

ZAPREMINA OBRTNIH TELA
@ pravougle koordinate: y = f(x) neprekidna nad [a, b]

b
V:ﬂ'/ f2(x) dx

@ parametarski oblik: { ))(/zi((tt))’ ,t € o, O]

@ (t) ima neprekidan izvod nad [«, ]
@ (t) monotono rastuca nad [a, 3]

o 1(t) neprekidna nad [a, ]

o Y(t) >0, t € [a,p]

B
Venr / GA(1)/(t) dt

@ polarne koordinate: p = p(¢) >0, a < ¢ < 3, p ima neprekidan prvi izvod
nad [o, 8] C [0, 7]
2w

%4
3

p*(¢)sinpdp

[e3%
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(LIRS Primena odredjenog integrala

POVRSINA OMOTACA OBRTNIH TELA
@ pravougle koordinate: y = f(x) > 0 i ima neprekidan prvi izvod nad [a, b]

S—2n /b FOV/1 + F2(x) dx

| o x=(t),
@ parametarski oblik: { Y = (1) ,t € e, O]
@ (t) i ¥(t) imaju neprekidan prvi izvod nad [«, ]
s ¢'(t) >0 nad [a, f]
o Y(t) >0, t € [a,f]

B
S=2r / BV (E) + o 2(e) dt

@ polarne koordinate: p = p(¢), o < ¢ < 8 C [0, 7], p ima neprekidan prvi
izvod nad [a, ]

B
P=2r [ plo)y/iP(e) + p2(e)sin pdp
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Nesvojstveni integral

MOTIVACIJA (geometrijska interpretacija)

T

[ f(x)dx, f(x) > 0 predstavlja povriinu ravnog lika ograni¢enog x-osom, pravama
a

x =a, x =T i lukom krive y = f(x) nad intervalom [a, T]. Prirodno bi bilo
povrinu lika ograni¢enog x-osom, pravom x = a i lukom krive y = f(x) nad

intervalom [a, c0) definisati kao [ f(x)dx
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Nesvojstveni integral Nesvojstveni integral | vrste

Nesvojstveni integral | vrste

Definicija
Neka je funkcija f(x) definisana nad [a, 00) i integrabilna nad svakim zatvorenim

intervalom [a, T] C [a, 00). Nesvojstveni integral funkcije f(x) nad intervalom

[a,00), uoznaci [ f(x)dx je funkcija F(T) definisana sa
[2,00)

F(T) = / f(x)dx, T>a.

T o0
Ako postoji A= lim F(T)= lim [f(x)dx, uoznaci [ f(x)dx, tada
T—oo T—o07y 3

nesvojstveni integral [ f(x) dx konvergira ka broju A. Ako grani¢na vrednost
[a,00)
Tlim F(T) ne postoji, tada nesvojstveni integral [ f(x) dx divergira.
—00

[a,00)
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Nesvojstveni integral Nesvojstveni integral | vrste

Definicija
Neka je funkcija f(x) definisana nad (—o0, a] i integrabilna nad svakim zatvorenim
intervalom [T, a] C (—oo, a]. Nesvojstveni integral funkcije f(x) nad intervalom

(=00, a|, uoznaci [ f(x)dx je funkcija F(T) definisana sa
(_Dova]

F(T) = / f(x)dx, T<a.

a a
Ako postoji B=_lim F(T)= _lim [f(x), uoznaci [ f(x)dx, tada
T——o0 T——o0 T oo
nesvojstveni integral [ f(x)dx konvergira ka broju B. Ako grani¢na vrednost
(70073]
Tlim F(T) ne postoji, tada nesvojstveni integral [ f(x)dx divergira.
——00

(700,3]
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Nesvojstveni integral Nesvojstveni integral | vrste

Definicija
Neka je funkcija f(x) definisana nad intervalom (—oo, 00) i integrabilna nad
svakim zatvorenim intervalom [M, N] C (—o0, 00). Nesvojstveni integral funkcije

f(x) nad intervalom (—o0,00), u oznaci [ f(x)dx, je ureden par
(700»00)

(—o0,a] [a,00)
| f(x)dx, [ f(x)dx, gde je a proizvoljan realan broj. Ako oba ova
(—o0,a] [a,00)

nesvojstvena integrala konvergiraju tada nesvojstveni integral [ f(x)dx
(700700)

( [ f(x)dx, [ f(x)dx> nesvojstvenih integrala

o0 a oo
konvergira i pisemo [ f(x)dx = [ f(x)dx + [ f(x)dx. Ukoliko bar jedan od
—oo —oo a
njih divergira tada i nesvojstveni integral [ f(x)dx divergira.

(700700)
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Nesvojstveni integral Nesvojstveni integral | vrste

Nesvojstvene integrale [ f(x)dx, [ f(x)dx, [ f(x)dx jednim imenom

zovemo nesvojstveni integral prve vrste.

Primer

Ispitati konvergenciju nesvojstvenog integrala l, = [ ;’—ﬁ, a e R
[17CX))

Resenje. Po definiciji treba posmatrati

.
lim dX—L<|im Tla—l), a#1.

T—o0 X - l—a \ T
1

l1-a<0 = T'V*=50,T—o = I, konvergira ka 2=
1—-a>0 = T'? 500, T > = I, divergira

T
a=1 = [£=InT =00, T—>00 = I divergira

1

Dakle, I, konvergira za a > 1, a divergira za o < 1.
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NEEVSEVIRNIES-EII  Nesvojstveni integral | vrste

@ Ako postoji, grani¢na vrednost

lim f f(x)dx =V.P. [ f(x)dx J

T—oo (—00,00)

naziva se glavna vrednost integrala.

@ Ako nesvojstveni integral [ f(x)dx konvergira, tada postoji

(700700)
V.P. [ f(x)dx ivaZ jednakost
(—DQ,DQ)
[ f(x)dx=V.P. [ f(x)dx.
—00 (—o00,00)
@ Moze da postoji V.P. [ f(x)dx, a da nesvojstveni integral
(700700)
| f(x)dx divergira (sledeéi primer).

(—DQ,DQ)
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NEEVSEVIRNIES-EII  Nesvojstveni integral | vrste

Primer

Ispitati konvergenciju nesvojstvenog integrala | = [ I +X2 dx.
(700)00)

Resenje. = ( Ik 1+X2 dx, J 1+X2 dx> = (h, h).
(

—00,a] [a,00)
Kako je

)
im [ 252 = Jim In(1+ T2)~In(1+ ) = o

T—o0 7

to I, divergira, pa I divergira. Za glavnu vrednost se dobija

VP, [ izdx = lim f1+X2dx
(—o0,00) >

- Tlinoo(ln(l +T?) —In(14 T?))
= o
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Nesvojstveni integral |l vrste

Definicija
Neka je f(x) definisana nad kona&nim intervalom [a, b) i integrabilna nad svakim

zatvorenim intervalom [a, b — €] C [a, b), € > 0. Nesvojstveni integral druge vrste

funkcije f(x) nad intervalom [a, b) u oznaci [ f(x)dx je funkcija F(g) definisana
[2,b)
sa

b—e
F(e)= | f(x)dx, a<b—e<b.
bie
Ako postoji lim F(g) = lim [ f(x)dx = A, tada nesvojstveni integral
e—0+t e—0" 3

b b—e
| f(x)dx konvergira ka A. Pise se [ f(x)dx = Iing+ | f(x)dx = A. Ukoliko
[a,b) a e=0" 4

IirE+ F(e) ne postoji, nesvojstveni integral [ f(x)dx divergira.

E—r [a,b)
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NEEVSEVIRNIE-EII  Nesvojstveni integral Il vrste

Primer

Ispitati konvergenciju nesvojstvenog integrala

[t

Regenje.
l—¢ d
. X . .
6|l>rg+ / ﬁ = sll{TQ‘L(arCSln(l — E) - 0)
_ T
2

. . . T
pa nesvojstveni integral / konvergira ka >

dx
Vv1—x2

[0.1)
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NEEVSEVIRNIE-EII  Nesvojstveni integral Il vrste

Definicija
Neka je f(x) definisana nad kona&nim intervalom (a, b] i integrabilna nad svakim
zatvorenim intervalom [a+ €, b] C (a, b],e > 0.
Nesvojstveni integral druge vrste funkcije f(x) nad intervalom (a, b] u oznaci
| f(x)dx je funkcija F(c) definisana sa
(a,b]

b
F(e)= [ f(x)dx, a<a+e<b.
a+te

b
Ako postoji lim F(e) = lim [ f(x)dx = B, tada nesvojstveni integral
e—0t e—=0t 4 ¢

b b
| f(x)dx konvergira ka B. Pise se [ f(x)dx = lim [ f(x)dx = B. Ukoliko
a

(a.6] 0%t
Iirg+ F(e) ne postoji, nesvojstveni integral [ f(x)dx divergira.
ge—

(a,b]
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NEEVSEVIRNIE-EII  Nesvojstveni integral Il vrste

Definicija
Neka je f(x) definisana nad kona&nim intervalom (a, b) i integrabilna nad svakim

zatvorenim intervalom [m, M] C (a, b).
Nesvojstveni integral druge vrste funkcije f(x) nad intervalom (a, b) u oznaci

[ f(x)dx je ureden par | [ f(x)dx, [ f(x)dx) nesvojstvenih integrala

(a,b) (a,c] [e,b)

J f(x)dx i [ f(x)dx, gde je c € (a,b) proizvoljan realan broj. Ako svaki od
(a,c] [c,b)

nesvojstvenih integrala [ f(x)dx i [ f(x)dx konvergira, onda nesvojstveni

(a,c] [e,b)

b c b
integral [ f(x)dx konvergira i piSemo [ f(x)dx = [ f(x)dx + [ f(x)dx, a
(a,b) a a c

ukoliko bar jedan od njih divergira, nesvojstveni integral [ f(x)dx divergira.
(a,b)
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NEEVSEVIRNIE-EII  Nesvojstveni integral Il vrste

Definicija
Ako je f(x) definisana u svim tatkama intervala (a, b) osim u tacki c € (a, b) i
ako su definisani nesvojstveni integrali [ f(x)dx i [ f(x)dx tada je
(a,) (c,b)
nesvojstveni integral druge vrste funkcije f(x) nad intervalom (a, b) u oznaci

[ f(x)dx ureden par < [ f(x)dx, [ f(x)dx> nesvojstvenih integrala
(a7b) (a,c) (Cab)

J f(x)dx i [ f(x)dx. Ako oba nesvojstvena integrala [ f(x)dx i [ f(x)dx
(a,c) (¢,b) (a,c) (¢,b)
konvergiraju, onda nesvojstveni integral [ f(x)dx konvergira i piSemo

(a,b)

b c b
[ f(x)dx = [ f(x)dx + [ f(x)dx, a ukoliko bar jedan od njih divergira,

nesvojstveni integral [ f(x)dx divergira.
(a,b)
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NEEVSEVIRNIE-EII  Nesvojstveni integral Il vrste

Definicija
Ako za nesvojstveni integral [ f(x)dx postoji grani¢na vrednost
(a,b)

b—e
lim [ f(x)dx=V.P. [ f(x)dx
e0% a4 (a,b)

to je glavna vrednost nesvojstvenog integrala [ f(x)dx.
(a,b)

@ Slitno se definide i nesvojstveni integral [ f(x)dx kada funkcija f(x) nije
(a,b)
definisana u kona&nom broju taaka intervala (a, b).
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NEEVSEVIRNIE-EII  Nesvojstveni integral Il vrste

Napomena

Pri definiciji [ f(x)dx nismo niSta pretpostavili o ponasanju funkcije f(x) u
[a,b)
tacki b!

@ ako f(x) — oo, kad x — b, nesvojstveni integral moZe da konvergira ili da
divergira
@ ako postoji lim f(x) = L, nesvojstveni integral moZe samo da konvergira i

x—b—
b

to ka Rimanovom integralu [ f,(x)dx funkcije
a

fl(x)—{ Z(x) , x€lab)

, x=0b ’

b
pa vazi jednakost [ f(x)dx = [ fi(x)dx.
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NEEVSEVIRNIE-EII  Nesvojstveni integral Il vrste

Primer

Ispitati konvergenciju nesvojstvenog integrala lg = %.

(0,1]

Resenje. Za 3> 0, f(x) = & — oo, x — 0T. Po definiciji je

lim [ 2 = -15(1 — lim =711,

e—0 e—0
—B4+1>0 = A1 500 = Iz konvergira ka ﬁ
—B4+1<0 = P 500,60 = Ig divergira

1
B=1 = [£=—Inec—>o00o,e—>0 = Isdivergira

£

Dakle, /g konvergira za 8 < 1, a divergira za 8 > 1.
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WEEVSEVIRIIEIEIM  Nesvojstveni integral |1l vrste

Nesvojstveni integral Il vrste

Definicija
Neka je funkcija f(x) integrabilna nad svakim zatvorenim intervalom [a + ¢, T],
e>0,T>0,a+e< T < oo. Po definiciji je

[ f(x)dx=1| [ f(x)dx, [ f(x , € € (a,00) nesvojstveni integral trece
(a,00) (a,c] [c 00)
vrste funkcije f(x) nad intervalom (a, b)
Ako oba nesvojstvena integrala [ f(x)dx i [ f(x)dx (druge i prve vrste,
(a,c] [c 00)
respektivno) konvergiraju, onda nesvojstveni integral [ f(x)dx konvergira i
(2,00)

pisemo :fof(x)dx = afcf(x)dx + zof(x)dx

@ Sli¢no se definiSe ostali slu€ajevi nesvojstvenog integrala trece vrste.
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Nesvojstveni integral Osnovne osobine nesvojstvenog integrala

Osnovne osobine nesvojstvenog integrala

Linearnost nesvojstvenog integrala:

Teorema

Ako [ f(x)dx i [ g(x)dx konvergiraju tada za svako o, 3 € R vaZi

[2.5¢) [2.50)
7(af(x) + Bg(x)) dx = a]of(x)dx +8 ?g(x)dx

Parcijalna integracija u nesvojstvenom integralu:

Teorema

Pretpostavimo da [ u(x)v'(x)dx i [ v(x)u'(x)dx konvergiraju. Tada vaZi:

[a,00) [a,00)

T—o0

/ w6V (x)dx = lim u(T)(T) — u(a)v(a) — / V() (x)dx.

y
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WEEVSEVIRLIES-EII  Osnovne osobine nesvojstvenog integrala

Smena promenljive u nesvojstvenom integralu:

Teorema

Neka funkcija t = ¢(x) ima neprekidan prvi izvod razli&it od nule nad [a, c0) i

neka nesvojstveni integral [ f(x)dx konvergira. Tada vaZi
[a,00)

oo

[ feade = [ fatens (e,
A

a
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Nesvojstveni integral Kriterijumi konvergencije nesvojstvenog integrala

Kriterijumi konvergencije nesvojstvenog integrala

Kosijev kriterijum
Nesvojstveni integral [ f(x)dx konvergira ako i samo ako za svako € > 0
[a,00)
postoji realan broj To > a takav da za svako T, T' takve daje T' > T > Ty vaZi
T’

/f(x)dx <e.

T

Navescemo jo3 neke od kriterijuma konvergencije i to samo za slu¢aj kad je
podintegralna funkcija f(x) stalnog znaka za x > xp.
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Nesvojstveni integral Kriterijumi konvergencije nesvojstvenog integrala

Uporedni kriterijum

Neka je 0 < f(x) < Mg(x) za x > a,M > 0.
Ako [ g(x)dx konvergira, onda konvergira i integral [ f(x)dx i vaZi da je

[a,00) [a,00)

]of(x)dx < I\/I]og(x)dx.

a

Obrnuto, ako je 0 < mg(x) < f(x), zax > a, m >0 i integral [ g(x)dx
[2,00)
divergira tada divergira i [ f(x)dx.

[a,00)
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Nesvojstveni integral Kriterijumi konvergencije nesvojstvenog integrala

Pogodnije za upotrebu:

Teorema
Neko je f(x) >0 i g(x) > 0 i f(x) ~ g(x), kada x — oo, tj. lim £ = 1.
X—>00
Tada nesvojstveni integrali [ f(x)dx i [ g(x)dx istovremeno konvergiraju ili
[a,00) [a,00)
divergiraju.
Primer

x> 4x348x3 d

Ispitati konvergenciju nesvojstvenog integrala [ B o

1,00

v

5 3 2 5 3 2
epie XX 48x" 1 1 i i i X X" 48x7
Regenje. X8 ~ 1 x — o0, a kako{ f) = dx divergira, to |[ f) o dx

1,00 1,00

divergira.
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NEEVIEVIRIIEEII  Neke funkcije definisane nesvojstvenim integralom

Neke funkcije definisane nesvojstvenim integralom

Ojlerova gama funkcija:

(x) :/e_ttx_ldt
0

definisana je za one x € R za koje nesvojstveni integral [ e tt*ldt
(0,00)
konvergira, odnosno za x > 0.

Funkcionalna jednatina za gama funkciju:

MNx+1)=xM(x), x>0.

pokazuje smisao uvodenja gama funkcije - prosiruje n! na skup pozitivnih realnih
brojeva; ako stavimo redom x = n,n—1,...,2,1 i imamo u vidu da je

[(1) = [ e tdt =1, dobija se [(n+ 1) = nl.
0
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NEEVIEVIRIIEEII  Neke funkcije definisane nesvojstvenim integralom

Beta funkcija:

1

B(a,b) = /xafl(l — x)Pdx

definisana je za one vrednosti a, b € R za koje nesvojstveni integral
[ x*71(1 — x)b~1dx konvergira, odnosno za a> 0 i b > 0.
(0,1)

Veza beta i gama funkcije:

500 / 569



Nesvojstveni integral Apsolutna konvergencija nesvojstvenog integrala

Apsolutna konvergencija nesvojstvenog integrala

Definicija
Nesvojstveni integral prve vrste [ f(x)dx konvergira apsolutno ako

[a,00)

[ |f(x)|dx konvergira. Nesvojstveni integral koji je konvergentan, ali ne
[a,00)

apsolutno konvergentan konvergira uslovno.

@ definicija je data za nesvojstveni integral prve vrste, slitno se moZe uraditi za
nesvojstveni integral druge i treCe vrste

Teorema

Svaki apsolutno konvergentan integral je i konvergentan (u obi¢nom smislu).
Obrnuto ne mora da vaZi.
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Opsti pojmovi, definicije

9 Diferencijalna jednadina - jednadina koja sadrzi bar jedan izvod nepoznate
funkcije jedne ili vise promenljivih.

@ Obi¢na diferencijalna jednadina - nepoznata funkcija je funkcija jedne
promenljive, parcijalna diferencijalna jednadina - nepoznata funkcija je
funkcija vise promenljivih.

9 Red diferencijalne jednaline je red najviSeg izvoda nepoznate funkcije koji se
javlja.

@ Sistem (obic¢nih ili parcijalnih) diferencijalnih jedna&ina je sistem jednacina
kod kog svaka jednadina sadrzi bar jedan izvod reda n € N jedne od
nepoznatih funkcija jedne ili vise promenljivih, npr.
x'=2x = 3xy,y’ = —2x+ 5xy,x = x(t),y = y(t).

Ako je broj nepoznatih funkcija jednak broju jedna&ina sistema, sistem je
odreden (naredni primer).
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DIRIIEIRENLET  Opsti pojmovi, definicije

@ Jednatina
tx'(t) +ty"(t) =t> -1

moZe se smatrati neodredenim sistemom (n =2, m = 1).
@ Opsti oblik jedna&ine n-tog reda:
G(x,y,y',...,y(”)) =0, n>0.

@ Normalni oblik jednacine n-tog reda:

.y(n) = F(Xv}/vylv"'vy(nil))'

@ Funkcija y = f(x), definisana i n puta diferencijabilna u intervalu (a, b) je
reSenje jednaline n-tog reda u opstem, tj. normalnom obliku, ako je za svako
x € (a, b)
G(x, f(x), f(x),...,fM(x)) =0,

odnosno
£ = F(x, f(x), F'(x),..., FTD(x)).
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DIRIIEIRENLET  Opsti pojmovi, definicije

@ Regenje je u implicitnom obliku ako je dato vezom g(x,y) = 0, npr.
x? 4+ y? = r? je implicitno refenje jednatine x + yy’ = 0.

@ Pocetni (Kogijev) problem - Pronadéi reSenje jednatine

G(Xayayla"'vy(n))zo

koje zadovoljava po&etni uslov

y(x0) =00, y'(x)=a, ..., y("_l)(Xo) = Qp-1,

pri emu je xp proizvoljna tatka posmatranog intervala, a; € R su proizvoljni
brojevi, i =0,...,n— 1.
@ Grani&ni problem - Problem drugog reda: naéi redenje jednatine y = y(x)
jednatine
"

y'=F(x,y,y")

nad intervalom [a, b] koje zadovoljava grani¢ni uslov

y(a)=A, y(b)=B.
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DIRIIEIRENLET  Opsti pojmovi, definicije

y'+y=0, y(0)=1y(r)=-1

je grani¢ni problem koji ima beskonaéno mnogo resenja.

y'+y=0, y(0)=1,y(n)=2

je grani¢ni problem koji nema reSenje.

y'+y=0, y(O)zl,yG) =0

je grani¢ni problem koji ima jedinstveno resenje.
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IR LENSLET  Opsti pojmovi, definicije

Modeli:

izvod % predstavlja veli¢inu promene funkcije y(x) u zavisnosti od x, a sve §to se
u prirodi de$ava je promena

@ y' = ky, y = y(x), k-proizvoljna konstanta - Maltusov zakon rasta populacije

@ y" —2xy’ +2py = x?, y = y(x), p-proizvoljna konstanta - Ermitova
jednacina &ija su reSenja talasne funkcije kvantne mehanike

2 . . . . - .
° % = az%, u = (x,t) - jednodimenzionalna jedna&ina provodenja toplote

% + £sinf = 0 - jednatina matematitkog klatna (L je duZina klatna, g je
gravitaciona konstanta, 6 je uglovno udaljenje od ravnoteZnog poloZzaja)
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DIRIIEIRENLET  Opsti pojmovi, definicije

@ N(t)-broj jedinki posmatrane populacije u trenutku t; ako smatramo da je
veli¢ina promene populacije srazmerna broju jedinki dobijamo matematicki
model rasta populacije:

N'(t) = kN(t), k = const.
Tada je N(t) reSenje potetnog problema
N'(t) = kN(t), N(to) = No :

W —kN = 9 =kdt= [9 = [kdt=InN(t)=kt+c
= N(t) = ekt = N(t) = et

t=1t) = N(to) = clekto, tj. aq = Noeikto,
pa je reéenje posmatranog potetnog problema

N(t) = Noek(t=t),
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Opstilpojmoviiidefinicije
Ukoliko matematicki model pojave zadovoljava osobine:
@ postoji reSenje poletnog problema,
@ reSenje poletnog problema je jedinstveno,

@ reSenje poletnog problema neprekidno zavisi od po&etnih uslova

kaZe se da je problem korektno postavljen u smislu Adamara.

9 Kvalitativna analiza - ne samo nalaZenje reSenja, vec i proutavanje njegovih
osobina na osnovu posmatrane jednacine

@ klju€na tatka postupka reSavanja bila je integracija, odatle se termin
integrala diferencijalne jedna&ine koristi za njeno resenje
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Diferencijalne jednacine prvog reda

@ Opsti oblik
G(x,y,y')=0 (5)

@ Normalni oblik
y'=F(x,y) (6)

@ x je promenljiva, y = y(x) je nepoznata funkcija, y’ je izvod po promenljivoj,
F, G poznate funkcije.

@ y = f(x), definisana i diferencijabilna nad (a, b) je reZenje jednatine (5)
odnosno (6) ako za svako x € (a, b) vaZi da je

G(x,f(x),f'(x)) =0,

odnosno

f'(x) = F(x, f(x)).
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Diferencijalne jednatine prvog reda

Teorema o egzistenciji i jedinstvenosti resenja

a<x<b

a<y<pB i neka postoji

Neka je F(x,y) neprekidna u zatvorenoj oblasti G : {
K > 0 tako da u oblasti G vaZi

|F(x,y2) — F(x,y1)| < K |y2 — wa| (LipSicov uslov).
Tada postoji jedinstveno reSenje poletnog problema

yI:F(Xay)’ y(XO):y07 (XO,YO)E G7
koje je definisano nad intervalom [a’, b'] C [a, b]. ReSenje je dato sa
y(x) = lim yn(x), gde je {yn(x)} niz sukcesivnih aproksimacija,
n—00
definisan rekurzivno sa .
vo(x) =yo0, ya(x) =yo+ [ F(t,ya-1(t)dt),n=1,2,...

X0

a’ =max{a,x0 — 222, x0 — 02 b = min {b,xo + £, xo + 272},
M= sup [|f(x,y)| >0
(x,¥)€G
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Diferencijalne jednatine prvog reda

@ dovoljan uslov za konvergenciju niza je neprekidnost i LipSicov uslov

@ neprekidnost i jedinstvenost reSenja ne garantuju konvergenciju niza
sukcesivnih aproksimacija

@ ako niz konvergira ka nekom re$enju, ono ne mora biti jedinstveno

@ u praksi se umesto LipSicovog uslova zahteva da je u oblasti G

OF
<M.
'ay -

@ metoda se koristi u teorijske, a manje u prakti¢ne svrhe
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Diferencijalne jednatine prvog reda

Neka je funkcija F(x,y) definisana i neprekidna u oblasti G i neka je y = f(x) je
redenje jednatine y’ = F(x,y) nad intervalom (a, b).

@ (x,y,y’) je linijski element
@ skup svih linijskih elemenata je polje pravaca

@ tangenta reSenja y = f(x) u svakoj tatki (x,y) grafika ima koeficijent pravca
y' dat sa y’ = F(x,y); svaka kriva sa ovom osobinom je saglasna sa poljem
pravaca

@ skup svih krivih saglasnih sa poljem pravaca naziva se opste resenje jednacine

@ kriva koja zadovoljava potetni uslov y(xo) = yo, tj. prolazi kroz neku tatku
(x0, Yo) naziva se partikularno resenje
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Diferencijalne jednatine prvog reda

Primer
Odrediti reSenje y = y(x) diferencijalne jednacine y' = x.

U svim ta¢kama sa istom apscisom tangente imaju isti nagib:

X: ...,-2,-1,0,1,2, ...
y: | sve vrednosti (proizvoljne)
yo!|...,-2,-1,0,1,2, ...

Lako se moZe zakljutiti da su sva redenja (op3te reSenje u smislu na3e definicije)
data sa
X2

v =% +c

gde je c proizvoljna konstanta, a partikularno koje prolazi kroz tatku (xo, yo) sa
data sa
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Qjlerove poligonalne linije - aproksimacija resenja

@ podela kona¥nog intervala intervala (a, b) koji sadrzi xo :
a=2z,<zp1< < n<z=x<x31<--<x,=b

@ kroz (xp, yo) postavimo pravu Lo : y = yo + (x — x0)F(x0, ¥0), Sa nagibom
F(x0, ¥0)

@ ako je & = xp ili z; dosta blizu xp, u tatki &; ordinata prave Ly data sa
yvi = Yyo + (£ — x0)F(x0, o) ne odstupa mnogo od ordinate reSenja u toj tatki

@ kroz (&1,y1) postavimo pravu Ly 1y = y1 + (x — &) F (&1, 1)
@ nakon k koraka - Ojlerova poligonalna linija
Lic:y = yi + (x = &) F (& yi),
(€ < x < &y1, & = xi) il (€1 S x <&, &=2),i =1,2,...,n
gde se yyy1 rauna iz obrasca

Yir1 = Yk + (Ekr1 — &) F (ko vk), k= 0,1,...,n— L.
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N PR N R NP S PN IVSE S ERl  Jednacina koja razdvaja promenljive

Jednadina koja razdvaja promenljive

Normalni oblik: ‘y =f(x)g(y) ‘

Teorema

Ako je f(x) neprekidna nad a < x < b, a g(y) neprekidna i razli¢ita od 0 nad
a < y < f tada postoji jedinstveno reSenje jedna&ine y' = f(x)g(y) koje
zadovoljava pocetni uslov y(xp) = o, X0 € (a, b), yo € («, B) i definisano je na
nekoj okolini xy. Resenje je dato sa

y(x)=G1 (G(yo) +/X f(t)dt) ,

X0

pri &emu je G(u) primitivna funkcija za ﬁ nad («, f3).

Opste resenje pod uslovom g(y) # 0 je dato obrascem

/% :/f(x)dx+c.
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Neke klase integrabilnih diferencijalnih jednacina prvog reda [EEISHESHENRENEPEEIERTET IV

O egzistenciji i jedinstvenosti reSenja ako je funkcija g(y) neprekidna nad
intervalom («, 3), ali ne vazi g(y) # 0 nad datim intervalom:

@ Ako je g(yo) # 0, zbog neprekidnosti g(y) postoji interval (a1, 31) C («, B)
koji sadrzZi yy sa osobinom

g(¥)g(yo) > 0 za svako y € (a1, 1)

Zakljutak teoreme ostaje, ali se (a, §) zamenjuje sa (aq, £1).

o Ako je g(yo) = 0, redenje potetnog problema je sigurno funkcija y(x) = yo,
ali to reZenje ne mora da bude jedinstveno (videti sledeéi primer).
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Neke klase integrabilnih diferencijalnih jednacina prvog reda [EEISHESHENRENEPEEIERTET IV

Primer
Resiti po&etni problem y' = 3y3, y(1)=0

Jedno redenje pocetnog problema je y(x) = 0.
= 3y% zbog konvergencije nesvojstvenog integrala
du

d
/ 2 y(x) > 0, odnosno / 5
3u 3us
(¥(x),0)

d
lz
za y(x) <0,

2
3
(0,y(x))

da je

dui | 5
3uu% /dt7 odnosno v/ul}™) = t;.
1

O\:??
<

Sledi da je ¢/y(x) = x — 1, odnosno y(x) = (x — 1)3, pa dati problem ima

najmanje dva reSenja.
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Neke klase integrabilnih diferencijalnih jednacina prvog reda [EEISHESHENRENEPEEIERTET IV

Primer
Naéi resenje jedna&ine y' = x(y — 1)? koje prolazi kroz tacku (0,1). J
dy dx = 1 a +c = 1 2
— = XaxXx _—_ = — —_ = -
(y — 1) y_1_ 2 Y X2+ 2¢
2
= =1- -
y(x) x2 4 2c
1
Uzimajuéi u obzir po&etni uslov dobijamo 1 =1 — o tj. 0= p (konstanta u

"opstem” redenju ne moZe da se odredi).
Ova situacija je nastupila jer nesvojstveni integral

d d
/ ﬁ zay > 1, odnosno / yiy2 zay < 1
(Ly) (1)

divergira. Re3enje problema je y(x) = 1.
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Neke klase integrabilnih diferencijalnih jednacina prvog reda [lig! diferencijalna jed

Homogena diferencijalna jednacina

Normalni oblik: y' =f <Z> , f(t) je neprekidna funkcija nad (a, b);
X
flu) —
smenom: £ = u, y' = u+ xu’ svodi se na jednatinu v’ = flu)—u koja razdvaja
X X

promenljive.

Ako je f(u) — u # 0 nad intervalom (a,b) tada kroz svaku tatku (xo, yo) oblasti

Ja<i<b . . Ja<i<hb . . _ -

G: >0 ili G: { <0 prolazi samo jedno redenje y(x) = xu(x)

definisano za svako x za koje je
ili Ilm G(y) < G(y) +ff t)dt < lim G(y)

xo y—=B~
ili I|m G(y) < G(») +ff t)dt < lim G(y),
y—at
u(x)

gde je u(x) dato sa / OETE In

Uo
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Neke klase integrabilnih diferencijalnih jednacina prvog reda [lig! diferencijalna jed

Ako je f(u) —u =0 za neko x € (a,b) :
@ Ako je f(ug) # uo, (uo = i—g) , zbog neprekidnosti funkcije f(u) — u postoji
interval (a1, b1) C (a, b), koji sadrzi tatku up, tako da je

(f(u) — u)(f(uo) — up) > 0 za svako u € (a1, by)

pa svi zaklju&ci vaZe nad podintervalom (a1, b1) intervala (a, b).

@ Ako je f(u) —u = 0 za svako u € (a,b), jednatina glasi y’ = £, a to je
jednatina koja razdvaja promenljive.

@ Ako je f(ug) = uo, (uo = i—g) , reSenje poletnog problema je sigurno funkcija
y(x) = uox, (y'(x) = up = () = f(uo)) . Ovo redenje ne mora da bude
jedinstveno.
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Neke klase integrabilnih diferencijalnih jednacina prvog reda [lig! difer

Napomena

Opste reSenje uz pretpostavku f(u) — u # 0 dato je obrascem
S/ % =Inex (u=1Y%), y=y(x), apartikularno se dobija odredivanjem c

iz po&etnog uslova y(xo) = yo. Gornji integral mora da postoji nad posmatranim
intervalom!

Primer

v / aix+biy+c . )
Jednacinay’ = f (m) , gde su ay, ap, by, by, c1, ¢a realni brojevi, a f(t)
neprekidna funkcija nad intervalom (a, b), svodi se na jedna&inu koja razdvaja

promenljive ili na homogenu.

ail b1

@ Ako je D = by

=0, jednadina se smenom

aix+by+a=tiiax+bhy+co=t

svodi na jedna&inu koja razdvaja promenljive.
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Neke klase integrabilnih diferencijalnih jednacina prvog reda || diferencijalna jednacil

a b

9 Ako je D = by

# 0, smenom

x=X+a, y=Y+g0
gde su « i B (jedinstvenal) redenja sistema

aaa+bf+a = 0
pa+bf+a = 0

dobija se

Y — ) — f.<31X+ala—|—b1Y—|—b1ﬁ—|—cl)
Y X+ @B+ bY + B+ o

_ f<a1X+b1Y)_f 31+b1%
= 32X+b2Y - a2+b2%
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Linearna diferencijalna jednacina

Opéti oblik: \y’ +f(x) y=g(x) \

Teorema

Ako su funkcije f(x) i g(x) neprekidne nad intervalom (a, b) tada postoji
Jedinstveno reSenje linearne diferencijalne jednacine koje zadovoljava pocetni uslov
v(x0) = 0, X0 € (a, b), yo € R i definisano je nad (a, b) u obliku

— [ F(t)dt % fuydu
y(x)=e x yo+/@o g(t)dt

X0

@ smena: y(x) = u(x) - v(x)
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Neke klase integrabilnih diferencijalnih jednacina prvog reda [EIIGUITSVERERRECTEY

Bernulijeva jednadina

Opsti oblik: ‘y’ +f(x) y=g(x)y*,aeR

9@ a = 0 - linearna diferencijalna jednatina

9@ a =1 - jednatina koja razdvaja promenljive

@ smena: z(x) = (y(x))"*",  Z(x) = (1 - )y~ (x)y'(x)
Svodi se na linearnu diferencijalnu jedna&inu

Z(x)+ (1 —-a)f(x)z(x) = (1-a)g(x) =0

Ako su f(x) i g(x) neprekidne nad (a, b), tada kroz svaku tatku (xp, 2), gde je
xo € (a, b), zo € R, prolazi jedinstveno redenje definisano nad (a, b). Kako se zbog
« € R mora pretpostaviti da je y > 0, reSenje je u opstem slu€aju definisano na
najveem podintervalu (az, b1) od (a, b) kom pripada xp i u kom je z(x) > 0.
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Neke klase integrabilnih diferencijalnih jednacina prvog reda [ENICHECEERIIS NE-RE L ITEIEY

Jednadina totalnog diferencijala

| P(x,y) dx+ Q(x,y) dy =0 |
je jednatina totalnog diferencijala ako postoji funkcija F(x,y) takva da je
o dF(x,y) = P(x,y)dx + Q(x,y) dy

OF OF
9 X P(x,y), 8_y_ Q(x,y)

Teorema

Neka su P(x,y), Q(x,y), 2 5 P(x,y), 2 o Q(x,y) neprekidne u otvorenoj jednostruko
povezanoj oblasti G i Q(xo, yo) # 0. Da bi jedna&ina P(x,y) dx + Q(x,y)dy =0
bila jednacina totalnog diferencijala potrebno je i dovoljno da bude za svako
(x,y) e G

8 BQ(

y (y) = Ge(x,y).

Ako oblast nije jednostruko povezana, tvrdenje ne mora da vazi!
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Neke klase integrabilnih diferencijalnih jednacina prvog reda [RIRS-{EYEUIEITRAN]

Integracioni mnozitelj

oP 0
POy de QUrey)dy =0 S0 (xy) # 52(c.y)

Da li postoji funkcija h(x, y) # 0 takva da je diferencijalna jednatina

| h(x, y)P(x,y)ax + h(x,y)Q(x,y)dy =0 |

. - . .. . O(hP) ~0(hQ) 5
jednadina totalnog diferencijala, tj. dy (x,y) = Ee (x,y)7
1 ( @ 3 Q8h> . 0Q 0P

dy Ox _X_a

h(x, y) - integracioni mnoZitelj (funkcija koja ima u otvorenoj jednostruko
povezanoj oblasti G neprekidne parcijalne izvode, zadovoljava gornji uslov i
razli¢ita je od nule u G)
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Neke klase integrabilnih diferencijalnih jednacina prvog reda [INECEVERTELEETE

Klero-ova jednatina |y = xy'+f(y’)

Tvrdenje

Neka funkcija f(t) ima nad intervalom (a, b) neprekidan drugi izvod koji je razliit
od nule i neka je ¢(t) inverzna funkcija od —f'(t). Tada su reSenja jednacine
y =xy' + f(y') funkcije

@ y=xc+f(c), c€(a,b) (c jekonstanta)
o y = xp(x)+ f(p(x)) (tzv. singularno redenje)
definisano nad intervalom (a, ), gde a = i(nfb){—f’(t)} ako infimum
te(a,
postoji, u suprotnom o = —oo i § = sup {—f'(t)} ako supremum postoji, u

te(a,b)
suprotnom je 3 = oo

@ svaka kriva sastavljena od proizvoljnog luka AB krive i na nju nastavljenih
tangenata u tatkama A i B.
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________Neke klase integrabilnih diferencijalnih jednacina prvog redaJRGEELEILECRY
L 7 jednadi
agranzova jednacina

ly=xf(/)+ely) |

Uzmimo p = y’, tj. dy = pdx. Dobijamo y = xf(p) + g(p), a odavde
diferenciranjem pdx = dy = (xf'(p) + g’'(p))dp + f(p)dx, tj.
(f(p) — p)dx + (xf'(p) + &'(p))dp = 0.
dx  f'(p) g'(p)
SR PO ) T R - b
Sto je linearna jednatina, iz koje dobijamo x = x(p), ¥to sa
y(p) = x(p)f(p) + g(p) predstavlja resenje Lagranzove jednatine u
parametarskom obliku.

@ Ako jednatina f(p) — p = 0 ima reSenja i ako je jedno redenje p = c, tada je
redenje jednadine i y = cx + g(c).

@ Ako je f(p) — p = 0 za svako p, LagranZova jednatina postaje
y =xy" +g(y’) (Klero-ova).

(ovo je spec. slutaj opsteg postupka uvodenja parametra)
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SniZavanje reda diferencijalne jednatine
SniZavanje reda diferencijalne jednacine

1) |y (x) = f(x) , f(x) neprekidna funkcija nad (a, b)
YD) = /f (x) +a
Yy A(x) = /(fl(x)+c1)dx: Hh(x)+ ax+
_ cx" L Ch_1X
y(x) n(X)-l—m‘f'""f' 1 + Cn
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PISRIERENSLETRVI S FEEM  Snizavanje reda diferencijalne jednatine

Primer
Resiti po&etni problem y!V = sin x, y(0) = y”(0) = 1, y’(0) = y""(0) = 0 J

= [y"V(x)dx = [sinxdx = —cosx + ci,
= [y"(x dx—f( cosx + c1)dx = —sinx + c1x + ¢,

y' —fy” dX—f(—sinX+C1X+C2)dX:COSX+C1X—22+C2X+C3,
y=[y(x dX*f(COSX—I—ClX;+C2X+C3)dX:SinX+C1%3+C2X—22+C3X+C4,

k<‘<

y”/(O):—l—FCl:O = =1

y'(0)=c=1 = =1
y'(0)=14c=0 = g=-1
y(O):C4:1 = =1

:>y:sinx+x—63+%2—x+1
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PISRIERENSLETRVI S FEEM  Snizavanje reda diferencijalne jednatine

) [F(x,y R, y®D oy =0,1< k<n

smena: y®(x) = z(x)
dobijamo jedna&inu reda n — k oblika

F(x,z,Z,... ,z("_k)) =0.

V) | F(y,y".y",...,yM)=0,n>2

smena y' = z(y)
dy _dz _dzdy
"o _ / / o
YT o T ax dy dx =20y ) =2z
. dy" _d(zz) _dz , df dzdy , dz'dy
dx dx dx dx dy dx dy dx
= 222477
dobijamo jednatinu reda n — 1 oblika H(y,z,2,...,z2("=Y) =0.
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PISRIERENSLETRVI S FEEM  Snizavanje reda diferencijalne jednatine

e Ako znamo jedno redenje y;(x) diferencijalne jednatine
y"+ ai(x)y’ + ax(x)y =0,
tada se jednadina
y' +a(x)y’ + axx)y = f(x)
re$ava smenom
y = z(x)y1(x),
gde je z(x) nepoznata funkcija.

/

= Z'vi+ 2/
y=2zyn = )}j// o N

= Z'n+22yi+ 2
pa da bi y bilo reZenje z(x) mora da zadovoljava jedna&inu
nz" + 2y + a()n)2' + (11 + a(x)y1 + a(x)y1)z = f(x)

0
koja ne sadr?i z, pa joj se smenom z' = p,z’’ = p’ snizava red.
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PISRIERENSLETRVI S FEEM  Snizavanje reda diferencijalne jednatine

e Ako znamo dva reZenja y1(x) i y»(x) diferencijalne jedna&ine
Y'+ai(x)y’ + axx)y = f(x),

tj. ako je

1 (x) + a(x)yi(x) + a2(x)n(x) = f(x),

¥5' (x) + a1(x)ys(x) + a2(x)ya(x) = f(x),
oduzimanjem ove dve jednakosti dobija se

(y2(x) = y1(x))" + a1 (x)(y2(x) = y1(x))" + a2(x)(y2(x) — y1(x)) =0,
tj. funkcija h(x) = y»(x) — y1(x) je jedno redenje jednat&ine
y" 4+ a1(x)y’ + ax(x)y = 0.

Ona se reSava smenom

y = z2(x)(y2(x) = y1(x))-
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Diferencijalne jednatine viseg reda [ELICTLERICIEIER B - S0 EY

Linearna jednadina n—tog reda, n > 2

Opéti oblik: go(X)yM + g1 (x)y("V + -+ + ga(x)y = h(x).

Pretpostavke:

o h(x),gi(x),i=1,2,.

® go(x)#0,xel

.., n definisane i neprekidne nad otvorenim intervalom /

Laly] f(x)

Loyl = ¥y +ai()y™ D+ 4 ap(x)y
Oy~ &) 0 ) = )
e go(x)’ L2 ) &o(x)

y +ai(x)y" ) + -+ an(x)y = f(x)

@ f(x) =0,x € I - homogena diferencijalna jednatina,

u suprotnom je to nehomogena diferencijalna jednadina



Diferencijalne jednacine viseg reda Linearna jedna&ina n—tog reda

1) problem egzistencije resenja
2) problem jednoznatnosti resenja

3) problem pronalaZenja redenja (efektivnog resavanja)

Teorema
Ako su aj(x),i =1,2,...,n i f(x) neprekidne funkcije nad intervalom |, xo € |
proizvoljna tacka, a; € R, i = 0,1,...,n— 1 proizvoljni brojevi, tada postoji

Jednistveno resenje y(x) diferencijalne jedna&ine L,[y] = f(x) koje zadovoljava
pocetni uslov

y(x0) = ag, ¥'(x0) = ou, ... ,y(”*l)(xo) = an_1

i definisano je nad datim intervalom |.
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ISP RENLELTVEEEl  Homogena linearna jednatina

Homogena linearna jednacina L,[y] =0

Lema

Operator L,| ] je linearan, tj. vaZi

Ln[y1 + }/2] = Ln[}/l] + Ln[y2]7 Ln[c}/] = CLn[Y]y
gde je ¢ proizvoljna konstanta.

Teorema

(PRINCIP SUPERPOZICIJE) Ako su yi(x),i =1,2,..., m reSenja homogene
linearne diferencijalne jednacine tada je reSenje i
m

y(x) = > ciyi(x), gde su ¢; proizvoljne konstante.

i=1

Dokaz. L, [i c,-y;(x)] — é GLalyi(x)] = 0.

@ opste reSenje: m = n, ¢; se mogu izabrati tako da je zadovoljen svaki pocletni
uslov

@ partikularno resenje - dob. izborom konstanti ¢;, i=1,...,n
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Diferencijalne jednatine vifeg reda Homogena linearna jednatina

Definicija
Funkcije fi(x), i =1,2,...,n, n € N\ {1}, su linearno zavisne nad intervalom |
ako postoje brojevi ¢; koji nisu svi jednaki nuli, da je
afi(x)+ ah(x)+ -+ cpfa(x) =0, za svako x € I.
Funkcije koje nisu linearno zavisne su linearno nezavisne.

Definicija

Ako su funkcije y1(x), y2(x), ..., ya(x) € C"7(I), n > 2, tada je

nx) o) o ya(x)
yi(x) w»x) o yax)
W(X): W(y1,...,yn)(X)= : . .
AW B0y ()

determinanta Vronskog od y1(x), y2(x), ..., yn(x) nad I.
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ISR RENSLELTVEEEl  Homogena linearna jednatina

Lema

Neka su funkcije y1(x), y2(x), ..., yn(x) (n — 1) puta neprekidno diferencijabilne
nad intervalom |. Ako su funkcije y1,ys, ..., yn linearno zavisne nad intervalom I,
tada je W(x) = 0 za svako x € I.

Dokaz. Ako su funkcije y1, o, ..., ¥, linearno zavisne nad intervalom /, tada
postoje konstante ci, ¢o, . . ., ¢, koje nisu sve istovremeno jednake nuli, tako da je

ayi(x) + cya(x) + -+ cpyn(x) =0, za svako x € /.

Ako je na primer ¢, # 0, tada je
Gi .
Yn=aqy1 +ays+ -+ qp-1Yn-1, ai=——,i=1,2,....,n—1.

Cn

Sledi da je poslednja kolona u W(x) linearna kombinacija prethodnih kolona, pa je
W(x) = 0.
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ISR RENSLELTVEEEl  Homogena linearna jednatina

Lema

Ako su reSenja y1,y», . .., ¥n homogene linearne jednacine L,[y] = 0 linearno
nezavisna, tada je W(x) # 0, za svako x € I.

Teorema

Potreban i dovoljan uslov da y1(x), y2(x), - .., ya(x) budu linearno nezavisna
reSenja homogene linearne jednacine L,[y] = 0 nad nekim intervalom | je da bude
W(x) = W(y,y2,...,¥n)(x) #0, za svako x € I.

Dakle, za skup reZenja {y1,¥2,...,¥n} jednatine L,[y] =0 je ili W(x) =0 za
svako x € I ili W(x) # 0 za svako x € /.
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ISR RENSLELTVEEEl  Homogena linearna jednatina

Primer
Ispitati linearnu zavisnost funkcija y1(x) = x i ya(x) = x* nad R. Naéi W(x). J

Iz a1x + aox® = 0 za svako x € R sledi da je oy = ap = 0, jer:

x=1 = a1 +a; =0
x=-1 = —a1+a,=0

tako da su funkcije y1(x) = x i y2(x) = x? linearno nezavisne nad R.
Kako je

2

W(x)—’}}i}(x) y2(x) ‘— )1< )2<x =2x% — x* = X2,

sledi da je W(0) =0, W(x) # 0, za svako x # 0.
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ISR RENSLELTVEEEl  Homogena linearna jednatina

Primer

Da li funkcije y1(x) = x i y2(x) = x® mogu biti reSenja nad skupom R neke
homogene linearne jednacine oblika y" + a1(x)y’ + a2(x)y = 0, gde su ai(x) i
ax(x) neprekidne funkcije za svako x € R? Formirati homogenu linearnu jedna&inu

&ija su reSenja y1(x) = x i ya(x) = x2.

y1(x) = x i ya(x) = x? su linearno nezavisne nad R. Ne mogu da budu regenja
homogene linearne jednatine y” + ai(x)y’ + a2(x)y = 0 nad R, jer je W(0) = 0.
Ako su y1(x) = x i y2(x) = x? reSenja neke linearne jednatine, tada je refenje te
jednatine i funkcija y(x) = c1x + c2x?, gde su ¢; i cp proizvoljne konstante.

y(x) = ax+ox? I 6))
yvi(x) = a+22ax = @ = ,2 .
y”(x) = 2o a =y (X) - Xy (X)

= y(x) = xy'(x) — x2"(x) + X;y”(x), pa je traZena jedna&ina
x2y" —2xy’ + 2y = 0.
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ISR RENSLELTVEEEl  Homogena linearna jednatina

Definicija
Svaki skup od n, n € N\ {1} linearno nezavisnih resenja jednacine L,[y] =0 je
fundamentalni skup resenja jedna&ine L,[y] = 0.

Teorema

Postoji fundamentalni skup reSenja jednac&ine L,[y] = 0 nad intervalom I.

Dokaz. Neka je xp proizvoljna tatka iz intervala I'i y;(x), i =1,2,..., n reSenja
jednatine L,[y] = 0 koja zadovoljavaju potetni uslov

no)=1, yi(o)=0, .... ©" Y(x)=0
¥a(0) =0, yi(x0)=1, .... n" Y(x)=0
Ya(x0) =0, yi(x0)=0, ..., " V(x)=1.

(postoje na osnovu teoreme o egzistenciji i jedinstvenosti)

542 / 569



ISR RENSLELTVEEEl  Homogena linearna jednatina

ReZenja y;(x) su linearno nezavisna nad intervalom /, jer da su linearno zavisna,
sledilo bi da je W(x) = 0 za svako x € /, pa i za x = xp.

Za xp imamo da je

10 0

01 ..., 0
W(Xo)— . . : :17&0a

0 0 1

Sto je kontradikcija.
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ISR RENSLELTVEEEl  Homogena linearna jednatina

Teorema
(FORMULA LJUVILA-ABELA) Neka je xo € | proizvoljna tacka, a
{1 (x), ¥2(x), ..., ya(x)} fundamentalni skup reSenja homogene linearne jednacine

Laly] =0. Tada je za svako x € |

W(x) = W(xp)e Jo 2O,

e Ako je a; = c, tada je W(x) = W(xp)e <) te za ¢ = 0 vazi
W(x) = W(xp), za svako x € /.

Posledica

Resenja y1(x), y2(x), - - ., ya(x) homogene linearne jedna&ine L,[y] = 0 su linearno
nezavisna nad intervalom | ako je W(xp) # 0 za neku tatku xp € |.
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ISR RENSLELTVEEEl  Homogena linearna jednatina

Teorema

Ako je {y1(x), y2(x), ..., yn(x)} fundamentalni skup resenja homogene linearne
Jednacine Ln[y] = 0 nad intervalom |, tada je opste resenje te jedna&ine nad
intervalom | dato sa

y(x) = cayi(x) + cayz(x) + -+ + Caya(X),
gde su c1, o, . .., Cy proizvoljni realni brojevi.

Dokaz. Neka su su ag, a1, ..., as—1 proizvoljni realni brojevi i neka je h(x) reZenje
jednatine L,[y] = 0 koje zadovoljava po&etni uslov

h(x0) = ag, W' (x0) = a1, ..., h" V(x0) = an_1, x0 € 1.
PokaZimo da se u reenju
y(x) = cyi(x) + caya(x) + - -+ + caya(x)
konstante ¢, ¢, . . ., ¢, mogu odrediti tako da i y(x) zadovoljava isti poZetni

uslov.
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ISR RENSLELTVEEEl  Homogena linearna jednatina

Uvrstavajuéi poletni uslov u

y(x) = cayi(x) + cya(x) + - - + cayn(x)

dobijamo sistem S algebarskih jednacina

c1y1(xo) + oy(x) +-- 4 Caya(xo) = o
cyi(xo) +  ay(x) + 4+ cryn(x) = m
ar" Vx) + i V) 4ot e V() = ana

Determinanta ovog sistema je Ds = W(xp) # 0 jer su reSenja
y1(x),y2(x), ..., ya(x) linearno nezavisna, pa je sistem odreden.

Znati, redenje

y(x) = ayi(x) + cya(x) + -+ + caya(x),

gde je (c1, ¢, . .., Cp) redenje sistema S zadovoljava isti pocetni uslov kao i redenje
h(x).
Zbog jednozna¥nosti redenja potetnog problema je y(x) = h(x),x € I. O
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Diferencijalne jednacine viseg reda Homogena jednaéina sa konstantnim koeficijentima

Homogena jednadina sa konstantnim koeficijentima

Lolyl = y™ + a1y 4 apy(=2 4 ... 4 a1y +ayy=0,a,€R

Ako je y = e, k € R tada je y() = kie® i =1,2,...,n, paje

L,,[ekx] = ekx(k” +ak" a1k 4 a,)
Pr(k)

pa je
Lo[e™]=0e k" + a1k 1+ +a, 1k+a,=0

@ P,(k) - karakteristitan polinom

@ k" + a1k" 14+ ... 4a,_1k+ a, =0 - karakteristi¢na jednadina
ReZenja diferencijalne jednatine su za svako x € (—oo, 00) funkcije

yi=e* =12 n
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IR LENSLELTV O HEEl  Homogena jednatina sa konstantnim koeficijentima

Lema

Ako je y(x) = u(x) + iv(x) kompleksno reSenje linearne jedna&ine Ln[y] = 0 tada
su u(x) i v(x) dva realna reSenja te jednacine.

Dokaz. L,u(x) + iv(x)] = La[u(x)] + iLa[v(x)] =0
= Ly[u(x)] = La[v(x)] = 0.

e Koreni karakteristi¢ne jednacine su realni i jednostruki

Karakteristi¢na jednaéina ima 1 < m < n razli¢itih realnih korena ki, i=1,..., m;
realna refenja su y; = ek, i =1 ... m; linearno su nezavisna (&ine
fundamentalni skup re3enja) ako je m = n, jer je

ekix gleox ... ghmx
kq ekix kpekex . kekmx
W(x) =
m—1 _kix m—1 _kyx m—1 jkmx
ki'Tref X kT e L kT e

elkithotothn)x |/
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IR LENSLELTV O HEEl  Homogena jednatina sa konstantnim koeficijentima

gde je
1 1 1
ki ke ... km
v-| S | RO

k";_l kn‘;—l krr;fl 1sj<ism
4 ; oo kT
jerje ki # kj za i # j.
Opste reSenje za m = n dato je sa:
n
y(x) = e
i=1
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Diferencijalne jednacine viseg reda Homogena jednaéina sa konstantnim koeficijentima

e Koreni karakteristi¢ne jednacine su kompleksni i jednostruki

ki = aj +1iB;, B; # 0, tada su redenja

vi = Re(elAix) = e%* cos Bx

Yp = Im(e(®+Fi)X) = %% sin Bjx

Lako se proverava da su ova dva reSenja linearno nezavisna.

lako je kj = aj — i j3; takode koren karakteristi¢ne jednatine, nema dodatnih
reSenja!
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IR LENSLELTV O HEEl  Homogena jednatina sa konstantnim koeficijentima

e Koreni karakteristi¢ne jednacine su realni i viSestruki

ki koren viSestrukosti m > 1, tada su reSenja jedna&ine funkcije

yi1(X) = ekixa yiz(x) = Xekixv RN yim(x) = xmtekix
i linearno su nezavisna:
Kako je
Pa(ki) = Pi(k) = --- = P{" (k) =0, P (k) # 0

i kako je L,[e*] = e P,(k) to se diferenciranjem po k dobija

Lo[xe®™] = xe*™P,(k)+ e P/(k)
e (xPa(k) + Py(k))

pa se iz L,[xe®] = e (xP,(k) + P.(k)) stavljajuéi k = k; dobija L,[xe“*] =0, tj
da je i xek* regenje. Sli¢no, diferenciranjem (m — 1) puta po k dobijamo da su
reSenja i funkcije

yi1(X) = ekixa yiz(X) = Xxe

m—1 kix

kix) "7y’m(X):X €
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Diferencijalne jednacine viseg reda Homogena jednaéina sa konstantnim koeficijentima

e Koreni karakteristi¢ne jednacine su kompleksni i visestruki

ki = o + i f3j, B # 0 koren viSestrukosti m > 1, tada su 2m realnih (linearno
nezavisnih) re¥enja jednatine funkcije

[e7P.¢
yip = €% cosfix,

y, = xe%*cospfix,

m—1 _ajx

Yim = X" €% cosfjx,

;X -
Vina = xe®sin fx,
—1 aix -
Yom = X" €% sinBjx.
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Diferencijalne jednacine viseg reda Homogena jednaéina sa konstantnim koeficijentima

Primer

Neka su reSenja karakteristi¢ne jednaline neke homogene linearne jednacline sa

konstantnim koeficijentima

ki = ko = k3
ka

ks

ke

ky = ks = ko
kio = ki1 = k2

1,
_]_7
3+,
31,
241,
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Diferencijalne jednacine viseg reda Homogena jednaéina sa konstantnim koeficijentima

Primer

Neka su reSenja karakteristi¢ne jednaline neke homogene linearne jednacline sa

konstantnim koeficijentima

ki = ko = k3
ka

ks

ke

ky = ks = ko
kio = ki1 = k2

1,
_]_7
3+,
31,
241,

y(x) = (a1 + cx + c3x?)
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Diferencijalne jednacine viseg reda Homogena jednaéina sa konstantnim koeficijentima

Primer

Neka su reSenja karakteristi¢ne jednaline neke homogene linearne jednacline sa

konstantnim koeficijentima

ki = ko = k3
ka

ks

ke

ky = ks = ko
kio = ki1 = k2

1,
_]_7
3+,
31,
241,

y(x) = e(c1 + cax + c3x?) + cpe ™
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Diferencijalne jednacine viseg reda Homogena jednaéina sa konstantnim koeficijentima

Primer

Neka su reSenja karakteristi¢ne jednaline neke homogene linearne jednacline sa
konstantnim koeficijentima

ki =k =ks = 1,
ke, = -1,
k5 = 3+/7
ke = 3-—1,
kt=ks=koe = 241,
kio=kii =k = 2-1i.

y(x) = eX(c1 + cax + c3x?) + cue ™ + e¥(c5 cos x + cg sin x)
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Diferencijalne jednacine viseg reda Homogena jednaéina sa konstantnim koeficijentima

Primer

Neka su reSenja karakteristi¢ne jednaline neke homogene linearne jednacline sa
konstantnim koeficijentima

ki =k =ks = 1,
ke, = -1,
k5 = 3+/7
ke = 3-—1,
kt=ks=koe = 241,
kio=kii =k = 2-1i.

y(x) = e(c1 + cax + c3x?) + cue ™ + e¥(c5 cos x + cg sin x) + e*¥(c7 cos x +
C8X COS X + Cox* COS X + C1oSin X + Cr1xsin x + cpax2sin x)
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DIIRIIE RENSLELTEV - HE Il  Nehomogena linearna jednatina

Nehomogena linearna jednadina

Teorema

Neka je y,(x) neko (partikularno) reSenje jednac&ine
Lalyl = f(x)

i y(x) = ayi(x) + caya(x) + - - - + cnyn(x) opste reSenje odgovarajuée homogene
Jednacine Lp[y] = 0.
Tada je

y(x) = yn(x) + yp(x)

opste resenje jednacine Ly[y] = f(x).

Dokaz. y(x) je reSenje jednatine L,[y] = f(x) jer iz linearnosti operatora L,[ ]

sledi
Loly(x)] = Lalyn(x) + yp(x)] = Lalyn(x)] + Lalyp(x)]
0+ f(x) = f(x)
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IR RENSLELTEV - HE Il  Nehomogena linearna jednatina

PokaZimo da ono sadrZi svako re3enje koje zadovoljava pocetni uslov
yD(x) =aj,i=0,1,...,n—1,

(tj. svako partikularno re3enje), gde su «; proizvoljni realni brojevi, xo € /

proizvoljna tatka i y(©(x) = y(x) :

Neka je {y1(x),...,¥n(x)} fundamentalni skup redenja jednatine L,[y] = 0. Tada
je njeno opste resenje

Yh(x) = €1 (x) + Cay(x) &+ + Caya(x).
Neka su ayp, ..., an—1 € R proizvoljni brojevi i h(x) redenje jednatine L,[y] = f(x)
koje u proizvoljnoj tatki xp zadovoljava pocetni uslov

h(x0) = o, h'(x0) = 1,5 - - -, h("fl)(xo) = ap_1.

Pokaza¢emo da se u redenju y(x) = cry1(x) + caya(x) + - - - + cayn(x) + yp(x)
konstante mogu odrediti tako da i funkcija y(x) zadovoljava isti potetni uslov.
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IR RENSLELTEV - HE Il  Nehomogena linearna jednatina

Uvrstavajuéi potetni uslov u jednatinu L,[y] = f(x) dobijamo sistem S
algebarskih jednacina

c1yi(xo) +ey2(x0) + -+ cayn(x0) = a0 — yp(x0)
cryi(xo) +c2y5(x0) + -+ cnya(xo) = a1 — yp(x)

arl" PVx) oy V) 4oty V(x0) = an-1 -y (%)

Determinanta sistema S je Ds = W(xp) # 0, pa je sistem odreden.

Dakle, redenje g(x) = c1y1(x) + c2y2(x) + -+ - + cayn(x) + yp(x), gde je
(c1,¢,...,Cn) redenje sistema S zadovoljava isti poZetni uslov kao i h(x).

Zbog jednozna¥nosti redenja potetnog problema je g(x) = h(x) za svako x € [. O
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Nehomogena linearna jednatina - metod varijacije konstanti
Metod varijacije konstanti

Teorema

Neka je y1(x), ..., ya(x) fundamentalni skup reSenja jedna&ine L,[y] = 0 nad
intervalom |. Tada je partikularno reSenje y,(x) nehomogene jednacine

L[yl = f(x) koje zadovoljava pocetni uslov 5 (xo) = yi" = 0,
i=0,1,...,n—1, dato sa

SORA/0)
() = D200 [ el
— o
gde je xo € | proizvoljna tatka, a Wi(s), i =0,1,...,n, je determinanta koja se
dobija kada se iz determinante Wronskog funkcija y1(x), ..., yn(x) i-ta kolona
zameni sa col(0,0,...,1) dok su ostale kolone iste kao kod W(x).
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IR RENSLELTVI S AERl  Nehomogena linearna jednatina - metod varijacije konstanti

Dokaz. Neka je {y1(x), ..., ¥a(x)} fundamentalni skup reenja. Potrebno je
odrediti funkcije c1(x), ..., ca(x) tako da je

yp(x) = a(x)y1(x) + c(x)ya(x) + - - + ca(x)ya(x)

partikularno redenje nad intervalom [ jednatine L,[y] = f(x).
Diferenciranjem obe strane i ako za prvi uslov za funkcije ¢;j(x) uzmemo

ca()y1(x) + a(x)y2(x) + - + cp(x)ya(x) = 0
dobijamo

Yp(x) = ca(x)y1(x) + 2(x)y3(x) + -~ + ca(x)ys(x)

Ponovnim diferenciranjem poslednje jednakosti i ako za drugi uslov za funkcije
¢i(x) uzmemo

ca()y1(x) + a(x)ya(x) + - + cp(x)yp(x) = 0
dobijamo

Yo (x) = a(xy'(x) + (x)ys (x) + - - + en(x)yy (x)-
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IR RENSLELTVI S AERl  Nehomogena linearna jednatina - metod varijacije konstanti

Nastavljajuéi ovaj postupak dobijamo
GG (x) + I ) + -+ (P () =0,

Y D(x) = ()P (x) + 0y D (x) + -+ an(x)yY ().

Sada je
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DN E NS NET RS- Elll Nehomogena linearna jedna&ina - metod varijacije konstanti
Kako funkcija

yp(x) = a(x)y1(x) + c(x)ya(x) + - - + ca(x)ya(x)

treba da bude reenje jednatine L,[y] = f(x), zamenom y,(x), y,(x), . .- ,y,(,")(x)

u tu jedna&inu i vodedi ratuna da je {y1(x),...,y¥n(x)} fundamentalni skup
redenja jednatine L,[y] = 0, dobijamo

n

~
3
=
—~
x
=
Il
o
—~
x
~
~
3
<
—
X
=
+
(-
O
—~
X
~—
S
3
L
—~
X
~
Il
~~
—
X
~

|
—
o
Il
-

odnosno
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IR RENSLELTVI S AERl  Nehomogena linearna jednatina - metod varijacije konstanti

Determinanta linearnog (algebarskog) sistema

el (x)y1(x) + S(x)ya(x) ot a(X)ya(x) =0
a(x)yi(x) +  a(x)ya(x) +o A en(X)yn(x) =0
ACONTV) GO (x) e anT I (x) = f(x)

je W(x) # 0 jer su resenja yi(x), ..., ya(x) jednatine Ly[y] = 0 po pretpostavci
linearno nezavisna. ReSavanjem po ¢/(x) dobija se

o TRV =12,
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IR RENSLELTVI S AERl  Nehomogena linearna jednatina - metod varijacije konstanti

Integracijom nad intervalom (xo,x) za x > xp (tj. (x,X0) za x < xp) sledi da je

ci(x) —/Xf(x)

gijom zamenom u obrazac za y,(x) dobijamo da je partikularno reenje

Wi(s)
W(s)

f(s)ds, i=1,2,...,n,

Yo(x) = ZYI(X)/ w((z)) f(s)ds.
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IR RENSLELTVI S AERl  Nehomogena linearna jednatina - metod varijacije konstanti

Na primer, za n = 2 sistem za odredivanje funkcija ¢; glasi

a(yi(x) + a(xy(x) = 0
avilx) + gxyx) = f(x),

dok je za n = 3 odgovarajudi sistem

a(yi(x) + o) + alx)slkx) = 0
a(yix) + ay(x) + alxylkx) = 0
alti'(x) + al)y/(x) + aly'(x) = f(x)
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IR RENSLELTVI S AERl  Nehomogena linearna jednatina - metod varijacije konstanti

Primer

Nadéi opste resenje jedna&ine y"' — y" = e*.

y///_y//:() = K-—kK=0 = k1:k2:0,k3:1
= }/h(X) =1 + ox + cze*
Metodom varijacije konstanti dobijamo sistem

a(x) + ox)x + d(x)ex = 0
(x) + d(x)ex = 0
c(x)ex = e~
&ijim reSavanjem i integracijom resenja dobijamo
gx)=1 = ax)=x+G
cj(x) = —ci(x)eX = —e~ = okx)=—-e+0G
ci(x) = —c(x)x — cg(x)e* = (x —1)e¥ = alx)=(x—-2)e"+ G

Jedno partikularno reSenje nehomogene jednacine je
Yp(x) = (x —2)e*
pa je
y(x) = yn(x) + yp(x) = a1 + c2x + cz3&* + (x — 2)e*.
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PIEIRIIERENSLELTVEEEEl  Nehomogena jednacina sa konstantnim koeficijentima - metod jednakih koeficije

Metod jednakih koeficijenata

Ako je jednatina linearna sa konstantnim koeficijentima oblika

Y + a1y 4t any = £(x)

gde je funkcija f(x) specijalnog oblika
f(x) = e“*(P(x) cos Bx + Q(x)sin Bx),
partikularno re$enje traZimo u obliku
Yp(x) = x"e(Tk(x) cos Bx + Ri(x)sin Bx)
pri ¢emu je
o k=max{n,m}, n=degP(x), m=degQ(x), ako su oba polinoma

razli¢ita od nula polinoma (ako je P(x) nula polinom onda je k = m, a ako je
Q(x) nula polinom onda je k = n)

@ r je viSestrukost v + i3 kao korena karakteristi¢ne jednadine odgovarajuce
homogene jednadine
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PIIRIIERENSLELTV I EEEl  Nehomogena jednacina sa konstantnim koeficijentima - metod jednakih koeficije

Korisna je €injenica: ako je
Laly] = fi(x) + fa(x)

i ako je
y1(x) partikularno redenje jedna&ine L,[y] = fi(x) nad /,

y2(x) partikularno resenje jedna&ine L,[y] = f2(x) nad /,

tada je
y(x) = y1(x) + y2(x)

nad intervalom [ partikularno reSenje jednacine

Laly] = fi(x) + f2(x)
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PIIRIIERENSLELTV I EEEl  Nehomogena jednacina sa konstantnim koeficijentima - metod jednakih koeficije

Primer
Odrediti opste reSenja jedna&ine y"' — y" = €* + sinx + x. J

Resenje. Opste resenje homogenog dela jedna&ine je

yh(X) =1 + ox + czer.
Jedno partikularno regenje jednatine y”' — y" = e~ je

Yp (X) = xe¥.

Jedno partikularno regenje jednaéine y"' — y” =sinx je

Yp, (x) = 1(cosx + sinx).
Jedno partikularno resenje jedna&ine y"”’ — y" = x je

Yo () = —1x2(x + 3).
Opste redenje je
y(x) = a1 + cx + c3€* + xe* + 3(cos x + sinx) — £x*(x + 3).
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Qjlerova jednacina

Ojlerova jednatina je oblika

(ax + b)"y'" 4+ a1(ax + b)" 1y D ... 4 g, 1(ax + b)y' + any = f(x)

gde su a;, i =1,2,..., n konstante i smenom
ax+b=e'ax+b>0 (ax+b=—e' ax+b<0)

svodi se na jedna&inu sa konstantnim koeficijentima.
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Diferencijalne jednatine viseg reda [IOJ{ISCVERITLETTES

Primer

Naci opste reSenje diferencijalne jednacine

3.,

X7y +Xx

2y + 3xy — 8y = 0.
Za x > 0 smenom

1
x=e' = yo=yto=—y,
1 1
"o ’
}/x—_;%"‘;t— 2( )
"o

i
= —yt)+;(y§"—yt)— 4
dobija se linearna diferencijalna jednatina y”

3 (y -3y +2y)

2y" 44y’ — 8y = 0. &ija
karakteristi¢na jednatina r3 —2r> +4r —8 ima korene rp =2, n =2i, 13

=2,rn=2i,r=—2ipa
je njen fundamentalni skup redenja {e?t,sin2t, cos2t} tako da je fundamentalni
skup regenja Ojlerove jednatine {x2,sin(2In|x|),cos(2In|x|)}, x # 0
pa je opste resenje

y = cax® + ¢ sin(2In|x|) + ¢z cos(2In |x|)
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