
Slavica Medić
ISSN 3042-0466



META 2025
The 10th Conference on Mathematics in

Engineering:
Theory and Applications

Conference Proceedings

December 12-14, 2025
Novi Sad, Serbia

Slavica Medić
ISSN 3042-0466 (Online)



The 10th Conference on Mathematics in Engineering: Theory and Applications
was organized by the Faculty of Technical Sciences, University of Novi Sad

Scientific Committee:
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Nataša Duraković, University of Novi Sad,
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ZASNOVANO NA ENERGIJAMA FAZI SOFT SKUPOVA . . . . . . . . . 85
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Abstract. In this paper, we investigate several fundamental proper-
ties of the extended Gevrey classes. Furthermore, as an application, we
construct wavelets whose regularity is characterized by these classes.
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1. Introduction

We will give a short review on some of the properties of the extended Gevrey
classes. Moreover, we will use the following function

fρ,σ(t) = e−ρgσ( 1
t ), ρ > 0, σ > 1,

where

gσ(t) =
ln

σ
σ−1 (1 + |t|)

W
1

σ−1 (ln(1 + |t|))
, t ∈ R,

(1.1)

and W denotes the principal branch of Lambert W function, to construct a
wavelet which is extended Gevrey regular in both time and frequency domains.

Extended Gevrey classes were introduced in [10] to describe regularity be-
tween the Gevrey classes and C∞. The derivatives of their elements are con-
trolled by sequences of rapid growth

(1.2) {Mτ,σ
p = pτp

σ

}p∈N0 , τ > 0, σ > 1.

These classes provide an important example of weight matrix classes of ultra-
differentiable functions (see [5, 13]). Moreover, the function in (1.1) can be
estimated in terms of the associated function corresponding to the sequences

1This research was partially supported by the Science Fund of the Republic of Serbia,
#GRANT No. 2727, Global and local analysis of operators and distributions - GOALS,
and by the project ”Socio-technological aspects of improving the teaching process in the
English language in fundamental disciplines”, Department of Fundamental Sciences, Faculty
of Technical Sciences, University of Novi Sad.

2Department of Fundamental Sciences, Faculty of Technical Sciences, University of Novi
Sad, e-mail: filip.tomic@uns.ac.rs

https://orcid.org/0000-0003-2453-6769
https://doi.org/10.24867/META.2025.00
filip.tomic@uns.ac.rs
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in (1.2). For some applications of the theory of extended Gevrey classes, we
refer to [1, 2, 6, 7].

Lambert W function (see [9]) is defined as the multivalued inverse of
the function z 7→ zez for z ∈ C. It splits the complex plane into in-
finitely many regions. Throughout the paper we will use the notation W (z),
z ∈ C \ (−∞,−e−1], for its principal branch (instead of common W0(z)). The
boundary curve of its principal branch is given by:

{(−t ctgt, t) ∈ R2 | − π < t < π}.

2. Extended Gevrey classes

We start with the following Lemma that contains the properties of sequences
given in (1.2).

Lemma 2.1. Let τ > 0, σ > 1, Mτ,σ
0 = 1, and Mτ,σ

p = pτp
σ

, p ∈ N. Then
there exists constant C > 1 such that:

(M.1) (Mτ,σ
p )2 ≤Mτ,σ

p−1M
τ,σ
p+1, p ∈ N,

(̃M.2) Mτ,σ
p+q ≤ Cp

σ+qσMτ2σ−1,σ
p Mτ2σ−1,σ

q , p, q ∈ N0,

(̃M.2)′ Mτ,σ
p+1 ≤ Cp

σ

Mτ,σ
p , p ∈ N0,

(M.3)′
∞∑
p=1

Mτ,σ
p−1

Mτ,σ
p

<∞.

In addition, if σ2 > σ1 > 1 and τ0 > 0 then for every h, τ > 0 there exists
C > 0 such that

hp
σ1
Mτ0,σ1
p ≤ CMτ,σ2

p

Let us briefly discuss the borderline case σ = 1. Note that Mp := Mτ,1
p =

pτp, τ > 0, is the Gevrey sequence, and the conditions (M.1), (̃M.2)′, and

(̃M.2) are classical Komatsu conditions (M.1), (M.2)′, and (M.2), respectively.
Moreover, Mp satisfies condition (M.3)′ if and only if τ > 1, which ensures that
the corresponding ultradifferentiable classes contain functions with compact
support (see [8]). The proof of Lemma 2.1 is given in [10].

Next we define extended Gevrey classes Eτ,σ(R).

Definition 2.1. Let τ > 0 and σ > 1 and Mτ,σ
p = pτp

σ

for p ∈ N, Mτ,σ
0 = 1.

A smooth function φ belongs to Eτ,σ(R) if

(∀K ⊂⊂ R)(∃C > 0) sup
x∈K
|φ(p)(x)| ≤ Cp

σ+1Mτ,σ
p , p ∈ N0.

We denote

Eσ(R) =
⋃
τ>0

Eτ,σ(R).
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Again for σ = 1 we obtain some of the well-known classes. For instance
that A(R) := E1,1(R), and Gt(R) := E1,t(R) for t > 1; these are the spaces of
locally analytic functions and Gevrey functions of order t, respectively.

In the following Proposition we collect some of the basic properties of the
extended Gevrey classes. The proof relies on the properties of Mτ,σ

p given in
Lemma 2.1 (see [10, 11, 12, 13]).

Proposition 2.1. Let τ > 0 and σ > 1. Then

i) For σ2 > σ1 > 1 we have

A(R) ⊂
⋃
t>1

Gt(R) ⊂
⋂
τ>0

Eτ,σ1
(R) ⊂ Eτ,σ1

(R) ⊂ Eσ1
⊂ Eσ2

⊂ C∞(R).

ii) Eτ,σ(R) is closed under the pointwise multiplication.

iii) Eτ,σ(R) is closed under finite order derivation.

iv) Eτ,σ(R) is closed under superposition. In particular, if F (x) ∈ A(R) and
f(x) ∈ Eτ,σ(R) then F (f(x)) ∈ Eτ,σ(R).

v) Eτ,σ(R) is invariant under translations and dilatations.

Let us define a function associated to Mτ,σ
p , p ∈ N0.

Definition 2.2. Let τ > 0 and σ > 1. Then the associated function to the
sequence Mτ,σ

p is given by

(2.1) Tτ,σ(k) = sup
p∈N0

ln
kp

Mτ,σ
p

, k > 0.

In the following Theorem we estimate Tτ,σ(k) in terms of the Lambert W
function. The proof can be found in [13], and for a more general version we
refer to [12].

Theorem 2.1. For τ > 0 and σ > 1 we have

Tτ,σ(k) � τ−
1

σ−1
ln

σ
σ−1 (1 + k)

W
1

σ−1 (ln(1 + k))
, k ≥ 0.

In particular, Tτ,σ(|k|) � ρ gσ(k), k ∈ R, for ρ = τ−
1

σ−1 where gσ is given in
(1.1).

Next we discuss the connection between functions given in (1.1), sequences
in (1.2) and associated function (2.1).

Let us define

hτ,σ(t) := e−Tτ,σ(1/t) = inf
p∈N0

Mτ,σ
p tp, t ≥ 0.

Then Theorem 2.1 implies that for any ρ > 0 and σ > 1 there exist constants
A,B, τ1, τ2 > 0 such that
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(2.2) Ahτ1,σ(|t|) ≤ fρ,σ(t) ≤ Bhτ2,σ(|t|), t ∈ R,

where fρ,σ is given in (1.1). Note that the right-hand side of (2.2) implies that
for any given ρ > 0 there exists B1, τ > 0 such that

(2.3) sup
t>0

fρ,σ(t)

tp
≤ B1M

τ,σ
p , p ∈ N0.

Estimate (2.3) (together with Caushy’s integral formula) can be used to
prove that

(2.4)

fρσ,σ(t) = exp

{
−e− 1

σW−
1

σ−1

(
ln

(
1 +

1

|t|

))
ln

σ
σ−1

(
1 +

1

|t|

)}
, t ∈ R,

is an example of the extended Gevrey function. In particular, following Propo-
sition holds.

Proposition 2.2. If σ > 1 and the function fρσ,σ is given in (2.4) then:

a) limt→0 f
(j)
ρσ,σ (t) = 0, j ∈ N,

b) fρσ,σ(t) ∈ Eσ(R).

We conclude this section with the Paley–Wiener theorem, which connects
the time-domain regularity of a function with its decay rate in the Fourier
domain. The decay rate we use is given in the following definition.

Definition 2.3. Let σ > 1 and gσ(ξ) =
ln

σ
σ−1 (1 + |ξ|)

W
1

σ−1 (ln(1 + |ξ|))
be as in (1.1). A

continuous function f(ξ) belongs to Γσ (R), if there exist ρ > 0 and C > 0 such
that

|f(ξ)| ≤ C e−ρgσ(ξ), ξ ∈ R.

We now state the Paley–Wiener theorem. For the proof we refer to [12].

Theorem 2.2. Let σ > 1.

a) Let ϕ be a C∞ function with compact support. If ϕ(x) ∈ Eσ(R) then
ϕ̂(ξ) ∈ Γσ(R).

b) If the function ϕ is such that ϕ̂(ξ) ∈ Γσ(R) then ϕ(x) ∈ Eσ(R).
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3. Wavelet construction

In this section, we use the functions given in (1.1) to construct an orthonor-

mal wavelet ψ such that both ψ and its Fourier transform ψ̂ belong to Eσ(R).
Our construction follows the ideas of multiresolution analysis (MRA for short,
see [3, 4]). We refer to [14] for the construction of band-limited wavelets, that
is, wavelets whose Fourier transform has compact support.

Let m0(ξ) be a low-pass filter of the orthonormal wavelet that satisfies
following minimal requirements:

i) m0 is a continuous, even, 2π− periodic function on R,m0(0) = 1,

ii) inf
ξ∈[−π/3,π/3]

|m0(ξ)| 6= 0,

iii) |m0(ξ)|2 + |m0(ξ + π)|2 = 1.

Then the Fourier transform of the scaling function ϕ is continuous and

ϕ̂(ξ) =

∞∏
j=1

m0(2−jξ), ξ ∈ R.

Moreover, if m0 is smooth then ϕ̂ is smooth.
Fourier transform of the orthonormal wavelet is then given by

(3.1) ψ̂(ξ) = ei
ξ
2m0

(ξ
2

+ π
)
ϕ̂
(ξ

2

)
, ξ ∈ R.

In particular, it is sufficient to construct a low-pass filter that belongs to Eσ.
The properties of extended Gevrey classes given in Proposition 2.1, together
with the Paley–Wiener theorem (2.2), imply that the orthonormal wavelet de-

fined in (3.1) satisfies ψ, ψ̂ ∈ Eσ(R).
We construct the desired low-pass filter as follows. Let

γσ(η) :=

{
fσ(η) , η > 0

0 , η ≤ 0,

where fσ = f1,σ is given in (1.1).
For

δσ(ξ) :=


(∫ 1

0
γσ(η)γσ(1− η) dη

)−1 ∫ ξ
0
γσ(η)γσ(1− η) dη , ξ > 0

0 , ξ ≤ 0,

Let us define

θσ(ξ) :=

(
1− δσ

(
5ξ − π

3π

))
δσ

( |ξ − 2π
3 |

d

)
, ξ ∈

[π
2
, π
)
, d ∈

(
0,
π

6

]
.

Note that θσ can be extended to [0, 2π] by θσ(ξ) + θσ(ξ + π) = 1, and then
further extended on R so that it is 2π periodic.

Finally, low-pass filter m0 ∈ Eσ is given by

m0(ξ) = sin
(π

2
θσ(ξ)

)
, ξ ∈ R.

The further details concerning wavelet construction can be found in [15].
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[7] Jiménez-Garrido, J., Miguel-Cantero, I., Sanz, J. et al. Optimal Flat Func-
tions in Carleman–Roumieu Ultraholomorphic Classes in Sectors. Results
Math 78, 98 (2023).

[8] H. Komatsu, Ultradistributions, I: Structure theorems and a characteriza-
tion. J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 20 (1) (1973)
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[13] N. Teofanov, F. Tomić, Extended Gevrey regularity via weight matrices,
Axioms 2022, 11, 576 (2022),

[14] N. Teofanov, F. Tomić, S. Tutić, Band-limited wavelets beyond Gevrey
regularity, International Journal of Wavelets, Multiresolution and Infor-
mation Processing, Vol. 22, No. 5 (2024)
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Sažetak. Fulereni su alotropi ugljenika koji imaju šuplju, kaveznu struk-
turu. Atomi u molekulu rasporedeni su u petougaone i šestougaone prste-
nove tako da je svaki atom povezan sa još tri atoma. Jednostavni poliedri
koji imaju samo petougaone i šestougaone strane predstavljaju matema-
tički model za fulerene. Kažemo da fulleren sa n temena ima magično
svojstvo ako se brojevi 1, 2, . . . , n mogu dodeliti njegovim temenima ta-
ko da su zbirovi brojeva u svakom petouglu jednaki i zbirovi brojeva
na svakom šestouglu jednaki. Pokazujemo da C8n+4 ne dozvoljava ta-
kvo uredenje za sva n, dok fuleren C24 ima mnogo neizomorfnih takvih
uredenja.

AMS Mathematics Subject Classification (2020): 00A08

Ključne reči i izrazi: magično svojstvo, fulerenu, C24

1. Uvod

Pre četrdeset godina, ser Harald V. Kroto, Robert F. Karl, mladi i Ričard
Smoli otkrili su prvi fuleren C60, takode poznat kao bakminsterfuleren ili ,,ba-
kibol”, vidi [4]. Za ovo otkriće dobili su Nobelovu nagradu za hemiju 1996.
godine. Identifikacija fulerena značajno je proširila spektar priznatih alotropa
ugljenika, koji je ranije bio ograničen na grafit, dijamant i amorfne forme uglje-
nika kao što su čad i ugalj. Nakon otkrića bakminsterfulerena, potvrdeno je
postojanje sličnih struktura sa 70, 76, 78, 82, 84, 90, 94 ili 96 atoma ugljenika.
Oni su bili u fokusu opsežnih istraživanja, kako u vezi sa njihovim hemijskim
svojstvima, tako i sa tehnološkim primenama, naročito u nauci o materijalima,
elektronici i nanotehnologiji.

Eksperimentalno proučavanje fulerena bilo je praćeno teorijskim
istraživanjima zasnovanim na matematičkim modelima molekula fulerena
koji se nazivaju fulerenski grafovi. Temena grafova predstavljaju atome,
a grane veze izmedu atoma u molekulu. Matematički, fuleren je 3-povezan
3-regularan ravanski graf koji ima samo petougaone i šestougaone strane. Ekvi-
valentno, matematički fuleren može se posmatrati kao jednostavan 3-poliedar
čije su strane petougaonici ili šestougaonici. Ojlerova formula implicira da broj

1Prvi autor je podržan od Ministarstva nauke, tehnološkog razvoja i inovacija Republike
Srbije kroz institucionalno finansiranje Matematičkog instituta SANU.

2Matematički institut SANU, Beograd, Srbija e-mail: djbaralic@mi.sanu.ac.rs
3Amerikanska akademija Dubai, Ujedinjeni Arapski Emirati e-mail: adamferma-

ta@gmail.com
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petougaonih strana u fulerenu iznosi 12, dok je broj temena paran. Grinbaum
i Motzkin u [3] pokazali su da postoji fuleren sa svakim parnim n ≥ 24 i sa
n = 20 temena, kao i da ne postoji fuleren sa n = 22 temena.

Baralić i Milenković u [? ] predložili su proučavanje jednog zanimljivog svoj-
stva motivisanog konfiguracijama magičnih kvadrata. Oni su pronašli primer
rasporeda prvih dvadeset četiri pozitivna broja po dvadeset četiri temena tro-
dimenzionalnog permutoedra tako da su zbirovi brojeva u temenima svakog
kvadrata i svakog šestougla konstantni. Ovo svojstvo nazvali su magičnim. Po-
jam magičnog svojstva može se slično uvesti i za fulerene. Fuleren sa n temena
ima magično svojstvo ako se prvih n pozitivnih brojeva može pridružiti tako
da po jedno teme nosi jedan broj i tako da je zbir brojeva na svakom peto-
ugaonom licu konstantan, kao i odgovarajuci zbir za svako šestougaono lice.
Cilj ovog rada je da predstavi i razmotri neke rezultate o magičnom svojstvu
fulerena.

2. Fulereni i magično svojstvo

Označimo sa V = {v1, v2, . . . , vn} skup temena fulerena Cn.

Definicija 2.1. Neka su H i P skupovi šestougaonih i petougaonih strana na
fulerenu Cn. Kažemo da fuleren Cn ima magično svojstvo ako postoji bijekcija
f : V → {1, 2, . . . , n}, nazvana magična konfiguracija, takva da∑

v∈Hi

f(v) = Sh, ∀Hi ∈ H

∑
v∈Pj

f(v) = Sp, ∀Pj ∈ P

gde se zbir po petouglu Sp i zbir po šestouglu Sh smatraju magičnim konstan-
tama fulerena.

Fuleren može imati mnogo različitih magičnih konfiguracija, uključujući i
one sa različitim magičnim konstantama, što ćemo videti u narednom odeljku.
Medutim, magične konstante Sp i Sh za dati fuleren Cn zadovoljavaju narednu
relaciju.

Tvrdenje 2.2. Ako fuleren Cn ima magično svojstvo, tada

24Sp + (n− 20)Sh = 3n(n + 1).(2.1)

Dokaz. Relacija se dobija sabiranjem brojeva preko svih strana Cn, čime se
dobija tri puta zbir prvih n pozitivnih brojeva, jer svako teme pripada tačno
trima stranama.

Baralić i Milenković koristili su (2.1) i argument deljivosti u [? ] da pokažu
da ne postoji magična konfiguracija na dodekaedru C20. Isti rezon može se
primeniti na bakminsterfuleren C60. Kada bi postojala magična konfiguracija
na C60, tada bi po (2.1) magične konstante zadovoljavale

24Sp + 40Sh = 3 · 60 · 61,
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što je nemoguće zbog toga što je leva strana deljiva sa 8. Zaista, argument se
neposredno generalizuje na sledeći rezultat.

Teorema 2.3. Ako je n ≡ 4 (mod 8), tada fuleren Cn ne dozvoljava magičnu
konfiguraciju.

Dokaz. Pretpostavimo suprotno. Tada je 24Sp + (n − 20)Sh ≡ 0 (mod 8). S
druge strane, 3n(n + 1) ≡ 4 (mod 8). Kontradikcija!

Na osnovu kongruencija modulo 8 ne možemo zaključiti mnogo o ostalim
slučajevima.

Tvrdenje 2.4.

Sh ≡

{
0 (mod 2), ako je n ≡ 0 (mod 8),

3 (mod 4), ako je n ≡ ±2 (mod 8).

Na žalost, korǐsćenjem ovakvih elementarnih brojevnoteorijskih argumenata
ne može se dobiti mnogo. Radom modulo 3, najvǐse što se može reći je sledeće.

Tvrdenje 2.5. Ako n 6≡ 2 (mod 3) i fuleren Cn dozvoljava magičnu konfigu-
raciju, tada Sh ≡ 0 (mod 3).

3. Magične konfiguracije na C24

U prethodnom odeljku ustanovili smo nekoliko rezultata o nepostojanju
magičnih konfiguracija na fulerenima. Najjednostavniji slučaj fulerena je C24:
njegov Šlegelov dijagram dat je na slici 1. C24 ima 24 temena, dvanaest peto-
ugaonih i dve šestougaone strane.

Slika 1: Schlegel dijagram za C24

Proučavanje magičnih konfiguracija na C24 počinjemo ispitivanjem njegovih
magičnih konstanti Sp i Sh. Korǐsćenjem (2.1) dobijamo
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6Sp + Sh = 450.(3.1)

Gornja linearna Diofantska jednačina ima rešenja u pozitivnim celim bro-
jevima, npr. Sp = 50 i Sh = 150, tako da se ne može isključiti mogućnost
postojanja magičnog svojstva kod C24.

Iz (3.1) je jasno da Sh ≡ 0 (mod 6). Dva šestougla u C24 ne dele nijedno
teme. Najmanja moguća vrednost za Sh nije manja od zbira brojeva iz skupa
{1, 2, . . . , 12} rasporedenih na temena šestougla, što iznosi 39. S druge strane,
najveća moguća vrednost nije veća od zbira brojeva {13, 14, . . . , 24}, što iznosi
111.

Medutim, uslov Sh ≡ 0 (mod 6) implicira

Sh ∈ {42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108},

a odgovarajuće vrednosti za Sp su

Sp ∈ {68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57}.

Ispitali smo sve očigledne brojevnoteorijske argumente i ne mogu se dobiti
nova ograničenja za magične konstante. Ručno traženje magične konfiguracije
za te konstante deluje besmisleno, pa smo stoga napisali program [2] da proveri
koje permutacije prvih 24 pozitivnih brojeva zadovoljavaju sistem (3.2) Dio-
fantskih jednačina za svaki od dvanaest parova konstanti (Sp, Sh). Promenljive
su povezane sa temenima označenim na slici 1. Vǐse o programu dato je u [? ].

(3.2)
v1 + v2 + v3 + v4 + v5 + v6 = Sh v19 + v20 + v21 + v22 + v23 + v24 = Sh

v5 + v8 + v15 + v9 + v4 = Sp v4 + v9 + v16 + v10 + v3 = Sp

v3 + v10 + v17 + v11 + v2 = Sp v2 + v11 + v18 + v12 + v1 = Sp

v1 + v12 + v13 + v7 + v6 = Sp v6 + v7 + v14 + v8 + v5 = Sp

v14 + v8 + v15 + v22 + v21 = Sp v15 + v9 + v16 + v23 + v22 = Sp

v16 + v10 + v17 + v24 + v23 = Sp v17 + v11 + v18 + v19 + v24 = Sp

v18 + v12 + v13 + v20 + v19 = Sp v13 + v7 + v14 + v21 + v20 = Sp

Iznenadujuće, program je pronašao mnogo rešenja u svakom od dvanaest
slučajeva.

Za zaključak analize C24, dajemo primere magičnih konfiguracija. Na slici
2 predstavljena je po jedna magična konfiguracija za svaki od dvanaest parova
magičnih konstanti Sp i Sh.
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Slika 2: Primeri magičnih konfiguracija na C24
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Sp Sh # of solutions Sp Sh

57 108 576 68 42
58 102 936 67 48
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Tabela 1: Broj magičnih konfiguracija na C24 za date magične konstante

[2] A. Farhat, Magic Property of Fullerenes, GitHub repository (2025),
https://github.com/jazzbits/magic−property−of−fullerenes
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1. Introduction

Fixed point theory has been a cornerstone of modern mathematical analy-
sis since Banach introduced his contraction principle in 1922, guaranteeing the
existence and uniqueness of fixed points for self-mappings in complete metric
spaces. Over time, numerous generalizations were developed to extend these
results to more abstract settings, including fuzzy metric spaces, which allow
for modeling uncertainty and imprecision encountered in real-world problems.
Fixed point theory in fuzzy metric spaces has been extensively studied, provid-
ing the foundation for our work [1, 2, 4, 5].

Fuzzy sets, introduced by Zadeh in 1965 [13], provide a mathematical frame-
work for dealing with uncertainty. Fuzzy metric spaces, formalized by Kramosil
and Michalek (1975) and further developed by George and Veeramani (1994),
incorporate a continuous t-norm to define a generalized notion of distance.
These spaces have found applications in image processing, decision making,
control theory, and other fields where uncertainty plays a crucial role.

2. Preliminaries

Definition 2.1. [8] A binary operation ∗ : [0, 1]2→ [0, 1] is a t-norm if it is
commutative, associative, nondecreasing in each argument, and has 1 as the
neutral element (a ∗ 1 = a).

Example 2.2. Basic examples of t-norms: Minimum t-norm: ∗M (a, b) =
min(a, b), ∗P (a, b) = a · b, ∗L(a, b) = max{0, a+ b− 1}.
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Definition 2.3. [7] Let ∗ be a t-norm and let the sequence of functions ∗n :
[0, 1]→ [0, 1] (n ∈ N) be defined as follows:

∗1(x) = ∗(x, x), ∗n+1(x) = ∗(∗n(x), x), (n ∈ N, x ∈ [0, 1]).

A t-norm ∗ is said to be of Hadžić type (or H-type) if the family {∗n(x)}n∈N
is equicontinuous at the point x = 1; that is, for every λ ∈ (0, 1) there exists
δ(λ) ∈ (0, 1) such that the implication

x > 1− δ(λ) ⇒ ∗n(x) > 1− λ, for all n ∈ N,

holds true.

Definition 2.4. [5] Let X be a nonempty set and ∗ a continuous t-norm. A
function

M : X ×X × (0,∞)→ [0, 1]

is called a fuzzy metric if for all x, y, z ∈ X and s, t > 0, the following hold:

1. M(x, y, t) = 1 if and only if x = y,

2. M(x, y, t) = M(y, x, t),

3. M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),

4. M(x, y, ·) : (0,∞)→ [0, 1] is continuous,

The triple (X,M, ∗) is called a fuzzy metric space

Definition 2.5. [6] M(x, y, ·) is nondecreasing for all x, y ∈ X.

Definition 2.6. [5] Let (X,M, ∗) be a fuzzy metric space. A sequence {xn} ⊂
X is said to converge to x ∈ X if for every ε ∈ (0, 1) and t > 0, there exists
N ∈ N such that for all n ≥ N , M(xn, x, t) > 1− ε.

Definition 2.7. [5] A sequence {xn} ⊂ X is called Cauchy sequence if for
every ε ∈ (0, 1) and t > 0, there exists N ∈ N such that for all m,n ≥ N ,
M(xn, xm, t) > 1− ε.

Definition 2.8. [1] A mapping T : X → X is a Banach contraction if there
exists k ∈ (0, 1) such that

(2.1) M(Tx, Ty, t) ≥M(x, y, t/k), ∀x, y ∈ X, t > 0.

3. A New Fuzzy Contractive Condition

Definition 3.1. Let (X,M, ∗) be a fuzzy metric space and T : X → X a
mapping. We say that T satisfies the new fuzzy contractive condition with
respect to a strictly decreasing continuous function φ : [0, 1] → [0, 1], with
φ(1) = 0 and φ(r) < r for r ∈ [0, 1), if for all x, y ∈ X and t > 0:
(3.1)

φ(M(Tx, Ty, t)) ≤ max
{
φ(M(x, y, t)), φ(M(x, Tx, t)) ∗ φ(M(y, Ty, t))

}
.
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Remark 3.2. Clearly, if condition (2.1) holds, then condition (3.1) is also sat-
isfied.

Theorem 3.3. Let (X,M, ∗) be a complete fuzzy metric space and T : X → X
satisfy the new fuzzy contractive condition with function φ as above. Then T
has a unique fixed point x∗ ∈ X, and for any x0 ∈ X, the sequence xn+1 = Txn
converges to x∗.

Proof. Let x0 ∈ X and define xn+1 = Txn for n ≥ 0. Define

an(t) = φ(M(xn, xn−1, t)), bn(t) = φ(M(xn, xn+1, t)).

From the contractive condition, we have

bn(t) = φ(M(Txn, Txn−1, t)) ≤ max{an(t), an(t) ∗ bn(t)} = an(t),

since an(t) ∗ bn(t) ≤ an(t) for an(t), bn(t) ∈ [0, 1]. Since φ is strictly decreasing,
the inequality

φ(M(xn+1, xn, t)) ≤ φ(M(xn, xn−1, t)) implies M(xn+1, xn, t) ≥M(xn, xn−1, t),

so the sequence {M(xn+1, xn, t)} is monotone increasing bounded from
above with 1 so its convergent to some a(t). Suppose that a(t) < 1. Suppose

a(t) = lim
n→∞

M(xn+1, xn, t) < 1 =⇒ φ(a(t)) < a(t) < 1,

which leads to a contradiction. Therefore, it is necessary that

lim
n→∞

M(xn+1, xn, t) = 1.

Let ε > 0 be given. Because the sequence {M(xn, xn+1, t)} converges to 1,
there exists N ∈ N such that for all n ≥ N ,

M(xn, xn+1, t) > 1− ε, t > 0.

Now, using the recursive property of the fuzzy metric and the t-norm of
H-type, for any m > n ≥ N , we have

M(xn, xm, t) ≥M
(
xn, xn+1,

t

m− n

)
∗ · · · ∗M

(
xm−1, xm,

t

m− n

)
,

and by the choice of N and the equicontinuity of ∗ at 1, this ∗-combination
remains arbitrarily close to 1, which implies

M(xn, xm, t) ≥ 1− ε

for all m,n ≥ N . Hence, {xn} is a Cauchy sequence in the fuzzy metric space
(X,M, ∗).

To show x∗ is a fixed point, note

φ(M(Tx∗, x∗, t)) = φ(M(Tx∗, Txn, t))

≤ max{φ(M(x∗, xn, t)), φ(M(x∗, Tx∗, t)) ∗ φ(M(xn, Txn, t))}.

Letting n→∞ yields φ(M(Tx∗, x∗, t)) ≤ φ(1), and by the strict monotonicity
of φ, we obtain Tx∗ = x∗. Uniqueness follows similarly from the contractive
condition.
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Example 3.4. Let X = [ 12 , 1] ⊂ R with the fuzzy metric

M(x, y, t) =
t

t+ |x− y|
, t > 0,

and the minimum t-norm a ∗ b = min{a, b}. Define

φ(r) = r − r2, r ∈ [0, 1].

Then φ is continuous on [0, 1], φ(1) = 0, φ(r) < r for all r ∈ [0, 1), and φ is
strictly decreasing on [1/2, 1], since φ′(r) = 1− 2r < 0 for r > 1/2.

Define the operator T : X → X by

T (x) =
x

2
+

1

4
.

Clearly, T maps X into itself, since for x ∈ [ 12 , 1], we have T (x) ∈ [ 12 , 1].

Verification of the new fuzzy contractive condition.
For any x, y ∈ X and t > 0, we have

|Tx− Ty| = |x− y|
2

,

and therefore

M(Tx, Ty, t) =
t

t+ |x− y|/2
.

SinceM(Tx, Ty, t) ≥M(x, y, t) and φ is strictly decreasing on [1/2, 1], it follows
that

φ(M(Tx, Ty, t)) ≤ φ(M(x, y, t)).

Consequently,

φ(M(Tx, Ty, t)) ≤ max
{
φ(M(x, y, t)), φ(M(x, Tx, t)) ∗ φ(M(y, Ty, t))

}
.

Thus, the new fuzzy contractive condition (3.1) is satisfied and x = 1
2 is a fixed

point.

4. Application: Iterative Filtering in Image Processing

Iterative filtering consists of repeatedly applying an image operator T to
an initial image I0, generating the sequence In+1 = T (In) until it stabilizes at
a limit image I∗. Applications of fuzzy metrics and iterative filtering in image
processing have been extensively studied in the literature, demonstrating both
theoretical importance and practical efficiency [3, 4, 9, 10, 11, 12].

Consider a small grayscale image patch I0 corrupted by impulse noise:

I0 =

120 125 130
122 255 128
121 123 127

 .
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Define T as a continuous approximation of a median filter:

T (I)(p) =
1

|N(p)|
∑

q∈N(p)

I(q).

The fuzzy metric and the contractive function are:

M(I(p), J(p), t) =
t

t+ |I(p)− J(p)|
, φ(r) = r − r2, ∗ = min .

Starting with I0, define the sequence In+1 = T (In). The iterations produce:

I1 ≈

123 136 133
142 136 136
129 133 127

 I2 ≈

134 135 134
135 134 134
133 134 133

 I3 ≈

134 134 134
134 134 134
134 134 134

 .
The sequence converges to the unique fixed point I∗.

To verify that the operator T is fuzzy contractive, we compare pixel values
in two consecutive iterations. For any pixel p and t > 0,

M(In+1(p), In(p), t) =
t

t+ | In+1(p)− In(p) |
.

Applying φ(r) = r − r2, we obtain

φ(M(In+1(p), In(p), t)) = M(In+1(p), In(p), t)−M(In+1(p), In(p), t)2.

The contractive condition requires

φ(M(In+1(p), In(p), t)) ≤ max
{
φ(M(In(p), In(q), t)),

φ(M(In(p), In+1(p), t)) ∗ φ(M(In(q), In+1(q), t))
}
,

with q ∈ N(p). Since T is an averaging operator and the t-norm is of H-
type, the product term remains small, so the inequality holds at each pixel.
Consequently, each iteration decreases the fuzzy distance between successive
images, and the sequence {In} converges to a unique stable image I∗.
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geometrijska optimizacija

1. Uvod

Definicija 1.1. Za prirodan broj n, neka je s(n) stranica najmanjeg kvadrata
u koji se može spakovati n jediničnih kvadrata. (Pogledati [1], problem D4)

Rezultat je očigledan kada je n potpuni kvadrat. Kako je s(n) neopadajuća
funkcija, zaključujemo da važi

√
n ≤ s(n) ≤ d

√
ne . Problem odredivanja s(n)

kada n nije potpun kvadrat se pokazao kao nimalo lak zadatak. Nije prevǐse

teško videti da je s(2) = 2, dok je dokaz da je s(5) = 2 +
√
2
2 nešto komplikova-

niji. Oba dokaza će biti prezentovana u nastavku rada. Iako su mnogi tvrdili da
znaju kako da dokažu da je s(6) = 3 (videti sliku 1c), prvi publikovani dokaz
datira iz 2002. godine.

a) b) c)

Slika 1: Optimalna pakovanja za dva, pet i šest jediničnih kvadrata

1Rad je podržan od strane projekta ”Socio-tehnološki aspekti unapredenja nastavnog
procesa na engleskom jeziku u opštim disciplinama”, Departman za opšte discipline u tehnici,
Fakultet tehničkih nauka, Univerzitet u Novom Sadu

2Departman za opšte discipline u tehnici, Fakultet tehničkih nauka, Univerzitet u Novom
Sadu, e-mail: ciganovic.radojka@uns.ac.rs

https://orcid.org/0000-0003-4599-6932
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Dok se gornja ograničenja za s(n) dobijaju konkretnim konstrukcijama, mi
ćemo za neke vrednosti funkcije s(n) pronaći donja ograničenja. Pri tom ćemo
koristiti metod koji predstavlja Fridmanovu modifikaciju (videti [2]) metoda
koji je Stromkvist prvi upotrebio u svojim neobjavljenim beleškama (pogledati
[4], beleška 1). Pre nego što to uradimo dokazaćemo nekoliko tehničkih lema3,
koje će imati ključnu ulogu u nastavku. Ove leme kažu da ako se centar jedi-
ničnog kvadrata nalazi u nekoj oblasti, tada kvadrat ima odredene zajedničke
tačke sa rubom posmatrane oblasti.

2. Pomoćna tvrdenja

Lema 2.1 ([2]). Jedinični kvadrat koji je smešten u prvom kvadrantu i čiji se
centar nalazi u [0, 1]2 sadrži tačku (1, 1).

Dokaz. Dovoljno je pokazati da jedinični kvadrat u prvom kvadrantu koji
dodiruje koordinatne ose Ox i Oy sadrži tačku (1, 1). Ako pretpostavimo da
je kvadrat nagnut pod uglom θ ∈ (0, π2 ), onda su temena koja se nalaze na
koordinatnim osama A(0, cos θ) i B(sin θ, 0) (videti sliku 2). Rotacijom ova dva
temena jedno oko drugog za uglove −π2 i π2 dobijamo koordinate preostala dva
temena, C(sin θ + cos θ, sin θ) i D(cos θ, sin θ + cos θ). Sada je prava kroz tačke
C i D data jednačinom y = sin θ− ctg θ(x− sin θ− cos θ). Uvrštavanjem x = 1
u dobijenu jednačinu prave dobijamo da je

y =
sin2 θ − cos θ(1− sin θ − cos θ)

sin θ
=

1− cos θ + sin θ cos θ − sin θ + sin θ

sin θ

=
(1− sin θ)(1− cos θ) + sin θ

sin θ
=

(1− sin θ)(1− cos θ)

sin θ
+ 1 ≥ 1,

pa se tačka (1, 1) nalazi u posmatranom kvadratu.

(1,1)

A( , )0 cosθ

B( , )sin 0θ

θ

D( , + )cos sin cosθ θ θ

C( + , )sin cos sinθ θ θ

Slika 2: Jedinični kvadrat sa centrom u [0, 1]2

Primetimo da se prethodno tvrdenje može uopštiti. Neka je jedinični kvadrat
smešten u prvom kvadrantu. Ako se centar kvadrata nalazi u pravougaoniku
[0, a] × [0, b], gde je 0 < a, b ≤ 1, tada jedinični kvadrat sadrži tačku (a, b).
(Pogledati [3].)

3U literaturi se ova tvrdenja mogu naći pod nazivom non-avoidance lemmas. Ovaj termin
je prvi put upotrebljen u [4].
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Lema 2.2 ([2]). Neka za a i b važi a + 2b < 2
√

2, pri čemu je 0 < a, b ≤ 1.
Tada svaki jedinični kvadrat u prvom kvadrantu sa centrom u pravougaoniku
[1, 1 + a]× [0, b] sadrži bar jednu od tačaka (1, b) i (1 + a, b).

Dokaz. Pokazaćemo da svaki jedinični kvadrat čiji se centar nalazi u pravou-
gaoniku [1, 1 + a]× [0, b] i koji na svojim stranicama ima tačke (1, b) i (1 + a, b)
sadrži u svojoj unutrašnjosti tačku na x-osi. Ako tačke X(1, b) i Y (1+a, b) leže
na istoj stranici kvadrata, tvrdenje trivijalno važi.

X b(1, )

θ

Y a b(1+ , )θ

A

B

C

N

M

θ

Slika 3: Jedinični kvadrat sa centrom u [1, 1 + a]× [0, b]

Neka je ugao koji kvadrat zaklapa sa x-osom θ ∈ (0, π2 ) (slika 3). Pronaći
ćemo koordinate ”najnižeg”temena A posmatranog jediničnog kvadrata. U
pravouglom 4XY C važi |XY | = a, odakle dobijamo da je |CY | = a sin θ,
pa je |BY | = 1 − a sin θ. Sledeći trougao koji gledamo je 4Y BM, i pošto je
|MB| = (1−a sin θ) sin θ i |MY | = (1−a sin θ) cos θ, dobijamo da su koordinate
temena B(1 + a + (1 − a sin θ) sin θ, b − (1 − a sin θ) cos θ). Kako je |AB| = 1,
u 4ABN važi |AN | = cos θ i |BN | = sin θ, odakle je

A(1 + a+ (1− a sin θ) sin θ − cos θ, b− (1− a sin θ) cos θ − sin θ).

Posmatrajmo u nastavku funkciju f(θ) = sin θ + cos θ − a sin θ cos θ. Tačka
A se neće nalaziti u prvom kvadrantu ako je f(θ) > b. Kako je ispunjeno

f ′(θ) = cos θ − sin θ − a cos2 θ + x sin2 θ = cos θ − sin θ − a(cos2 θ − sin2 θ)

= (cos θ − sin θ)(1− a(cos θ + sin θ)),

jednostavnim trigonometrijskim računom dobijamo da su stacionarne tačke

(cos θ, sin θ) =
(√

2
2 ,
√
2
2

)
i (cos θ, sin θ) =

(
1±
√
2a2−1
2a , 1∓

√
2a2−1
2a

)
. Direktnom

proverom zaključujemo da funkcija f(θ) dostiže lokalni minimum za θ = π
4 .

Prema tome, kada je b < f(π4 ) =
√

2− a
2 , teme A jediničnog kvadrata se neće

nalaziti u prvom kvadrantu i postojaće tačka u unutrašnjosti kvadrata koja će
biti na x-osi.

Ova lema se najčešće primenjuje u slučaju kada je a < 2
√

2 − 2 ≈ 0.828 i
b = 1, ili kada je a = 1 i b <

√
2− 1

2 ≈ 0.914.

Lema 2.3 ([2],[4]). Ako je centar jediničnog kvadrata smešten u 4ABC, pri
čemu dužine stranica nisu veće od 1, tada kvadrat sadrži bar jedno od temena
trougla.
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Dokaz. Neka su sa R1, R2, R3 i R4 označene 4 zatvorene oblasti na koje dijago-
nale kvadrata dele ravan (slika 4). Ukoliko bi se sva tri temena 4ABC nalazila
u jednoj, ili u dve susedne oblasti, tada se centar kvadrata ne bi nalazio u
trouglu. Uzmimo zato, bez umanjenja opštosti, da se jedno teme 4ABC nalazi
u oblasti R1, a da je drugo teme u oblasti R3. Kako su stranice trougla dužine
≤ 1, nije moguće da se oba uočena temena trougla nalaze izvan kvadrata.

R
4

R
3

R
2

R
1

Slika 4: Jedinični kvadrat sa centrom u 4ABC

Lema 2.4 ([2]). Ako se centar jediničnog kvadrata nalazi u pravougaoniku
[0, 1]× [0, 0.4], tada kvadrat sadrži bar jedno teme pravougaonika.

Dokaz. Uvedimo sledeće oznake za temena pravougaonika: A(0, 0), B(0, 0.4),
C(1, 0.4) i D(1, 0). Pokazaćemo da svaki jedinični kvadrat koji sadrži
tačke A i B na rubu i čiji se centar nalazi unutar pravougaonika,
mora da sadrži i bar jednu od tačaka C i D. Uočimo da okoliko su temena
A i B na istoj stranici kvadrata, onda se i temena C i D nalaze na naspra-
mnoj stranici kvadrata. U nastavku razlikujemo tri slučaja u zavisnosti od
ugla θ ∈ (0, π2 ) pod kojim je jedinični kvadrat nagnut (slika 5).

D

Cθ

A

B

θ = —
π
4

θ

A D

CB

θ > —
π
4

θ

A D

CB

θ < —
π
4

R

Q

P

T

Slika 5: Jedinični kvadrati sa centrom u pravougaoniku [0, 1]× [0, 0.4]

Pretpostavimo da važi θ < π
4 . Iz 4ABP je |AP | = 0.4 cos θ, odakle imamo

|AQ| = 1 − 0.4 cos θ. Neka se tačka T nalazi u preseku p(A,D) i p(Q,R).

Sada je u 4ATQ ispunjeno |AT | =
|AQ|
sin θ

=
1− 0.4 cos θ

sin θ
=

1

sin θ
− 0.4 ctg θ.

Dobijamo |AT | >
√

2− 0.4 · 1 > 1 = |AD|, odakle zaključujemo da se teme D
pravougaonika nalazi u jediničnom kvadratu.

Analognim razmatranjem dobijamo da je teme C u kvadratu za θ > π
4 , dok

se u slučaju kada je θ = π
4 oba temena i C i D nalaze u unutrašnjosti kvadrata

(videti sliku 5).
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Uočimo da pokazane leme možemo primeniti i kada se centar jediničnog
kvadrata nalazi u oblasti koja se može dobiti transliranjem i rotacijom osnovnih
konfiguracija.

3. Skupovi neizbežnih tačaka

Definicija 3.1 ([2]). Skup tačaka P u kvadratu se naziva neizbežan skup ako
svaki jedinični kvadrat koji je smešten u kvadrat mora sadržati barem jednu
tačku iz skupa P, moguće i na stranicama.

Da bismo pokazali da je s(n) ≥ k, dovoljno je pronaći neizbežan skup P
koji sadrži n− 1 tačku u kvadratu stranice dužine k.

Teorema 3.2 ([2], [4]). s(2) = s(3) = 2.

Dokaz. Posmatrajmo jedinični kvadrat u [0, 2]2. Centar uočenog kvadrata se
može nalaziti u nekom od sledeća četiri kvadrata: [0, 1]2, [0, 1]×[1, 2], [1, 2]×[0, 1]
ili [1, 2]2. Kako na osnovu leme 2.1 znamo da se tačka (1, 1) mora nalaziti
u posmatranom jediničnom kvadratu, zaključujemo da je skup P = {(1, 1)}
neizbežan u kvadratu [0, 2]2 (slika 6). Na ovaj način smo pokazali s(2) ≥ 2.
Kako već znamo da važi s(2) ≤ 2 (pogledati sliku 1a), dobijamo s(2) = 2.
Pošto je s(4) = 2 i s(3) ≤ s(4), zaključujemo da je i s(3) = 2.

Slika 6: Kvadrat stranice 2 sadrži jednu neizbežnu tačku

Teorema 3.3 ([2], [4]). s(5) = 2 +
√
2
2 .

Dokaz. Neka je P = {(1, 1), (1, 1+
√
2
2 ), (1+

√
2
2 , 1), (1+

√
2
2 , 1+

√
2
2 )}. Pomoću

ove četiri tačke kvadrat sa stranicom 2 +
√
2
2 možemo podelili na 10 oblasti:

4 kvadrata, 4 pravougaonika i 2 trougla (slika 7).

Slika 7: Četiri neizbežne tačke u [0, 2 +
√
2
2 ]2

Ukoliko se centar nekog jediničnog kvadrata nalazi u jednom od uočenih
kvadrata, tada na osnovu leme 2.1 znamo da je i odgovarajuća tačka skupa P
takode u posmatranom jediničnom kvadratu. Ako je centar jediničnog kvadrata



24 Radojka Ciganović

u nekom od pravougaonika, primenjujemo lemu 2.2, dok se u slučaju da je centar
u nekom od trouglova, pošto su stranice oba trougla manje od ili jednake jedan,
koristi lema 2.3. Ranije smo videli da je moguće spakovati 5 jediničnih kvadrata

u kvadrat stranice 2 +
√
2
2 (videti sliku 1b), odakle sledi tvrdenje.

Teorema 3.4 ([2]). s(8) = 3.

Dokaz. Tačke skupa P = {(0.9, 1), (1.5, 1), (2.1, 1), (1.5, 1.5), (0.9, 2), (1.5, 2),
(2.1, 2)} dele kvadrat sa stranicom 3 na 16 oblasti (pogledati sliku 8a). Ako se
centar jediničnog kvadrata nalazi u nekom od četiri pravougaonika u uglovima
velikog kvadrata, koristimo uopštenje leme 2.1. Za preostale pravougaonike i
trouglove, isto kao u dokazu prethodnog tvrdenja, primenjujemo redom leme
2.2 i 2.3. Dobili smo da je posmatrani skup neizbežan, a kako je trivijalno
s(9) = 3, zaključujemo s(8) = 3.

Teorema 3.5 ([2]). s(15) = 4.

Dokaz. Posmatrajmo sledeći skup

P ={(1, 1), (1.6, 1), (2.4, 1), (3, 1), (1, 1.8), (2, 1.8), (3, 1.8),

(1, 2.2), (2, 2.2), (3, 2.2), (1, 3), (1.6, 3), (2.4, 3), (3, 3)}.

Na dva pravougaonika u centru kvadrata primenjujemo lemu 2.4 (videti
sliku 8b), dok se za ostale oblasti koriste prve tri leme na isti način kao u
prethodnim dokazima. Pronašli smo neizbežan skup sa 14 tačaka u kvadratu
stranice 4, pa važi s(15) = 4.

a) s(8) ≥ 3 b) s(15) ≥ 4

Slika 8: Skupovi neizbežnih tačaka
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Abstract. We compute several vertex-degree-based topological indices
of graphs defined by catacondensed coronoid systems. We do this by
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M -polynomial.
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1. Introduction

Let S be a set of h hexagons in the hexagonal grid, which may or may not
be (simply) connected, with β0 connected components, β1 holes and the Euler
characteristic χ = β0 − β1. Let G = (V,E) be the simple plane graph with n
vertices and m edges, induced by S: the vertices and edges of G correspond
to the vertices and edges of the hexagons in S, respectively, in the obvious
manner. In chemical graph theory, such sets are used to model molecules.
Simply connected sets S are called benzenoid systems [6], and connected sets
with one hole are coronoid systems [4].

The degree dv of a vertex v is equal to the number of the edges incident
to v. The number of the vertices in V of degree i is denoted by ni, i ∈ {2, 3}.
The number of the edges connecting a vertex of degree i to a vertex of degree
j (type i, j edges) is denoted by mi,j , i, j ∈ {2, 3}, i ≤ j. Boundary edges
are incident to exactly one hexagon in S. Boundary vertices are incident to
boundary edges. The number of boundary edges of type 3,3 is denoted by m∗3,3.
Non-boundary vertices are called interior. Their number is denoted by ni.

A topological index of a graph G is a real number associated with G. The
general form of a vertex-degree-based topological index I(G) of a graph G is
given by

I(G) =
∑

uv∈E(G)

f(du, dv),
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where f is a real function such that f(x, y) = f(y, x). Several dozens of well-
known indices have been defined, varying over the choices of f . In chemical
graph theory, graph indices have been repeatedly shown to be apt for describ-
ing and predicting chemical, physical and biological properties of associated
chemical compounds.

We will consider five such indices, obtained by choosing f as follows:

1. f(x, y) = x+ y for the first Zagreb index M1 [8],

2. f(x, y) = xy for the second Zagreb index M2 [7],

3. f(x, y) = (xy)α, α ∈ N, for the general Randić index Rα (variable second
Zagreb index vM2 [9]),

4. f(x, y) = 1/(xy) for the second modified Zagreb index mM2 (first order
overall index [1]),

5. f(x, y) = x2+y2

xy = x
y + y

x for the symmetric division deg index SDD [10].

It is well known [5] that these indices can alternatively be obtained from the
M -polynomial

M(x, y) = m2,2x
2y2 +m2,3x

2y3 +m3,3x
3y3

of G through differentiation or integration as follows

1. M1 = (Dx +Dy)(M(x, y))|x=y=1,

2. M2 = (DxDy)(M(x, y))|x=y=1,

3. Rα =v M2 = (Dα
xD

α
y )(M(x, y))|x=y=1,

4. mM2 = (SxSy)(M(x, y))|x=y=1

5. SDD = (DxSy +DySx)(M(x, y))|x=y=1,

where

Dx(M(x, y)) = x
∂M(x, y)

∂x
, Dy(M(x, y)) = y

∂M(x, y)

∂y
,

and

Sx(M(x, y)) =

x∫
0

M(t, y)

t
dt, Sy(M(x, y)) =

y∫
0

M(x, t)

t
dt.

For simply connected sets S, there are different formulas for m2,2, m2,3 and
m3,3 in terms of other, easier to determine and chemically significant, graph
invariants [6]. Interestingly, despite the long history and large body of research
on vertex-degree-based topological indices for simply connected sets S, these
formulae have only recently been extended to sets S of arbitrary topology by
the present authors [2] as follows:
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(1.1)
m2,2 = m∗3,3 + 6χ
m2,3 = 4h− 2ni − 4χ− 2m∗3,3
m3,3 = h+ ni − χ+m∗3,3

Here, we further demonstrate the versatility of our formulae by determining
the numbers m2,2, m2,3, m3,3, the M -polynomial and the associated indices for
catacondensed coronoid systems.

2. Vertex-degree-based topological indices of catacon-
densed coronoid systems

Catacondensed coronoid system S has exactly one hole and no inner vertices
(thus, χ = 1 − 1 = 0 and ni = 0). The hexagons in S are in one of the two
configurations, called L2 (linear) and A2 (angle or corner), as illustrated in
Figure 1 (a). They can be cyclically ordered so that each hexagon shares an
edge with the previous and the next one, and there are no more adjacencies
among the hexagons in S (see Figure 1 (b)).

(a) (b)

Figure 1: (a) A linear (left) and corner (right) hexagon. (b) A coronoid system
with a = 8 and l = 5.

We will obtain the M -polynomial and the associated indices of a catacon-
densed coronoid system with h hexagons, among which there are a corners and
l = h− a linear hexagons.

Theorem 2.1. For the graph G of a catacondensed coronoid system with a
corners and l linear hexagons, it holds

M(G) = ax2y2 + (2a+ 4l)x2y3 + (2a+ l)x3y3.

Proof. We have that

m2,2 = m∗3,3 = a
m2,3 = 4h− 2m2,2 = 4h− 2a = 2a+ 4l
m3,3 = h+m2,2 = h+ a = 2a+ l
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The first equality follows from (1.1), and the fact that type 2,2 and type 3,3
edges come in pairs which belong to corner hexagons (see Figure 1 (a)). The
second and third equalities follow from the first one and from (1.1).

Corollary 2.2. For the graph of a catacondensed coronoid system, it holds

M1 = (Dx +Dy)(M(x, y))|x=y=1

= 4a+ 5(2a+ 4l) + 6(2a+ l)

= 26a+ 26l,

M2 = (DxDy)(M(x, y))|x=y=1

= Dx(2ax2y2 + 3(2a+ 4l)x2y3 + 3(2a+ l)x3y3)|x=y=1

= (4ax2y2 + 6(2a+ 4l)x2y3 + 9(2a+ l)x3y3)|x=y=1

= 34a+ 33l,

Rα = (Dα
xD

α
y )(M(x, y))|x=y=1

= Dx(2αax2y2 + 3α(2a+ 4l) + 3α(2a+ l)x3y3)|x=y=1

= (4αax2y2 + 6α(2a+ 4l)x2y3 + 9α(2a+ l)x3y3)|x=y=1

= (4α + 2 · 6α + 2 · 9α)a+ (4 · 6α + 9α)l,

mM2 = (SxSy)(M(x, y))|x=y=1

= Sx(
y∫
0

(ax2t+ (2a+ 4l)x2t2 + (2a+ l)x3t2)dt)|x=y=1

= Sx(( 1
2ax

2y2 + 1
3 (2a+ 4l)x2y3 + 1

3 (2a+ l)x3y3))|x=y=1

= (
x∫
0

( 1
2aty

2 + 1
3 (2a+ 4l)ty3 + 1

3 (2a+ l)t2y3)dt)|x=y=1

= ( 1
4ax

2y2 + 1
6 (2a+ 4l)x2y3 + 1

9 (2a+ l)x3y3))|x=y=1

= 29
36a+ 7

9 l,

SDD = (DxSy +DySx)(M(x, y))|x=y=1

= (Dx( 1
2ax

2y2 + 1
3 (2a+ 4l)x2y3 + 1

3 (2a+ l)x3y3)+

Dy( 1
2ax

2y2 + 1
2 (2a+ 4l)x2y3 + 1

3 (2a+ l)x3y3))|x=y=1

= (ax2y2 + 2
3 (2a+ 4l)x2y3 + (2a+ l)x3y3+

ax2y2 + 3
2 (2a+ 4l)x2y3 + (2a+ l)x3y3))|x=y=1

= (a+ 2
3 (2a+ 4l) + (2a+ l) + a+ 3

2 (2a+ 4l) + (2a+ l)

= 31
3 a+ 32

3 l.
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3. Discussion

We have determined several vertex-degree-based indices of catacondensed
coronoid systems using our recently proposed formulae [2] and the associated
M -polynomial. In that way, we extended our previous work on a special class
of such systems, called fenestrenes [3]. We are currently working on develop-
ing analogous formulae for other chemically significant grids, which have been
completely neglected in this regard despite considerable amount of attention
given to the hexagonal grid.
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Abstract. In this paper, we propose a new algorithm based on {1}-
inverses for finding all algebraic (strong) solutions of a fuzzy Sylvester
matrix equation (FSME), AX̃ + X̃B = C̃, where the coefficient matrices
A and B are real matrices of orders n×n and m×m, respectively, while
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1. Introduction

In numerous practical applications involving systems of linear equations, the
available data are often imprecise or uncertain. Consequently, there is a need to
develop methods for solving systems of equations where certain parameters are
represented as fuzzy numbers. A method for solving square fuzzy linear systems
(FLS), AX̃ = B̃, whose coefficient matrix A is real and B̃ is an arbitrary fuzzy
number vector, was first introduced by Friedman et al. in [2]. In [5], Mihailović
et al. presented the first algorithm for obtaining all solutions of rectangle FLS
using the Moore-Penrose inverse of the coefficient matrix. In [1], Dragić et
al. proposed the straightforward method for obtaining all algebraic (strong)
solutions of an arbitrary dual fuzzy linear system (DFLS), AX̃+ C̃ = BX̃+ D̃,
where the coefficient matrices A and B are arbitrary real m× n matrices and
C̃ and D̃ are given fuzzy number vectors.

In 2011, Salkuyeh [6] investigated the existence and uniqueness of a fuzzy
solution to the fuzzy Sylvester matrix equation (FSME) of the form AX̃+X̃B =
C̃, when matrices A and B are M-matrices. Salkuyeh transformed FSME into
DFLS by using Kronecker products. Very recently, in [3], He et al. established
an algorithm to obtain general strong fuzzy solutions to the FSME by using
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the BT inverse of the coefficient matrix, under certain additional conditions on
the involved matrices, including their nonnegativity (or nonpositivity).

The main goal of this paper is to characterize the general algebraic (strong)
solution of the FSME. Using the Kronecker product, we transform the given
FSME into a dual fuzzy linear system, which is then extended to a classical
system of linear equations, for which a necessary and sufficient condition for
the existence of representative solutions (see page 4) is established. Further-
more, an algorithm based on the {1}-inverses is proposed to obtain the general
algebraic solution, and its effectiveness is demonstrated through an example.

2. Preliminaries and previous research

Let us denote with Mm×n the class of all m × n real matrices, m,n ∈ N.
For any F ∈ Mm×n, let a matrix G ∈ Mn×m be such that it fulfills equation
FGF = F . A such matrix G is called an {1}-inverse of F , and it will be
denoted by F (1), and F{1} denotes sets of all {1}-inverses of F .

Recall that a general solution of a classical linear system AX = B is given
in the next form:

(2.1) X = A(1)B + (In −A(1)A)V, A ∈Mm×n, B ∈Mm×1,

where A(1) ∈ A{1}, V ∈Mn×1 is arbitrary, and In is identity matrix of size n.
A fuzzy number is a mapping ũ : R → [0, 1] so that for each α ∈ (0, 1] the

α-level set, [ũ]α = {x ∈ R : ũ(x) ≥ 0}, ∀α ∈ (0, 1], is a nonempty, closed and
bounded interval, and support of ũ defined as supp(ũ) = {x ∈ R : ũ(x) > 0}
is a nonempty, closed and bounded interval. The set of all fuzzy numbers is
denoted by J̃ .

A fuzzy number ũ ∈ J̃ is given in the parametric form (u, u), where the
upper branch u : [0, 1] → R is non-increasing and left continuous, u(α) =
sup[ũ]α, whereas the lower branch u : [0, 1] → R is non-decreasing and left
continuous, u(α) = inf[ũ]α, such that u(α) ≤ u(α), for each α ∈ [0, 1]. The
addition, scalar multiplication and equality of fuzzy numbers are based on the
interval arithmetic and the fact that α-cuts of a fuzzy number ũ, given by
[ũ]α = [u(α), u(α)], α ∈ [0, 1], are closed intervals (for more details, we refer
the reader to [1, 2]).

Definition 2.1 ([4]). Let P = [pij ] ∈ Mm×n, pi = (p1i, p2i, . . . , pmi)
T be the

i-th column of P , i = 1, . . . , n, then the mn-dimensional vector vec(P ) = VP =[
p1 p2 . . . pn

]T
is called the extension on column of the matrix P .

Definition 2.2 ([4]). Let P ∈Mm×n, Q ∈Mp×q. Then the Kronecker prod-

uct is defined by P ⊗Q =

 p11Q · · · p1nQ
...

...
pm1Q · · · pmnQ

 , where P ⊗Q ∈Mmp×nq.

It holds vec(AXB) = (BT ⊗A)vec(X).

Let X̃ = (x̃1, . . . , x̃n)T denotes a fuzzy number vector, where x̃i ∈ J̃ ,
i = 1, . . . , n. Let Vn denotes the class of all n-dimensional fuzzy number vectors.
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Let X = (x1, . . . , xn,−x1, . . . ,−xn)T denotes the associated 2n × 1 classical
functional vector and let F denotes a class of all classical functional vectors.
The vector X ∈ F is called the representative vector if all its components are
adequate functions on the unit interval that represent the upper and lower
branches of some fuzzy number vector X̃ ∈ Vn. A class of all representative
classical functional vectors is denoted by FR. For each X̃ ∈ Vn, the associated
n×1 classical functional vectors are X = (x1, . . . , xn)T and X = (x1, . . . , xn)T .
The zero vector is denoted by O.

For each matrix M ∈Mm×n, let SM ∈M2m×2n be given by

SM =

[
M+ M−

M− M+

]
,(2.2)

where for each matrix M ∈ Mm×n we denote M+ = 1
2 (M + |M |) and M− =

1
2 (|M | −M), |M | = [|mij |].

Definition 2.3 ([3]). The fuzzy matrix equation

(2.3) AX̃ + X̃B = C̃,

where A = [aij ] ∈ Mn×n, B = [bij ] ∈ Mm×m, C̃ = [c̃ij ] is a n ×m matrix of

fuzzy numbers, and X̃ is a n×m unknown matrix of fuzzy numbers, is called
a fuzzy Sylvester matrix equation (FSME).

A matrix of fuzzy numbers Ũ , vec(Ũ) = ṼŨ ∈ V2mn, VŨ ∈ FR, is a (strong)
solution of (2.3) iff it holds:

AŨ + ŨB = C̃.

Theorem 2.4 ([3]). Let A ∈Mn×n, B ∈Mm×m, X̃, and C̃ be n×m matrices
of fuzzy numbers. Then, AX̃ + X̃B = C̃ is equivalent to

(2.4) (Im ⊗A)ṼX̃ + (BT ⊗ In)ṼX̃ = ṼC̃ ,

where In and Im denote the identity matrices of order n and m, respectively.

3. A new algorithm for solving FSME

Denote P = Im ⊗ A and Q = BT ⊗ In. The matrix equation (2.4) can be
extended to the following crisp form[

P+ P−

P− P+

] [
VX̃
−VX̃

]
+

[
Q+ Q−

Q− Q+

] [
VX̃
−VX̃

]
=

[
VC̃
−VC̃

]
.

For each matrix M ∈Mm×n, let SM ∈M2m×2n be given by (2.2). Therefore,
the matrix equation (2.4) can be extended into crisp systems of linear equations
as follows:

(3.1) (SP + SQ)VX̃(α) = VC̃(α), α ∈ [0, 1],
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(we write (SP + SQ)VX̃ = VC̃) associated to the system (2.4). Denote the
solution set of (3.1) with ASS. Let us denote the subset of ASS which contains
all representative solutions of (3.1) with ASSR, i.e.,

ASSR={VX̃ ∈ F
R| (SP+SQ)VX̃ = VC̃}⊆ {X ∈ F| (SP+SQ)VX̃ = VC̃}=ASS.

If ASSR 6= ∅, the family (3.1) is said to be R-consistent.
Let G ∈ Mmn×mn, G = [gij ] ∈ (P + Q){1}, and |G| = [|gij |]. Let SG ∈

M2mn×2mn be given by (2.2). The next theorem presents a necessary and
sufficient condition for the R-consistency of (3.1).

Theorem 3.1. Let A ∈Mn×n, B ∈Mm×m be the coefficient matrices of the
FSME (2.3) for a given n ×m matrix of fuzzy numbers C̃. Let P = Im ⊗ A
and Q = BT ⊗ In be the coefficient matrices of the system (2.4) associated
to the FSME (2.3), for given ṼC̃ = vec(C̃) ∈ Vmn. Let X∗ = SGVC̃ , where
G ∈ (P +Q){1}, and R = VC̃ − (SP + SQ)X∗.

The associated family of linear systems (3.1)
for the system (2.4) is R-consistent iff there exist

L =

[
Λ
−Λ

]
, where Λ = (λ1(α), . . . , λmn(α))T , such that

(SP + SQ)L = O, and T =

[
Θ
Θ

]
, where Θ = (θ1(α), . . . , θmn(α))T , such that

(SP + SQ)T = R, and X∗ + 1
2L + T ∈ FR.

Moreover,

ASSR =

{
VX̃ ∈ F

R |VX̃ = X∗ +
1

2
L + T, (SP + SQ)L = O, (SP + SQ)T = R

}
.

Proof. The proof is analogous to the proof of Theorem 1 in [1].

Based on Theorem 3.1, we propose a straightforward method for obtaining
the general algebraic solution of the fuzzy Sylvester matrix equation:

Algorithm
Step 1. Transform the given FSME (2.3) into the equation (2.4) and compute
X∗ = SGVC̃ , where G ∈ (P +Q){1}.
Step 2. Compute a mn× 1 functional vector Λ such that (P +Q)Λ = O.
Step 3. For X∗ obtained by Step 1, compute a mn × 1 functional vector W
such that W = VC̃ − [P+ +Q+ P− +Q−]X∗.

Step 4. If it exists, compute a mn × 1 functional vector Θ such that (|P | +
|Q|)Θ = W , where W is obtained by Step 3, else, FSME has no solution.
Step 5. If it exists, compute the representative solution VX̃ = X∗ + 1

2L + T of
(3.1), else, FSME has no solution.
Step 6. By inverse operation of the vec operation (which is defined in Definition
2.1), we transform VX̃ into matrix X̃, and we get the general fuzzy solutions
of (2.3).

Notice that from all determined L and T by Step 2 and Step 4, we only

consider such that for each α ∈ [0, 1] it holds Θ ≤ X
∗−X∗

2 , and all components
of X∗ + 1

2Λ + Θ are non-decreasing and left-continuous functions on the unite



General algebraic solution of a fuzzy Sylvester matrix equation 35

interval, whereas all components of X
∗

+ 1
2Λ−Θ are non-increasing and left-

continuous functions. Obviously, for such Λ and Θ, the family of intervals
{[x∗i (α)+ 1

2λi(α)+θi(α), x∗i (α)+ 1
2λi(α)−θi(α)] |α ∈ [0, 1]}, for all i, determines

α-cuts of ṼX̃ , which is a solution of the system (2.4).

Example 3.2. Consider the fuzzy Sylvester matrix equation AX̃ + X̃B = C̃ :[
1 0
0 2

] [
x̃11 x̃12
x̃21 x̃22

]
+

[
x̃11 x̃12
x̃21 x̃22

] [
−1 0
0 1

2

]
= C̃,

where

C̃ =

[
(−2 + 2α, 2− 2α) ( 3

2 + 3α, 6− 3
2α)

(−1 + 3α, 5− 3α) ( 5
2α, 5−

5
2α)

]
,

for any α ∈ [0, 1]. According to (2.4), the given FSME is equivalent to the
following equation:

1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2



x̃11
x̃21
x̃12
x̃22

+


−1 0 0 0
0 −1 0 0
0 0 1

2 0
0 0 0 1

2



x̃11
x̃21
x̃12
x̃22

 =


c̃11
c̃21
c̃12
c̃22

 .
The one of {1}-inverses of the matrix P +Q = I2 ⊗A+BT ⊗ I2 is in the next
form:

G = (P +Q)(1) =


0 0 0 0
0 1 0 0
0 0 2

3 0
0 0 0 2

5

 .
According to Algorithm, Step 1, we have:

X∗ = SGVC̃ = (0, −1 + 3α, 1 + 2α, α, 0, −5 + 3α, −4 + α, −2 + α)
T
.

Step 2: Λ =
(
f(α), 0, 0, 0

)T
is a solution vector of (P + Q)Λ = O, where

y = f(α), α ∈ [0, 1], is function on the unite interval.
Next, we have:

W = VC̃ − [P+ +Q+ P− +Q−]X∗ =
(
− 2 + 2α, 6− 6α, 0, 0

)T
.

Each system in the family of classical systems (|P |+ |Q|)Θ = W has a unique

solution: Θ =
(
− 1 + α, 2− 2α, 0, 0

)T
.

Finally, the general solution of the family (3.1), VX̃ ∈ ASSR, is VX̃ =[
VX̃ −VX̃

]T
,

VX̃ = X∗ +
1

2
Λ + Θ =


−1 + α+ 1

2f(α)
1 + α
1 + 2α
α

 ,
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VX̃ = X∗ +
1

2
Λ−Θ =


1− α+ 1

2f(α)
3− α
4− α
2− α

 ,
where f is a feasible function defined on the unite interval. Let f(α) = kα+n,
k, n ∈ R. In order to obtain a representative vector X (all the components
must be fuzzy numbers), we have 1 + k

2 ≥ 0 and −1 + k
2 ≤ 0, from which we

conclude that k ∈ [−2, 2], n ∈ R. For example, if we take f(α) = 2, α ∈ [0, 1],
we obtain one of the infinitely many solutions of the considered FSME:

X̃ =

[
(α, 2− α) (1 + 2α, 4− α)

(1 + α, 3− α) (α, 2− α)

]
.

4. Conclusion

In this paper, we investigated the fuzzy Sylvester matrix equation (FSME)
and proposed a new algorithm for determining its general algebraic (strong)
solution. The proposed method was based on the {1}-inverse and employed
the Kronecker product to transform the FSME into a dual fuzzy linear system.
A necessary and sufficient condition for the R-consistency of the associated
system was established. Since every real matrix possesses at least one {1}-
inverse, the proposed approach provides a reliable basis for obtaining all alge-
braic (strong) solutions of the FSME by means of generalized inverses, without
any restrictions related to the nonpositivity (nonnegativity) or the existence of
generalized inverses of the coefficient matrices involved.
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Abstract. Three-dimensional tomographic reconstruction enables vol-
umetric analysis of internal structures across medical, biological, indus-
trial, and geophysical applications. Building on the Radon transform,
modern 3D tomography incorporates analytical inversion, iterative op-
timization, and deep-learning methods that address noise, limited-angle
data, and low-dose constraints. This paper outlines the mathematical
foundations of 3D reconstruction and presents representative applications
ranging from micro-CT vasculature imaging and Brownian nanoscale to-
mography to muon-based inspection of shielded infrastructures. These
examples demonstrate how 3D tomography increasingly connects experi-
mental imaging with computational modeling, guiding future techniques
toward more accurate and interpretable volumetric reconstruction.
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1. Introduction

Tomography refers to the reconstruction of an object’s internal structure
from its external projections. Its mathematical foundation originates from
Radon’s 1917 transform, which expresses each projection as a line integral of
the unknown object [3]. Early computerized tomography inverted this relation
using filtered backprojection (FBP) [3, 5], enabling practical 2D slice recon-
struction.

Increasing demands for higher resolution, reduced radiation dose, and im-
proved noise robustness motivated the development of iterative and model-
based reconstruction (MBIR), as well as recent deep-learning and diffusion-
based approaches [5]. These advances naturally extended to three dimensions,
where volumetric imaging integrates multiple projections acquired from a range
of orientations.

In this context, 3D tomography provides the mathematical and computa-
tional framework for reconstructing full volumetric structure under realistic
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acquisition constraints, including limited-angle sampling and noisy measure-
ments.

2. Mathematical Framework for 3D Tomography

Three-dimensional reconstruction methods generalize 2D principles to re-
cover full volumetric geometry. While 2D tomography reconstructs planar
slices, 3D approaches integrate multiple 2D projections acquired across dif-
ferent orientations to recover the object’s entire internal structure.

(a) (b) (c)

Figure 1: Illustration of the 3D tomographic reconstruction process.(a) Volumetric
object sampled by parallel slice planes.(b) Contour information extracted from each
slice. (c) Reconstructed 3D volume obtained by combining all slice measurements.

2.1. From the 2D to the 3D Radon Transform

In 3D tomography, the object is represented by a scalar field f(x, y, z)
describing attenuation, density, or another imaging parameter. The 3D Radon
transform integrates f over planes orthogonal to a direction n = (nx, ny, nz)
[3]:

(2.1) R3f =

∫∫∫
f(x, y, z)δ(ρ− xnx − yny − znz)dxdydz.

Each projection image recorded on a detector corresponds to sampled values of
R3[f ] after appropriate geometric reparameterization . The inverse 3D Radon
transform reconstructs the volume via filtered angular backprojection [3]:

(2.2) f(x, y, z) = − 1

8π2

∫
S2

∂2

∂ρ2
R3[f ](ρ,n)

∣∣∣∣
ρ=xnx+yny+znz

dn,

In practice, this inversion is approximated using 3D filtered backprojection,
cone-beam variants, or numerical projectors implementing discrete ray-driven
or voxel-driven integration [3].

2.2. Discrete Model and Inverse Problem

While the continuous 3D Radon transform describes the forward physics of
tomography, practical reconstruction requires a discrete numerical model. The
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object is sampled into a 3D voxel grid and each detector measurement corre-
sponds to a discretized ray–voxel interaction. This yields the linear forward
system

(2.3) b = Ax+ ε,

where x represents the unknown 3D volume, b the stack of 2D projection im-
ages, and A the system matrix that maps rays in 3D space to detector pix-
els [2, 3]. In three-dimensional tomography, A becomes extremely large and
cannot be inverted explicitly, motivating the use of numerical reconstruction
techniques.

Iterative algorithms such as ART, SIRT, OSEM, and model-based iterative
reconstruction (MBIR) solve the discrete inverse problem by minimizing

(2.4) min
x
‖Ax− b‖2 + λR(x),

where R(x) imposes smoothness, sparsity, or structural constraints [2, 3]. These
methods are particularly important in 3D, where limited-angle sampling, noise,
and low-dose acquisition lead to significant instability in the reconstruction.

Beyond classical smoothness or sparsity priors, geometric constraints play a
key role in stabilizing highly underdetermined 3D inverse problems. In limited-
view tomography, where large regions of Fourier space remain unsampled,
shape-based regularizers help enforce global structural consistency. A notable
example is the shape–centroid prior of Lukić and Balázs [7], which restricts
feasible binary reconstructions to those preserving a global centroid estimate.
This demonstrates how even minimal geometric information can significantly
improve stability under extreme projection sparsity.

3. Challenges in Tomographic 3D Reconstruction

Although the mathematical foundations of tomographic imaging are well
established, practical 3D reconstruction remains limited by several persistent
issues. Sparse or limited-angle acquisition often restricts angular coverage,
producing streaking artifacts and loss of detail [2, 3, 5]. Low-dose requirements
further elevate noise, necessitating strong regularization or learned priors to
preserve image fidelity [2].

Reconstruction accuracy is also hindered by model mismatch in hetero-
geneous media, where bone, concrete shielding, or fluidic nanoscale environ-
ments distort measured signals [4, 6]. In dynamic imaging scenarios, motion
introduces additional inconsistency across projections, forcing algorithms to
address temporal undersampling through 4D or motion-compensated recon-
struction strategies [4, 5]. Finally, the computational demands of large-scale
3D inverse problems remain high, as both iterative and deep-learning-based
methods depend on substantial memory and GPU acceleration [2, 3]. Recent
research has begun to address these difficulties through hybrid approaches that
combine physics-based modeling with data-driven priors, particularly in ap-
plications such as LC-TEM nanoscale tomography, low-dose CT, and muon
imaging [4, 6].
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4. Representative Applications

3D tomography enables structural analysis across scales from nanometers
to meters. This section summarizes three compact examples illustrating the
diversity of imaging scenarios.

4.1. Pulmonary vascular imaging with µCT

High-resolution micro-computed tomography (µCT) enables non-
destructive, isotropic imaging of soft-tissue vasculature. In the developmental
study of Monodelphis domestica, Ferner [1] reconstructed the 3D pulmonary
vascular network by scanning postnatal lung samples in 2D slices and using
X-ray absorption contrast to visualize fine vessels without physical sectioning.

From a methodological perspective, µCT provides a full volumetric map
of the vascular tree, which can then be segmented to extract branching pat-
terns, vessel diameters, and spatial organization (see Figure 2). The purpose of
using tomography in this context is capture intact vascular geometry and quan-
tify developmental remodeling, capabilities that conventional histology cannot
provide. Such imaging is essential for studying developmental biology, organ
growth, and pathological alterations in microvascular networks.

(a) (b) (c)

Figure 2: (a) µCT axial slice. (b) Segmented 3D vasculature. (c) Unsegmented µCT
volume. Images adapted from [1].

4.2. Brownian Tomography at the Nanoscale

Kang et al. [4] introduced Brownian tomography, a 4D tomographic frame-
work for reconstructing the shape and motion of single platinum nanocrystals
suspended in liquid. In this setting, graphene liquid-cell TEM produces ex-
tremely noisy, anisotropic 2D projections of rapidly moving particles, condi-
tions under which classical electron tomography fails because motion and low
signal violate the assumption of consistent projection geometry. To address
this, the workflow combines fast LC-TEM imaging with a deep neural network
that estimates each particle’s orientation and 2D contour. These contours act
as constraints for voxel carving, yielding coarse 3D volumes that are subse-
quently refined through temporal shape optimization to ensure smooth frame-
to-frame evolution. This enables reconstruction of nanoscale morphological
changes (such as rounding, etching, and facet restructuring) during chemical
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reactions The tomographic approach is crucial because it integrates multiple
projections with estimated poses to recover true 3D geometry. without it, only
2D silhouettes would be available, making volumetric and atomic-scale struc-
tural evolution impossible to quantify.

(a) (b)

Figure 3: (a) Brownian tomography workflow: LC-TEM imaging, DL-based
pose/contour estimation, voxel carving, and temporal shape optimization. (b) Time-
resolved 3D density representations showing nanoscale morphological evolution of a
single nanocrystal [4]).

.

4.3. Muon-Based Tomographic Reconstruction of Shielded Infras-
tructures

Muon tomography exploits naturally occurring cosmic-ray muons, whose
high penetration makes them suitable for imaging large, densely shielded struc-
tures. In the study by Lefevre et al. [6], trajectories recorded around the G3
reactor at Marcoule were used to reconstruct a 3D density distribution of the
reactor core. The technique operates on a principle analogous to X-ray tomog-
raphy: as muons pass through the reactor, their energy loss reflects the density
of the materials along their paths. A SART-based iterative reconstruction
method, refined with machine-learning corrections, processes these recorded
trajectories to recover the internal density field and reveal structural anomalies
within the heavily shielded environment.

This study shows that 3D tomographic principles remain applicable even
under extreme physical constraints, large volumes, sparse and anisotropic ray
coverage, and strong material attenuation, thereby expanding the domain of
tomography to nuclear infrastructure inspection.

Taken together, these examples highlight the growing role of 3D tomo-
graphic research as a link between experimental imaging and computational
modeling. Continued advances are essential for improving reconstruction re-
liability, quantitative accuracy, and interpretability across different domains,
and for enabling integrative, simulation-driven approaches capable of revealing
complex internal structures with high precision.
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5. Conclusion

Three-dimensional tomographic reconstruction continues to evolve from
classical analytical formulations toward iterative, model-based, and learning-
driven methods capable of operating under limited data, noise, and complex
physical conditions. While Radon-based operators remain the mathematical
foundation, advances in regularization, statistical modeling, and data-driven
priors have substantially improved reconstruction fidelity across diverse imag-
ing settings. The applications demonstrate the versatility and expanding reach
of 3D tomography across spatial scales and scientific domains. Future progress
will depend on integrating physics-based models with simulation-guided and
machine-learning approaches, enabling accurate, interpretable, and computa-
tionally efficient reconstructions of increasingly complex internal structures.
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[7] T. Lukić and P. Balázs, “Limited-View Binary Tomography Reconstruc-
tion Assisted by Shape Centroid,” The Visual Computer, Springer, 2021.
DOI: 10.1007/s00371-021-02258-7.

https://doi.org/10.1002/ar.25542
https://doi.org/10.1148/radiol.2015132766
https://doi.org/10.1137/1.9780898719277
https://doi.org/10.1038/s41467-025-56476-8
https://doi.org/10.1103/PRXEnergy.4.013002
https://doi.org/10.1007/s00371-021-02258-7


The 10th Conference on Mathematics in Engineering: Theory and Applications
Novi Sad, December 12-14th 2025

EDUCATIONAL VISUALIZATION OF THE BOIDS
ALGORITHM IN UNREAL ENGINE’S NIAGARA

SYSTEM1
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Abstract. Graphical representations of mathematical concepts often
tend to appear too abstract and disconnected from intuitive understand-
ing. To bring these principles closer to students, this work explores the
simulation of flocking behavior based on the Boids model, implemented
through the Niagara Particle System in Unreal Engine. By utilizing pro-
cedural functions to define local interaction rules, such as alignment, co-
hesion, and separation, the study demonstrates how mathematical ideas
underlying motion dynamics can be visualized in real time. The research
is envisioned as a foundation for future applications within courses such
as Simulation in Animation, Engineering Animation and Other Media,
and Design of 3D Space and Environments, highlighting the value of vi-
sual and interactive approaches in understanding algorithmic and physi-
cal systems.
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1. Introduction

The Boids algorithm (short for “bird-oid objects”) represents a ground-
breaking concept in computer graphics and Artificial Life. Developed in 1986
by Craig Reynolds, Boids introduced a distributed behavioral model for sim-
ulating collective motion observed in flocks of birds, schools of fish, or herds
of animals. Its primary goal was to achieve visually convincing and compu-
tationally efficient procedural animation, eliminating the need for laborious
manual scripting of individual object paths. The significance of the model lies
in its demonstration of emergent behavior, complex, synchronized group mo-
tion arising solely from simple local interaction rules applied to autonomous
agents [1][2]. Modern game engines such as Unreal Engine 5 (UE5) enable
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both visual and procedural, implementation of such systems through the Ni-
agara particle framework providing the capability for real-time simulation of
complex behaviors within virtual environments This paper explores the imple-
mentation of emergent behavior within a modern VFX context by integrating
the Boids model and the Niagara particle system in Unreal Engine [5]. Focus-
ing on the visualization of mathematical and procedural principles, it illustrates
applied mathematics through creative simulation, with potential uses in games,
interactive media, and intelligent animation systems related to courses such as
Simulation in Animation, Engineering Animation and Other Media and Design
of 3D Space and Environments.

2. Theoretical Framework and current implementations

For further understanding of this paper, it will be necessary to define the
problems that will be analysed. A brief overview of all important concepts will
be given in this chapter, as well as some of the recent implementations and
visualisations.

2.1. Mathematical Model of the Boids System

In his seminal paper “Flocks, Herds, and Schools: A Distributed Behav-
ioral Model” (1987), Craig Reynolds defined three simple behavioral rules that
govern how each agent, boid, moves through space. These rules form the foun-
dation of emergent group behavior, showing how coordinated structures arise
solely from local interactions, without any central control or global plan [1].

Mathematically, the position and velocity of the i-th boid at time t are
represented as:

~xi(t), ~vi(t)

The evolution of the system is governed by a coupled set of differential
equations:

(2.1)
d~xi(t)

dt
= ~vi(t),

d~vi(t)

dt
= Fsep

i + Fali
i + Fcoh

i

where the three components represent local behavioral rules:
Separation (F sep

i ) - Each boid tends to avoid getting too close to its neigh-
bors. Reynolds describes this as the avoidance of collisions with nearby flock-
mates. The rule ensures that individuals maintain a minimal distance, creating
a natural spread within the flock and preventing overlaps [2].

Alignment (F ali
i ) - A boid aligns its direction and velocity with those of

its nearby flockmates (matching velocity with nearby flockmates). This pro-
duces synchronized, fluid motion characteristic of real flocks or schools moving
cohesively in one direction [2].

Cohesion (F coh
i )- Each boid seeks to remain part of the group by moving

toward the average position of its neighbors (tendency to move toward the
average position of local flockmates). This keeps the flock spatially compact
and prevents dispersion [2].
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2.2. Implementation using C++ / OpenGL

This is a practical, low-level implementation of the Boids algorithm
built with C++, OpenGL, and Dear ImGui, focusing on developing a high-
performance and fully controllable flocking simulation from the ground up.
The algorithm follows Reynolds’s three behavioral rules (alignment, separa-
tion, and cohesion) where each agent calculates forces based on its neighbors
and updates its position and velocity in every frame (Figure 1). The simulation
integrates these rules through a weighted system of parameters (for example,
α, β, γ coefficients), enabling interactive adjustment of flock dynamics in real
time [3].

(a) (b) (c)

Figure 1: Visualization of Boids in OpenGL: (a) initialization, (b) flock formation,
(c) emergent flow [3].

While the system produces smooth and realistic flocking behavior, boids are
rendered as simple geometric shapes. It also requires solid programming skills
in C++ and a basic understanding of the graphics pipeline. This makes the
implementation useful for demonstrating the mathematical and computational
principles behind emergent behavior and serves as a reference for higher-level
frameworks like Unreal Engine’s Niagara system, where similar concepts can
be applied without low-level coding.

2.3. Implementation in Unity

In “Simulation of Boid Type Behaviours in Unity Environment” (2021), the
authors implemented Reynolds’s three behavioral rules, separation, alignment,
and cohesion, directly within Unity’s 3D environment using C# scripting and
the built-in physics system [4]. Each boid was represented as a lightweight par-
ticle or simple 3D object that continuously updated its position and velocity
based on nearby agents detected within a fixed perception radius (Figure 2).
This neighborhood detection was optimized using Unity’s spatial query func-
tions to ensure real-time performance even for larger swarms. The visualization
made use of Unity’s Scene View and Game View for simultaneous inspection
of both algorithmic behavior and rendered motion. The authors noted that
the emergent flocking patterns, turning, grouping, and smooth avoidance, were
“visually convincing and stable across various population densities.”
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(a) (b) (c)

Figure 2: Visualization of a BOID group in the Unity environment. The Reynolds
forces (separation, alignment, and cohesion) were parameterized through a frequency
coefficient. Subfigures (a), (b), and (c) illustrate the resulting variations in behavior
as this coefficient is adjusted [4].

While the presented models are relatively simple and computationally effi-
cient, it remains an open question how the same system would perform with
complex, animated meshes, where per-agent updates could significantly in-
crease processing cost.

3. Applications in UE 5.6

This chapter presents the visualization and simulation of the Boids algo-
rithm, specifically the flocking behavior of birds and fish, developed in Unreal
Engine 5.6 using the Niagara particle system (see Figures 3 and 4).

While the Unity implementation relied on object-based simulation, the Nia-
gara framework treats each boid as an individual particle instance governed by
user-defined behavior modules. These modules are constructed through node-
based scripts, allowing procedural control of particle position, velocity, and in-
teraction directly within the editor’s visual environment. Each particle operates
as an autonomous agent that continuously evaluates its surroundings accord-
ing to Reynolds’s three behavioral rules: separation, alignment, and cohesion.
The system utilizes GPU-accelerated rendering, which supports higher pop-
ulation counts and smoother real-time performance compared to CPU-based
approaches, offering an efficient platform for studying emergent motion.

3.1. Mathematical Vector-Based Forces in Niagara

In Unreal Engine’s Niagara system, particle motion is defined through
vector-based mathematical functions acting in three-dimensional space. These
functions modify particle position and velocity via transformations that reflect
physical or behavioral principles such as turbulence, drag, attraction, and rota-
tion. Each force represents a vector field ~F (~r, t) influencing motion according
to

(3.1)
d~v

dt
=

~F (~r, t)

m
.
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By combining several operators, Niagara reproduces complex emergent behav-
iors from simple local interactions, aligning with Reynolds’s flocking dynamics
model.

(a) (b) (c)

Figure 3: Visualization of bird flocking behaviour (a) initialization, (b) flock forma-
tion, (c) emergent flow.

The Curl Noise Force adds spatially coherent turbulence by applying the
curl of a 3D noise field. Drag simulates viscous damping proportional to ve-
locity, ensuring smooth motion. Point Attraction Force drives particles toward
a target, modeling cohesion or goal-seeking behavior. Add Velocity integrates
multiple computed influences into a single motion update. Vortex Force in-
duces rotational flow around an axis, and Point Force generalizes attraction
and repulsion for obstacle avoidance or spatial structuring [5].

(a) (b) (c)

Figure 4: Visualization of fish shoaling behaviour (a) initialization, (b) shoaling
formation, (c) emergent flow.

Together, these modules illustrate how Niagara’s procedural system trans-
forms mathematical vector operations into visually coherent simulations of col-
lective motion, merging physics-based modeling with real-time graphics.

3.2. Discussion and observation

Compared to object-oriented implementations in Unity and low-level
C++/OpenGL simulations, Niagara provides a higher degree of procedural



48 Lana Dujmović et al.

flexibility and visual realism. The node-based system abstracts the underly-
ing mathematics while maintaining control over physical accuracy, enabling
rapid experimentation with large agent populations. Its GPU-driven archi-
tecture supports complex emergent behavior without significant performance
loss, demonstrating how mathematical concepts can be effectively visualized
through modern VFX workflows. Future applications may extend toward inter-
active scenarios, such as Blueprint-driven character responses or virtual crowd
visualization, where behavioral rules can dynamically adapt through fuzzy or
AI-based control schemes [2].

4. Conclusion

Overall, the Niagara implementation confirms that Unreal Engine 5 pro-
vides a robust foundation for real-time visualization of emergent systems, bridg-
ing scientific simulation with cinematic-quality rendering. The resulting work-
flow illustrates how behavioral algorithms such as Boids can evolve from purely
computational experiments into expressive, interactive, and visually rich sim-
ulations. The research is expected to support future work in courses such as
Simulation in Animation, Engineering Animation and Other Media, and Design
of 3D Space and Environments, by providing a framework for demonstrating
motion simulations through the Niagara particle system. This system relies
on vector algebra, local-space transformations, and particle lifecycle manage-
ment, offering students a more intuitive and visual approach to understanding
algorithmic and physical motion.
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1. Introduction

Convexity is one of the fundamental geometric properties of planar shapes,
closely related to structural integrity, boundary regularity, and spatial com-
pactness. Quantitative convexity descriptors aim to numerically express how
much a shape deviates from being convex. These descriptors play a central role
in digital shape analysis, with wide applications across multiple scientific and
engineering disciplines.

In engineering, convexity measures are used in automated quality control
and defect detection on manufactured parts, where deviation from convexity
often signals damage or misalignment. In precision agriculture, shape convexity
helps in plant species recognition, leaf disease detection, and crop phenotyping
using drone or satellite imagery. In medical imaging, convexity descriptors as-
sist in segmentation and classification tasks—particularly for detecting tumors,
lesions, or anatomical irregularities where shape deformities provide diagnostic
cues.
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While many convexity measures have been proposed—most notably area-
and perimeter-based ones — these are often sensitive to non-similarity transfor-
mations or limited in their ability to capture subtle shape deviations. Moment-
based descriptors, on the other hand, offer strong mathematical foundations
and allow for invariance under translation, rotation, and scaling. In this work,
we build upon a recent interpretation of the first Hu moment invariant and
derive a new convexity descriptor denoted as CHu(S). This measure is theoret-
ically sound and practically robust, especially when dealing with non-convex
and multi-component shapes.

The paper is structured as follows: in Section 2, we recall the necessary
mathematical preliminaries. Section 3 introduces the CHu(S) measure and
analyzes its theoretical properties. Section 4 presents comparative experimental
results with classical convexity descriptors.

2. Preliminaries

We begin by listing basic definitions to support understanding of the main
results and to establish assumptions ensuring theoretical correctness.

A shape, as a fundamental object property similar to color or texture, is
typically represented as a bounded (not necessarily connected) region in the
plane, defined by foreground pixels in a binary image. For a planar shape S,
the moment of order p+ q, denoted as mp,q(S), is defined as:

mp,q(S) =

∫∫
S

xpyqdxdy.(2.1)

The zero-order moment m0,0(S) gives the area of the shape, while(
m1,0(S)
m0,0(S) ,

m0,1(S)
m0,0(S)

)
determines its centroid. Since translation does not affect

the shape, central moments, denoted by mp,q(S), are introduced:

mp,q(S) =

∫∫
(x,y)∈S

(x− xc(S))
p

(y − yc(S))
q
dx dy.(2.2)

However, central moments are not invariant to scaling. To achieve scale invari-
ance, we define the normalized central moments as:

µp,q(S) =
1

m0,0(S)(p+q+2)/2
·mp,q(S).(2.3)

Achieving rotational invariance is more challenging. In his seminal work [3], Hu
introduced a set of seven algebraic moment invariants with respect to rotation.
This paper focuses on the first Hu invariant, which involves only second-order
shape moments:

Hu(S) = µ2,0(S) + µ0,2(S) =
1

m0,0(S)2
· (m2,0(S) +m0,2(S)) .(2.4)

Note that all Hu invariants are also geometric moment invariants, as they
can be derived from geometric primitives [4]. This enables their use as shape
descriptors in image processing and computer vision.
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We will evaluate the behavior of our proposed convexity measure against
two common alternatives: CArea(S) and CPer(S) [1], defined as:

(2.5) CArea(S) =
Area(S)

Area(Sch)
, CPer(S) =

Perimeter(Sch)

Perimeter(S)
,

where Sch denotes the convex hull of the shape S.

3. Convexity measure based on the first Hu moment in-
variant

In this section, we present the new measure of shape convexity originally
defined in [5] and which is based on a new interpretation of the first Hu moment
invariant, introduced in [2], which serves as the base for deriving a new shape
measure. Following by this result, we started from the quantity ISD(S), rep-
resenting the integral of the square of the distance between all pairs of points
of the shape S, defined as follows (for the full derivation, see [5]):

ISD(S) =
1

2
·
∫

(x,y)∈S

∫ ∫
(z,t)∈S

∫ (
(x− z)2 + (y − t)2

)
dx dy dz dt

= m0,0(S) · (m2,0(S) +m0,2(S)) .(3.1)

Now, based on (2.4) and (3.1) it follows that

1

m0,0(S)3
· ISD(S) =

1

m0,0(S)2
· (m2,0(S) +m0,2(S)) = Hu(S).(3.2)

This result, originally introduced in [2], implies that the first Hu moment invari-
ant can be expressed by means of the integral of the squared distance between
all pairs of points belonging to the shape normalized by the the area of the
shape itself. Given the quantity ISD(S) can be expressed in terms of the area
and the first Hu moment invariant related to the shape considered, it is invari-
ant to translation and rotation. Based on this, if the same reasoning is applied
to the convex hull of S, denoted with Sch, the following holds:

ISD(Sch) =
1

2
·
∫

(x,y)∈Sch

∫ ∫
(z,t)∈Sch

∫ (
(x− z)2 + (y − t)2

)
dx dy dz dt

≥ 1

2
·
∫

(x,y)∈S

∫ ∫
(z,t)∈S

∫ (
(x− z)2 + (y − t)2

)
dx dy dz dt = ISD(S).(3.3)

The latter represents a key result that provides the foundation for deriving
in [5] a new shape measure evaluating the degree to which a given shape is
convex. In this context, we present the following lemma, whose results are a
direct consequence of the last inequality in (3.3).

Lemma 3.1. For an arbitrary shape S, the following statements hold:
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(a) 0 <
ISD(S)

ISD(Sch)
≤ 1;

(b) ISD(S) = ISD(Sch) ⇔ S ≡ Sch.

Based on the results in Lemma 3.1, we can conclude that the observed ratio
can be used in a certain way to characterize how much the shape S deviates
from its convex hull, i.e., how convex it is. Accordingly, we have the following
definition.

Definition 3.2. Given a shape S, the shape convexity measure CHu(S) is
defined as

(3.4) CHu(S) =
ISD(S)

ISD(Sch)
=

m0,0(S)3 ·Hu(S)

m0,0(Sch)3 ·Hu(Sch)
.

Such a defined convexity measure CHu(S) also satisfies all the basic prop-
erties that any well-defined convexity measure should satisfy. Some of these
properties are given in the following theorem, which we state here without
proof. For more details about CHu(S) and its properties, the reader is referred
to the paper [5] where the measure CHu(S) itself was originally designed.

Theorem 3.3. For the convexity measure CHu(S) the following holds:

(a) CHu(S) ∈ (0, 1], for all shapes S;

(b) CHu(S) = 1 ⇔ S is a convex shape;

(c) CHu(S) is invariant under similarity transformations (i.e., translation,
rotation and scaling);

(d) the lower bound 0 for CHu(S) is the best possible, i.e., for each ε > 0
there exists a shape S such that 0 < CHu(S) < ε.

4. Experimental illustration of the convexity measures

In this section, we present several illustrative experiments to compare the
behavior of the shape convexity measure CHu(S) with two commonly used con-
vexity measures: CArea(S) and CPer(S) [1]. The performance of these measures
is illustrated on synthetically generated shapes, with modifications including
the size and relative position of the holes within the shape.

The first experiment illustrates the behavior of the three convexity mea-
sures with respect to the relative position of the indentation within the shape,
without changing its size (shape examples are shown in Figure 1, (a)–(c)). As
observed from the first plot in Figure 2, the area and perimeter of both the
shape and its convex hull remain unchanged, causing CArea(S) and CPer(S) to
be insensitive to the indentation’s position. This can be considered a weakness
compared to CHu(S), which is able to distinguish between the given shapes.
Notably, the measured CHu(S) value is invariant with respect to the symmet-
rical placement of the indentation. This behavior aligns with the theoretical
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results established in the previous section, confirming that the proposed mea-
sure is invariant under shape similarity transformations (the examined shape
pairs are rotation-invariant around the vertical axis of symmetry).

In the second experiment, we examine how the convexity measures respond
when the width of the indentation increases (Figure 1, (d)–(f)). As expected,
the convexity decreases, which is reflected in both CHu(S) and CArea(S) (see
the central plot in Figure 2). In contrast, the perimeter-based measure CPer(S)
remains unchanged, indicating its insensitivity to such deformation. This is
consistent with its definition: increasing the indentation width does not alter
the perimeters of the shape or its convex hull, while the area of the shape
decreases relative to the unchanged convex hull area.

In the final experiment, we consider the case where the side length of the
square hole within the shape increases (Figure 1, (g)–(i)). As anticipated, the
convexity decreases, which is captured by all three measures (see the third plot
in Figure 2). This behavior is in full accordance with their definitions: a larger
internal hole leads to a greater deviation between the shape and its convex hull.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Shapes obtained from the squares for different hole positions (first row),
indentation width (second row) and size of the holes (third row).
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Figure 2: Plots of computed CHu(S), CArea(S) and CPer(S) values with respect to
hole position, indentation width, and hole size within the shape.
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Abstract. In this paper, we consider three well-known second-order
moment invariants, such as the first two Hu moment invariants and the
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1. Introduction

Shape, as a fundamental object property akin to color and texture, is tradi-
tionally identified as a bounded, not necessarily connected region in the plane,
represented by foreground pixels in a binary digital image. For the planar
shape S, the moment of order p+ q, denoted as mp,q(S), is defined as follows

mp,q(S) =

∫∫
S

xpyqdx dy.(1.1)

The zero-order moment m0,0(S) represents the area of the shape, while(
m1,0(S)
m0,0(S)

,
m0,1(S)
m0,0(S)

)
represents its centroid. Since the shape remains unchanged

during translation of the object itself, central moments, denoted by mp,q(S),
are introduced as follows:

mp,q(S) =

∫∫
(x,y)∈S

(x− xc(S))
p

(y − yc(S))
q
dx dy(1.2)

and as such they are translation invariant. However, given that the shape of
the object does not change under translation for an arbitrary vector, without
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loss of generality, we can suppose that the shape considered is translated so
that its centroid coincides with the origin. In this regard, if we assume that

(1.3) m1,0(S) = 0 and m0,1(S) = 0,

then mp,q(S) = mp,q(S). Given that a shape of the object does not change
under the translation transformation, this assumption is not a restriction in
the shape based object analysis tasks.

Additionally, in the design tasks of shape-based object analysis tools, the
requirement of invariance with respect to object scaling is particularly impor-
tant, since the shape of the object does not change under such transformations.
Therefore, it is useful to define an appropriate moment invariant, denoted e.g.
µp,q(S), such that for an arbitrary shape S and a scaling factor λ > 0 the
following equality holds:

µp,q(λ� S) = µp,q(S)(1.4)

where λ�S = {(λ · x, λ · y)
∣∣∣(x, y) ∈ S} denotes shape S scaled by factor λ > 0.

To design such a moment-based shape feature, notice that

mp,q(λ� S) =

∫∫
λ�S

(λ · x)p(λ · y)qd(λ · x) d(λ · x)

= λp+q+2 ·
∫∫
S

xpyqdx dy = λp+q+2 ·mp,q(S),(1.5)

while in the case p = q = 0, we get that m0,0(λ�S) = λ2 ·m0,0(S), respectively

λ =
(
m0,0(λ�S)
m0,0(S)

)1/2
. Hence, after substituting the last relation in (1.5), we

obtain the following:

mp,q(λ� S) =

(
m0,0(λ� S)

m0,0(S)

)(p+q+2)/2

·mp,q(S)(1.6)

i.e.,

mp,q(λ� S)

m0,0(λ� S)(p+q+2)/2
=

mp,q(S)

m0,0(S)(p+q+2)/2
(1.7)

Now from the latter we get that the normalized moments are defined as

µp,q(S) =
mp,q(S)

m0,0(S)(p+q+2)/2

and they are invariant w.r.t. translation and scaling of the shape. Since the
shape of the object does not change when scaled by an arbitrary factor, in
the rest of the paper we assume that all considered shapes have unit area,
i.e. m0,0(S) = 1. Therefore, we have that µp,q(S) = mp,q(S), which does not
diminish the generality of the presented results.
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2. Main results

For the results presented in this paper, the first two Hu moment invari-
ants derived from second-order moments are of particular importance. From
a mathematical point of view, the moment invariant I(mp,q) refers to a mo-
ment function of mp,q that does not change its value under various trans-
formations, e.g. similarity or affine ones, i.e., that satisfies the condition
I(mp,q(S)) = I(mp,q(T [S])) where T [S] denotes the transformed shape of S
itself. These quantities represent the two best-known and most widely used mo-
ment invariants among all seven presented in [1]. The latter follows from their
low computational complexity, since only second-order moments are needed
for their calculation. Thus, for a given shape S of a unit area, centered at the
origin, the first two Hu moment invariants are defined as follows:

H1(S) = µ2,0(S) + µ0,2(S),(2.1)

H2(S) = (µ2,0(S)− µ0,2(S))
2

+ 4µ1,1(S)2.(2.2)

In addition, we will also mention here the first affine moment invariant [2],
which is defined using second-order moments as follows:

A1(S) = µ2,0(S) · µ0,2(S)− µ1,1(S)2.(2.3)

Using elementary calculation, it is easy to verify that the first affine moment
invariant in (2.3) can be expressed as a combination of the first two Hu moment
invariants in (2.1) and (2.2), i.e. the following holds:

H1(S)2 −H2(S) = (µ2,0(S) + µ0,2(S))
2 −

(
(µ2,0(S)− µ0,2(S))

2
+ 4µ1,1(S)2

)
= µ2,0(S)2 + 2 · µ2,0(S) · µ0,2(S) + µ0,2(S)2

−
(
µ2,0(S)2 − 2 · µ2,0(S) · µ0,2(S) + µ0,2(S)2 + 4µ1,1(S)2

)
= 4 ·

(
µ2,0(S) · µ0,2(S)− µ1,1(S)2

)
= 4 ·A1(S).

It is worth noting that all three considered second-order moment invariants
are also geometric moment invariants, since they can be derived using the
corresponding geometric invariants [3]. Based on this, H1(S) can be expressed
as the integral of the square of the distance of all points A(x, y) inside the
shape S (of unit area) from its centroid (i.e., origin) O(0, 0):∫∫

A(x,y)∈S

∣∣∣−→rA∣∣∣2dx dy =

∫∫
(x,y)∈S

(x2 + y2) dx dy = H1(S)

where, for simplicity, the position vector of point A is denoted by −→rA. Regarding
H2(S) and A1(S), they can be expressed as a multiple integral of the corre-
sponding geometric invariants, e.g. Φ(−→rA,−→rB), for all pairs of points A(x, y)
and B(u, v) varying through S. Thus, for H2(S), resp. A1(S), the geomet-

ric invariant Φ(−→rA,−→rB) has the form Φ(−→rA,−→rB) =
∣∣∣−→rA∣∣∣2 · ∣∣∣−→rB∣∣∣2 · cos 2∠(−→rA,−→rB),

resp. Φ(−→rA,−→rB) = 2 ·
(

1
2 ·
∣∣∣−→rA ×−→rB∣∣∣)2. Now the equality of the considered
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second-order moment invariants and the multiple integrals of the correspond-
ing invariants can be easily shown using elementary calculus as follows:∫∫
A(x,y)∈S

∫∫
B(u,v)∈S

∣∣∣−→rA∣∣∣2 · ∣∣∣−→rB∣∣∣2 · cos 2∠(−→rA,−→rB) dx dy du dv

=

∫∫
(x,y)∈S

∫∫
(u,v)∈S

(x2 + y2) · (u2 + v2) · cos 2ϕdx dy du dv (for ϕ = ∠(−→rA,−→rB))

=

∫∫
(x,y)∈S

∫∫
(u,v)∈S

(x2 + y2) · (u2 + v2) ·
(
2 cos2 ϕ− 1

)
dx dy du dv

=

∫∫
(x,y)∈S

∫∫
(u,v)∈S

2 · (x2 + y2) · (u2 + v2) · cos2 ϕdx dy du dv

−
∫∫

(x,y)∈S

∫∫
(u,v)∈S

(x2 + y2) · (u2 + v2) dx dy du dv

=

∫∫
(x,y)∈S

∫∫
(u,v)∈S

2 ·
(√

x2 + y2 ·
√
u2 + v2 · cosϕ

)2
dx dy du dv

−
∫∫

(x,y)∈S

∫∫
(u,v)∈S

(x2u2 + x2v2 + y2u2 + y2v2) dx dy du dv

=

∫∫
(x,y)∈S

∫∫
(u,v)∈S

2 · ((x, y) ◦ (u, v))
2
dx dy du dv (◦ denotes the dot product)

−
∫∫

(x,y)∈S

∫∫
(u,v)∈S

(x2u2 + x2v2 + y2u2 + y2v2) dx dy du dv

=

∫∫
(x,y)∈S

∫∫
(u,v)∈S

(
2 · (xu+ yv)

2 − (x2u2 + x2v2 + y2u2 + y2v2)
)
dx dy du dv

=

∫∫
(x,y)∈S

∫∫
(u,v)∈S

(
x2u2 − x2v2 − y2u2 + y2v2 + 4 · xyuv

)
dx dy du dv

= µ2,0(S)2 − 2 · µ2,0(S) · µ0,2(S) + µ0,2(S)2 + 4 · µ1,1(S)2

= (µ2,0(S)− µ0,2(S))
2

+ 4 ·mµ1,1(S)2 = H2(S)

where the moments µp,q(S) comes from the equality∫∫
(x,y)∈S

∫∫
(u,v)∈S

xpyqurvs dx dy du dv

=

∫∫
(x,y)∈S

xpyq dx dy ·
∫∫

(u,v)∈S

urvs du dv = µp,q(S) · µr,s(S),(2.4)
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while for the first affine moment invariant the following applies:

∫∫
A(x,y)∈S

∫∫
B(u,v)∈S

2 ·
(

1

2
·
∣∣∣−→rA ×−→rB∣∣∣)2

dx dy du dv

= 2 ·
∫∫

(x,y)∈S

∫∫
(u,v)∈S

1

4
· (x · v − y · u)

2
dx dy du dv

=
1

2
·
∫∫

(x,y)∈S

∫∫
(u,v)∈S

(
x2 · v2 − 2 · x · y · u · v + y2 · u2

)
dx dy du dv

=
1

2
·
(
µ2,0(S) · µ0,2(S)− 2 · µ1,1(S)2 + µ2,0(S) · µ0,2(S)

)
= µ2,0(S) · µ0,2(S)− µ1,1(S)2 = A1(S) .

Such a geometric interpretation of the moment invariant paved the way for
the definition of diverse shape-based object descriptors whose behavior can be
relatively easily understood and predicted in some applications, even before a
specific shape-based object analysis task is performed [4, 5].

3. Experimental illustration of the behavior of the
second-order moment invariants

Here we present experimental results related to three second-order mo-
ment invariants, i.e. H1(S),H2(S) and A1(S), applied to synthetically gen-
erated rectangular shapes centered at the origin and of unit area, i.e., R(t) =

{(x, y)
∣∣∣x ∈ [− t

2 ,
t
2 ], y ∈ [− 1

2t ,
1
2t ]}, defined for t > 0. Therefore, for the second-

order shape moments, the following applies:

µ1,1(R(t)) =

t
2∫

− t
2

1
2t∫

− 1
2t

xy dx dy =

t
2∫

− t
2

x dx ·

1
2t∫

− 1
2t

y dy = 0

µ2,0(R(t)) =

t
2∫

− t
2

1
2t∫

− 1
2t

x2 dx dy =

t
2∫

− t
2

x2 dx ·

1
2t∫

− 1
2t

dy = 2 · x
3

3

∣∣∣ t2
0
· 2 · y

∣∣∣ 1
2t

0

=
6 2
3
· 6 t

3 t2

6 8 4
· 6 2 · 1

6 2 6 t
=
t2

12

µ0,2(R(t)) =

t
2∫

− t
2

1
2t∫

− 1
2t

y2 dx dy =

t
2∫

− t
2

dx ·

1
2t∫

− 1
2t

y2 dy = 2 · x
∣∣∣ t2
0
· 2 · y

3

3

∣∣∣ 1
2t

0

= 6 2 · 6 t
6 2
· 6 2

3
· 1

6 8 4 6 t3 t2
=

1

12t2
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while for the second-order moment invariants we get the following results:

H1(R(t)) = µ2,0(R(t)) + µ0,2(S) =
t2

12
+

1

12t2
=
t4 + 1

12t2

H2(R(t)) = (µ2,0(R(t))− µ0,2(R(t)))
2

+ 4µ1,1(R(t))2

=

(
t2

12
− 1

12t2

)2

=

(
t4 − 1

12t2

)2

A1(R(t)) = µ2,0(R(t)) · µ0,2(R(t))− µ1,1(R(t))2 =
t2

12
· 1

12t2
=

1

144

Notice that for t = 1, the rectangle R(t) becomes a unit square, centered at
the origin, with second-order moment invariants given as follows:

H1(R(t = 1)) =
1

6
, H2(R(t = 1)) = 0, A1(R(t = 1)) =

1

144
.

On the other hand, in the case when t → ∞, the rectangle R(t) degener-
ates into an infinitely long horizontal strip, giving lim

t→∞
µ2,0(R(t)) =∞ and

lim
t→∞

µ0,2(R(t)) = 0, i.e. lim
t→∞
H1(R(t)) =∞ and lim

t→∞
H2(R(t)) =∞. Con-

versely, in the case when t → 0, R(t) becomes an infinitely long vertical strip
with µ2,0(R(t)) → 0 and µ0,2(R(t)) → ∞, while both H1(R(t)) and H2(R(t))
remain infinite.

Interestingly, in all cases for arbitrary values of t the first affine moment
invariant A1(R(t)) does not change, i.e. it is invariant during modification of
a horizontally oriented rectangle via a square to a vertically oriented rectangle
and vice versa. The latter follows from the fact that the square and the rectan-
gle are affine-invariant shapes shapes (obtained by scaling by different factors
along different axes), so the value of A1(R(t)) remains unchanged as expected
(equal to 1

144 in this case). In contrast, the values of the Hu moment invariants
change as expected, given the observed modification of the rectangle is not a
similarity transformation.
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https://doi.org/10.24867/META.2025.10 Article type

Abstract. Monte Carlo rendering represents a modern and highly pre-
cise technique for simulating light behavior in three-dimensional scenes,
enabling a high level of photorealism. However, a limited number of
samples per pixel often leads to the occurrence of pronounced statistical
noise, which significantly affects the quality and usability of rendered im-
ages. To address this issue, this paper proposes a fuzzy model for noise
removal in Monte Carlo rendering, based on aggregation functions (and
an adaptive window size during the filtering process). The model applies
fuzzy principles to determine the degree of similarity between neighbor-
ing pixels and dynamically adjusts the filter parameters according to the
local image structure. This ensures efficient noise reduction while pre-
serving important visual details and avoiding artifacts. Experimental
results indicate that the proposed approach provides a better trade-off
between image quality and computational complexity compared to stan-
dard filtering methods.
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1. Introduction

Denoising digital images is one of the basic problems in image processing
and computer visualization. The quality of the image affects the reliability
of the analysis and the visual experience, so the development of effective fil-
tering methods is of great importance. In computer graphics, Monte Carlo
rendering generates stochastically noise due to random sampling of light paths,
which appears as low-intensity variational noise (”grain noise”) and occasional
extreme outliers (”fireflies”). These phenomena degrade visual quality and in-
crease rendering time by requiring a larger number of samples per pixel. This
work builds on a previously developed fuzzy model for removing impulse noise

1

2Artificial Intelligence & Information Technology, Banja Luka and Department of Funda-
mental Sciences, Faculty of Technical Sciences, University of Novi Sad, e-mail: julijanaka-
por142@gmail.com

3Department of Fundamental Sciences, Faculty of Technical Sciences, University of Novi
Sad, e-mail: nralevic@uns.ac.rs

https://orcid.org/0009-0004-9395-4934
https://orcid.org/0000-0002-3825-9822
https://doi.org/10.24867/META.2025.10
mailto:julijanakapor142@gmail.com
mailto:julijanakapor142@gmail.com
mailto:nralevic@uns.ac.rs


62 Julijana Kilibarda, Neboǰsa Ralević

using the AWAM (Adaptive Weighted Aggregation Mean) filter [3], which
combines noise detection and adaptive filtering with dynamic window expan-
sion. In this research the model is extended to Monte Carlo noise through
introduction of statistical detection based on local mean and standard devia-
tion, as well as special processing of extremely bright pixels (”fireflies”). The
proposed fuzzy-AWAM approach introduces a combined spatial photometric
weighted aggregation mechanism that enables efficient noise removal while pre-
serving image structure and realistic light transitions. Experiments show that
the model gives more stable and natural results in comparison with standard
filtering methods [1] and provides a basis for further development of advanced
fuzzy algorithms in rendering.

2. Monte Carlo rendering

Monte Carlo rendering is a method for creating realistic images by simu-
lating the movement of light through a scene using random sampling. It is
employed because an analytical solution to the integrals that describe light
material interactions is often infeasible, especially in complex scenes with re-
flections, refractions, and volumetric effects [2]. The goal is to calculate the
average contribution of a large number of light paths for each pixel.

The main challenge of Monte Carlo rendering is the high estimation vari-
ance, which manifests as random (”grain”) noise pixels may appear slightly
brighter or darker than the true value. Noise is particularly pronounced when
the number of samples per pixel is low, which is common in practice due to
limited computational resources and rendering time.

To reduce variance, techniques such as importance sampling, stratified sam-
pling, and adaptive sampling are applied, but these methods do not eliminate
noise completely. Therefore, post-filtering (denoising) is used to remove the
remaining variations by exploiting information from neighboring pixels or ad-
ditional geometric and lighting data.

Approaches to noise reduction are generally divided into methods that im-
prove sampling during rendering and those applied as post-processing on the
final image. In recent years, deep-learning-based models have become domi-
nant; however, they require large training data sets, substantial computational
resources, and often exhibit limited generalization and detail preservation.

For these reasons, this paper considers a statistical and fuzzy approach
to Monte Carlo denoising, similar to the method presented in [5], where the
distribution of samples for each pixel is analyzed and relevant neighbors are
selected for filtering. Fuzzy logic, unlike classical filters with sharp thresholds,
uses degrees of membership that enable adaptive decision-making regarding
the contribution of each pixel. This allows better preservation of edges and
fine details, does not require pretrained models, and can be directly applied
to rendered images resulting in flexible and efficient noise removal suitable for
production-level rendering.
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3. Image filtering - algorithm

The proposed model is based on the principles of fuzzy aggregation and
adaptive weighted filtering in the spatial-photometric domain. The algorithm
consists of two basic phases: noise detection and a filtering phase incorporating
a dynamic window expansion mechanism that enables stable estimation even
in areas of high lighting variance. Unlike the impulse noise treated in the
previous work, this study considers variational Monte Carlo noise and extreme
light values (”fireflies”), which require a statistical detection approach.

3.1. Noise detection phase

For each image point A(i, j), a local window Wi,j of size m×m is defined.
Within this window, the local arithmetic mean and standard deviation are
computed:

µi,j =
1

|Wi,j |
∑

(p,q)∈Wi,j

A(p, q), σi,j =

√√√√ 1

|Wi,j |
∑

(p,q)∈Wi,j

(A(p, q)− µi,j)2.

Based on these values, the deviation of the pixel from the local average is
computed:

d(i, j) = |A(i, j)− µi,j |.

A pixel is marked as ”noisy” if the deviation exceeds the threshold proportional
to the local variance:

b(i, j) =

{
255, d(i, j) > T · σi,j
0, otherwise

.

The parameter T represents the detection threshold, which is experimen-
tally determined sets in the range T ∈ [1.5, 3.0]. In this way, a binary noise
mask b(i, j) is formed, where a value of 255 denotes noise and 0 denotes a
”clean” pixel. To identify rare extreme values (”fireflies”), a more robust cri-
terion based on the local median Mi,j is used:

bf (i, j) =

{
255, A(i, j) > Mi,j +Kσi,j

0, otherwise
,

where K is a constant that determines the threshold for identification outliers
(most often K ∈ [4, 8]). Pixels detected as fireflies are corrected in a preprocess-
ing step by replacing them with the local median, preventing extreme values
from negatively affecting the filtering phase.

3.2. Filtering phase

For each pixel marked as noisy, a set of clean neighboring pixels is deter-
mined as Si,j = {A(p, q)|b(p, q) = 0} (b is the binary noise mask) within the
window Wi,j . If the number of clean pixels in the current window is insufficient

(|Si,j | < n), the window is dynamically expanded W
(m)
i,j → W

(m+2)
i,j (index m
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- indicates the size of the window in pixels, is changing) until the condition
|Si,j | ≥ n) is met or until the maximum size mmax is reached.

Let the pixel values in the set Si,j be denoted by pk, and their distances
from the center by dk. Spatial weights and photometric weights are defined as
follows:

αk =
1

βdk
, sk = exp(−|pk −A(i, j)|

σI
),

where β > 1 is a parameter that controls the weight decay with distance, and
σI is the coefficient controlling sensitivity to intensity differences.

The combined weight for each neighbor is:

wk =
αk · sk∑
r
αrsr

.

The reconstruction of the damaged pixel is performed using the weighted
power-root mean (WAM):

Â(i, j) = (
∑
k

wkp
κ
k)1/κ.

where the parameter κ enables interpolation between different types of means:
κ = 1: arithmetic mean,
κ→ 0 : approximately the geometric mean,
κ > 1 more weight to larger values.
This defines the AWAM fuzzy aggregation operator adapted to Monte

Carlo noise.

3.3. Final reconstruction

After filtering all detected pixels, the resulting image Â represents the de-
noised estimate of the original image. To evaluate the performance of the
model, the following metric functions are used:

MAE =
1

N

∑
|A− Â|, PSNR = 10 log10

2552

MSE
,

where MSE = 1
N

∑
(A− Â)2.

4. Experimental setup and evaluation

A custom 3D scene was used to evaluate the proposed fuzzy model. The
scene was rendered in the Autodesk 3ds Max environment using the V-Ray
renderer. The image was generated in multiple variants with different numbers
of samples per pixel (spp): 2, 4, 8, 16, and 32 spp. The reference image was
obtained by rendering at 128 spp, which provides a visually and numerically
stable ground truth.

The developed algorithm was then applied to the rendered images. The
results obtained using the proposed method were compared with standard fil-
ters commonly used in practice: Median, Gaussian, Bilateral, and Non-Local
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Means (NLM). The comparison was performed using two error metrics MAE
and PSNR computed relative to the reference render.

The obtained results show that the proposed AWAM model significantly
outperforms all benchmark methods across all noise levels. AWAM achieves
the lowest MAE values (often 36 times lower than those of the other filters)
and the highest PSNR values, with improvements of up to +7 dB in favor of
the proposed method. These findings indicate that the fuzzy AWAM approach
better corresponds to the statistical nature of Monte Carlo noise and enables
more stable and precise image reconstruction compared to classical filtering
techniques.

Figure 1: Comparative visualization of Monte Carlo noise filtering results on a local
image segment. Rendered versions with different spp values and the filtering outputs
of the AWAM−MC method and standard filters are shown. The AWAM−MC
method produces the most visually faithful results.
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Abstract. This paper presents an educational adventure role-playing
video game designed to support learning of mathematics, focusing on
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curricular content into an interactive environment where students solve
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1. Introduction

Humans are inherently creative and social, capable of shaping their environ-
ment while exploring rich inner worlds of imagination. Traditional art forms,
such as literature, music, and painting, have long provided means to experience
alternative realities. In the contemporary era, video games have emerged as a
digital bridge between imagination and reality, offering immersive worlds where
players can experiment, solve problems, and engage in complex narratives [4].
They foster cognitive, social, and emotional skills, including decision-making,
problem-solving, communication, and adaptability, while providing safe spaces
for exploration and failure [1, 2].

In education, video games offer dynamic and interactive environments that
support active learning, personalized pacing, and the development of critical
thinking and computational skills [5, 7]. By combining engaging narratives with
problem-solving, games can complement traditional instruction and facilitate
the practice of curriculum content in motivating ways.
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Building on these principles, we developed ”Secrets of Algebria”, an edu-
cational role-playing game (RPG) designed to integrate mathematics learning
with adventure gameplay. The game focuses on linear equations with one vari-
able and systems of linear equations with two variables, embedding curricular
tasks within a rich narrative and interactive mechanics. Players solve problems
through story-driven challenges, supported by a mind map technique that vi-
sually organizes steps, concepts, and relationships, helping students structure
reasoning and understand solution processes.

This study presents the design and features of the game, highlighting how
educational content, RPG elements, and interactive tools can be combined
to create a motivating and effective environment for mathematics practice.
The game demonstrates the potential of educational video games as a com-
plementary tool for enhancing learning outcomes and developing 21st-century
competencies in students.

2. Main results

Video games serve as an exceptionally effective medium for promoting self-
directed learning among players—and, by extension, among students in in-
formal learning contexts—owing to their distinctive attributes. They create
a safe and engaging environment where experimentation and failure carry no
real-world consequences, while simultaneously granting learners a high level of
autonomy. These characteristics enable students to advance at their own pace
and receive immediate, continuous feedback within the game setting, fostering
the development of a wide range of cognitive and metacognitive competencies
[6].

Figure 1: Theodora’s shop in Tangent Valley

Building on these principles, the video game ”Secrets of Algebria” was cre-
ated as an innovative and, thus far, unique digital environment for mathematics
learning and knowledge acquisition. Conceived as a complementary didactic
resource to be used in parallel with regular classroom instruction, the game
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runs on Windows-based computers and enables students to engage in inde-
pendent exploration and practice of mathematical topics. Its content focuses
on linear equations with one unknown and systems of linear equations with
two unknowns. While fundamental concepts are introduced during standard
lessons, practice activities are delivered through the game, serving as an in-
teractive extension of homework. Additionally, a built-in theoretical module
supports students who may have missed classes, allowing them to study the
material independently.

The technical part of educational RPG video game was developed between
May 2024 and February 2025 by Mikloš Kovač using the RPG Maker MV soft-
ware. Throughout this period, a fully functional game was created, incorpo-
rating all the typical features of the RPG genre while embedding mathematics
curriculum content. The game falls within the RPG (role-playing game) genre,
specifically of the adventure type, and features turn-based combat mechan-
ics. Set in a richly designed fantasy world, it incorporates all the characteris-
tic elements of a traditional RPG experience. Players control a team of four
characters—a warrior, an arcanist, a mage, and a cleric—who progress through
successive levels by earning experience points, enhancing their attributes ac-
cording to class roles, and acquiring new weapons, armor, and spells. The
combat system emphasizes logical reasoning and strategic planning, while the
option to save progress promotes continuity and regular engagement. Addi-
tionally, each save records the total time the student has spent playing.

To fulfill its educational goals, the game introduces an imaginative setting
known as Algebria. The central narrative revolves around a young sorceress—
exceptionally talented yet deeply averse to mathematics—who, in an act of
defiance, attempts to imprison and erase mathematics from the world. Al-
though her plan is only partially successful, she manages to seal a fragment of
mathematics’ very essence within a magical medallion, disrupting the balance
of the realm. In response, four heroes—metaphorical representations of typical
students with limited mathematical confidence and motivation—set out on a
journey to retrieve the medallion and restore harmony to Algebria.

The storyline unfolds in Tangent Valley (Figure 1), a village that serves as
the game’s main hub and visual centerpiece. Within this setting, players can
explore several themed locations, including the tavern The Playful Logarithm,
the shop At the Obtuse Angle, the school The Merry Integral—where students
can review or catch up on missed lessons—and the Mathematics Gym, designed
to assist players in problem solving through the use of mind maps.

Mathematical challenges are seamlessly integrated into the game’s narra-
tive. Each time a player encounters a treasure chest containing rewards such
as experience points, items, or equipment, they must solve a word problem
to unlock it. Correct solutions grant access to the reward, while skipping the
task reduces the amount of experience points and resources obtained. To assist
students in solving these problems, the game incorporates a mind map tech-
nique (Figure 2), which visually organizes the steps, relevant concepts, and
relationships between elements of the problem. This approach helps learners
structure their reasoning, understand the solution process, and make connec-
tions across different mathematical ideas. In certain sections, mandatory tasks
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Figure 2: An example of a task solution using the mind map technique

are presented—two standard mathematical problems accompanied by short,
humorous instructions—which must be solved and combined to progress fur-
ther. By combining interactive gameplay with visual problem-solving support,
the game effectively balances entertainment with curriculum-aligned practice.

Mathematical challenges are intricately embedded into the game’s narrative
structure. Whenever a player discovers a treasure chest containing rewards
such as experience points, items, or equipment, they are prompted to solve
a word problem in order to unlock it. Providing the correct solution grants
access to the reward, whereas skipping the task reduces the amount of earned
experience and available resources. In this way, the game effectively merges
its entertainment components with systematic practice of mathematics aligned
with the school curriculum.

Figure 3: Layout of the menu with equipment and basic characteristics of the hero
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The distinctive advantage of this approach lies in its capacity to reveal dif-
ferent levels of student engagement—specifically, whether learners limit them-
selves to the mandatory tasks necessary for game progression or take additional
initiative by completing optional challenges. While the game can indeed be fin-
ished without solving optional problems—since experience points, equipment,
and treasures are also gained through required tasks—students who choose to
skip them forfeit part of the overall experience points and valuable rewards
that facilitate advancement.

In addition, the game includes a variety of NPCs (non-player characters)
who enrich the narrative world through humorous dialogues and mathemati-
cally themed riddles. Every conversation and task bears a clear mathemati-
cal reference. Items collected throughout the game—such as armor (Robe of
Hypothesis, Armor of Determinants), weapons (Sum of Fate, Dance of Vari-
ables, Revenge of the Right Triangle, Song of Fractions, Function of Forgetting,
Perimeter of the Full Moon, Radius of Dawn), jewelry (Power of Algorithms,
Trigonometric Thought, Arithmetic Whisper), and consumables (Linear Owl’s
Egg)—are all named after mathematical concepts (Figure 3). The heroes’ spells
and special abilities likewise carry symbolic mathematical names, including
Spark of Equivalence, Flame of Logic, Irrational Strike, Ballad of Theorems,
Blade of the Golden Ratio, and Mirror of Symmetry, thereby reinforcing the
game’s immersive mathematical atmosphere.

3. Conclusion

In this study, we presented the educational RPG Secrets of Algebria, a
unique game designed to integrate mathematics learning with engaging role-
playing elements. By combining curriculum-based tasks on linear equations
with adventure gameplay, the game allows students to practice mathematics in
an interactive, motivating environment. Its design supports independent learn-
ing, problem-solving, and student engagement, while maintaining a balance
between education and entertainment. This game demonstrates the potential
of digital tools to complement traditional mathematics instruction, offering an
innovative approach that connects abstract concepts with immersive, hands-on
experiences.

This RPG video game now needs to be tested among high school students.
It is necessary to determine how much time students will spend on average
playing the game, as well as how many tasks they will complete on average.
After that, it should be examined whether students who use the game achieve
better results in the subject area covered by the game compared to students
who learned in the traditional way, using an experimental and a control group.
It is also extremely important to determine to what extent such games should
be included in teaching, especially considering that among high school students
there is a large number of individuals who are addicted to video games [3].
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1. Introduction

Precision viticulture has evolved into a multidisciplinary research area where
autonomous robots, multisensory perception, and deep learning are central to
real-time plant health monitoring. Efficient vineyard management requires
early detection of foliar diseases, accurate canopy segmentation, and robust
cross-regional generalization. The reviewed works [1, 2, 3] collectively demon-
strate how UAV-based remote sensing and ground-level proximal imaging con-
tribute to building adaptable vision systems for viticulture.

A recurring challenge is the spatial and temporal variability of vineyards:
grape cultivars, canopy morphology, disease expression, and illumination con-
ditions vary across regions. The three studies address these challenges through
multi-domain datasets, convolutional neural network (CNN) architectures, and
domain transfer techniques.

1.1. Geographically Distributed Vine Disease Detection

The work in [1] examines disease detection in vineyards of the Carpathian
Basin using low-altitude UAV platforms equipped with RGB cameras. The
study emphasises the need for regional transfer learning because visual disease
symptoms differ across cultivars and climatic zones. The authors constructed a
large dataset exceeding 10,000 annotated images and employed YOLOv7 with
COCO pretrained weights to detect diseased leaf regions.
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1.2. Segmentation of Diseased Leaf Regions

The authors of the paper [2] study segmentation methods for detecting the
affected areas on individual vine leaves. The authors compare five techniques:
Otsu thresholding, SegNet, Mask R-CNN, Feature Pyramid Networks, and
MobileNetV3. Their dataset includes laboratory images (PlantVillage) and
in-field leaf crops collected from multiple locations.

1.3. Proximal Canopy Segmentation Using FPN

The work [3] presents an FPN-based approach for proximal canopy segmen-
tation using drone and ground-robot imagery. Unlike leaf-level segmentation,
canopy segmentation must account for heterogeneous foliage, occlusions, and
mixed backgrounds.

2. Mathematical background and CNN architectures of
the methods

The automatic detection of vine leaf diseases in aerial close-range images
relies heavily on mathematical models rooted in modern computer vision and
deep learning. At the core of these models lie convolutional operators, which
act as learnable filters capable of extracting hierarchical image features. A
convolutional operator computes a weighted sum between a small kernel and
localized image regions, enabling the detection of fundamental structures such
as edges, color transitions, and texture variations. When stacked in multiple
layers, these operators provide increasingly abstract representations that map
low-level pixel patterns to meaningful biological indicators of leaf abnormal-
ities. This mechanism is particularly important in vineyards, where disease
symptoms manifest as subtle chromatic or structural changes on leaf surfaces.

Figure 1: Extracting horizontal and vertical edges by applying two convolutional
filters.

Building upon convolutional operators, Convolutional Neural Networks
(CNNs) form the backbone of the applied detection models. CNNs exploit the
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shift-invariance and compositional nature of convolutions to achieve robust fea-
ture extraction across diverse grape varieties and geographical regions. Figure
1 shows an example of extracting horizontally and vertically oriented image
features from an image belonging to the training set. Early layers typically
capture local gradients, while deeper layers learn disease-specific morphology,
such as lesion boundaries or necrotic spot textures. Pooling operators, often
max-pooling, complement convolutions by introducing spatial downsampling,
thereby reducing computational load while preserving the most informative ac-
tivations. The general pipeline of the applied CNN model is presented in Figure
2. Nonlinearities such as ReLU further enhance the representational power of
CNNs by enabling the modeling of complex, non-linear disease patterns.

In this work, CNN-based architectures are employed through the YOLOv7
detection framework, which integrates convolutional backbones with real-time
object localization heads. The backbone network uses a sequence of convo-
lutional blocks to build a multiscale representation capable of detecting both
large and small disease spots. The detection head predicts bounding boxes
and associated class probabilities using feature maps produced by these con-
volutional layers. YOLO-type networks rely on anchor-based or anchor-free
mechanisms, but in either case, convolutional operators translate learned spa-
tial patterns into actionable predictions. A crucial mathematical element is
the IoU-based loss function, which quantifies the overlap between predicted
and ground-truth regions and guides the optimization process during training.
The model constantly updates convolutional parameters by minimizing this
loss using stochastic gradient descent.

Figure 2: General pipeline of the applied Convolutional Neural Network model. The
prediction (or output) contains a list of bounding box coordinates corresponding to
the diseased leaf patches.

The extended pipeline also incorporates data augmentation, which can be
viewed as applying mathematical transformations such as rotations, scalings,
or color perturbations to expand the training distribution. These transforma-
tions improve the generalization of the convolutional filters, especially when
the dataset contains images from geographically diverse wine regions. Transfer
learning plays an additional role: convolutional backbones pretrained on large
image datasets provide generic filters that are later fine-tuned to the specific
spectral and structural characteristics of grape leaves. Because many disease
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features share cross-regional similarities, convolutional operators trained in one
region can adapt effectively to datasets acquired elsewhere. This adaptability
demonstrates the fundamental strength of CNNs as universal feature extrac-
tors.

Overall, the mathematical foundation of convolutional filtering, nonlinear
activations, pooling, and gradient-based optimization [4, 5] enables reliable
modeling of disease signatures in complex vineyard environments. The inte-
gration of these elements in CNNs such as YOLOv7 ensures that the system
captures both fine-grained lesion patterns and broader contextual cues from
aerial images. As a result, convolution-based architectures provide a scalable
and region-transferable framework for automatic vine disease detection in pre-
cision agriculture.

3. Experimental results

Aerial data collection was conducted in four viticultural districts of the
Carpathian Basin (Transylvania wine region in Romania, Eger wine region in
Hungary, Východoslovenská wine region in Slovakia, and Fruška Gora wine
region in Croatia) utilizing remotely operated quadcopters. All flights were
conducted under mild weather circumstances (light wind and no precipitation)
using manual piloting at low altitudes (maximum 6 meters above ground level).

For recording the dataset in a vineyard at Cluj-Napoca (Transylvania wine
region), Szücsi (Eger wine region) and Ilok (Fruška Gora wine region), we used
a small and light quadcopter, DJI Mini 3 with 12 MP integrated camera. At
a vine parcel near Hrhov (Východoslovenská wine region), a DJI Phantom 3
Professional drone was employed. A DJI P4 Multispectral drone was also used
at Cluj-Napoca. In all four locations, the video recordings and images were
captured in the maximum resolution possible.

We compared various models trained in different geographical regions with
our base model from Transylvania, which contains more than 10,000 annotated
images and over 30,000 labels of manually annotated and validated grape leaves
exhibiting abnormalities. This large-scale dataset enables geographically dis-
tributed analyses and comparisons.

We investigated the cross-domain relationship between the base Transylva-
nian region and the data collected in Szücsi, Hrhov, and Ilok regions. The re-
sults in terms of the Mean Average Precision (mAP) are shown in Figure 3. The
mAP metrics [6] measures how well an object-detection model identifies and
localizes objects by averaging the precision values computed at different recall
levels. It summarizes the model’s overall detection performance by combining
both classification accuracy and bounding-box quality into a single score, form
0 to 1. Zero means the model detects nothing correctly, while one means per-
fect detection and localization. The mAP50 metric refers to the mean average
precision at an intersection-over-union (IoU) threshold of 0.5, which measures
how well the model predicts bounding boxes with at least 50% overlap with
ground truth.

The presented results show that the best performance (highest precision)
is achieved for the Cluj-Napoca region, which is a consequence of the larger
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available dataset used for the training process. The lower performance observed
for the Szücsi region can be attributed to the fact that the grape leaves there
differ significantly in texture, shape, and color from those in the other regions.

Figure 3: Mean Average Precision (mAP) metrics based on data collected in the
four considered different geographical regions.

4. Conclusion

This paper presents research focused on examining disease detection in vine-
yards across the Carpathian Basin using low-altitude UAV platforms equipped
with RGB cameras. Transfer learning plays a specific role, as convolutional
backbones pretrained on large image datasets (Cluj-Napoca region) provide
generic filters that are later fine-tuned to the specific spectral and structural
characteristics of grape leaves in the other analysed regions (Hrhov, Ilok and
Szücsi). Since many disease features share cross-regional similarities, we con-
clude that convolutional operators trained in one region can adapt effectively
to datasets acquired in other regions. CNNs provide an excellent platform for
this transfer-learning approach. As a possible future research direction, we fore-
see extending the field of application of the developed CNN-based algorithm,
particularly to problems related to disease detection in various agricultural set-
tings, especially for crops with characteristic leaves such as tobacco, cabbage
or cotton.
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Abstract. This paper presents the mathematical foundations of the
Fourier transform and its use in edge detection on digital images. Beyond
a practical implementation, the focus is on providing a mathematical
insight into how frequency-domain analysis relates to spatial intensity
variations in images, including its role in modern applications such as
super-resolution. A high-pass filter is applied in the frequency domain
to isolate high-frequency components that correspond to edges. The the-
oretical concepts are supported by a numerical implementation of the
1D and 2D Fast Fourier Transform using the Python programming lan-
guage. The results demonstrate that frequency-domain filtering provides
a global and mathematically robust method for edge extraction, offering
a deeper understanding of how changes in pixel intensity relate to fre-
quency characteristics in digital images.
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1. Introduction

The Fourier transform is a fundamental tool in signal and image processing,
providing a link between the spatial and frequency domains. Through the
Discrete Fourier Transform (DFT) and its efficient implementation, the Fast
Fourier Transform (FFT), images can be analyzed and filtered based on their
spectral components [1, 2].

Edges in digital images correspond to high-frequency variations, which rep-
resent rapid transitions in intensity or color. Studies have shown that combin-
ing spatial and frequency-domain information improves the robustness of edge
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detection in complex scenes [3], while emphasizing high-frequency components
enhances the extraction of fine details [4].

Beyond edge detection, frequency-domain analysis has found new applica-
tions in modern computer vision. In particular, Fourier-based techniques have
contributed to super-resolution, where recovering high-frequency information
leads to sharper and more detailed images [5].

This work aims to provide a concise mathematical perspective on the use of
the 2D DFT in image analysis, focusing on both edge detection and resolution
enhancement. The goal is to explore how classical frequency-domain techniques
continue to shape modern image analysis, bridging fundamental theory with
contemporary computational approaches.

2. Mathematical Foundations of the Fourier Transform

This section introduces the main mathematical concepts underlying the
Fourier transform and its application to signal and image analysis.

A signal is a function that conveys information about a physical process
over time or space. It can be either continuous (analog) or discrete (sampled,
digital), with examples including audio waves, electric voltage, or images. The
basic characteristics of a signal include its amplitude (the maximum value rel-
ative to zero, indicating signal strength), frequency (number of oscillations per
unit time, measured in Hz) and phase (the wave change relative to a reference
point) [6].

2.1. Discrete Fourier Transform (DFT)

The Discrete Fourier Transform converts a discrete signal from the time
domain to the frequency domain.

Definition 2.1 (1D Discrete Fourier Transform [1]). Let x[n] be a discrete
signal of length N . Its DFT is defined as:

X[k] =

N−1∑
n=0

x[n]e−i
2π
N kn, k = 0, 1, . . . , N − 1

Figure 1 illustrates a simple one-dimensional discrete signal composed of two
sinusoidal components. Figure 1a shows the discrete signal in the time domain,
while Figure 1b displays the corresponding magnitude spectrum obtained via
the Fast Fourier Transform (FFT). The magnitude spectrum represents the
strength of each frequency component: peaks appear at 50 Hz and 120 Hz,
corresponding to the signal’s frequency components.

The term FFT refers to a family of efficient algorithms for implementing the
discrete Fourier transform [1]. While direct computation of an N -point DFT
requires N2 complex multiplications, FFT methods reduce this to the order of
N log2 N complex multiplications.

Remark 2.2 ([1]). The inverse DFT reconstructs the original signal:

x[n] =
1

N

N−1∑
k=0

X[k]ei
2π
N kn
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Figure 1: 1D discrete signal: (a) time domain; (b) frequency domain

2.2. 2D Discrete Fourier Transform for Images

A digital image can be interpreted as a 2D signal, i.e., a function of two
discrete variables (m,n).

Definition 2.3 (2D Discrete Fourier Transform [2]). Let f [m,n] be a 2D signal
of size M ×N . Its 2D DFT is defined as:

F [u, v] =

M−1∑
m=0

N−1∑
n=0

f [m,n]e−i2π(umM + vn
N ), u = 0, . . . ,M − 1, v = 0, . . . , N − 1

Here, F [u, v] represents the frequency spectrum of the image, where each
pair of coordinates (u, v) corresponds to a specific spatial frequency component.
Low frequencies are concentrated near the center of the spectrum, describing
smooth intensity variations, while high frequencies (located toward the edges)
represent rapid intensity changes, such as edges and fine details [7].

Remark 2.4 ([2]). The inverse 2D DFT reconstructs the original image:

f [m,n] =
1

MN

M−1∑
u=0

N−1∑
v=0

F [u, v]ei2π(umM + vn
N )

2.3. Frequency-Domain Edge Detection

Edges in images correspond to rapid spatial intensity variations, which are
captured by high-frequency components in the Fourier domain.

Definition 2.5 (High-Pass Filter [8]). A high-pass filter is a frequency-domain
filter that suppresses low frequencies while preserving high frequencies corre-
sponding to image edges.

Remark 2.6 ([8]). Applying the high-pass filter in the frequency domain and
performing the inverse 2D DFT produces an image emphasizing edges.

Remark 2.7 ([8]). Mathematically, the filtering operation in the frequency do-
main can be expressed as:

F̃ [u, v] = F [u, v] ·H(u, v),
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where H(u, v) is the high-pass filter mask defined as:

H(u, v) =

{
0, (u− u0)2 + (v − v0)2 ≤ r2,

1, otherwise.

Here, (u0, v0) denotes the center of the frequency spectrum, and r is the ra-
dius of the suppressed low-frequency region. This operation removes smooth
intensity variations while retaining high-frequency components corresponding
to image edges, and corresponds to the ideal high-pass filter formulation.

3. Application: Edge Detection Using FFT

The implementation of frequency-domain edge detection was carried out in
Python using the NumPy, Matplotlib, and scikit-image libraries. A color
image was first loaded and converted to grayscale, forming a two-dimensional
discrete signal f [m,n].

The 2D Fast Fourier Transform (FFT) was applied to map the image from
the spatial domain, where pixel intensities vary with position, to the frequency
domain, where the same information is represented as a combination of sinu-
soidal components of different frequencies. For practical filtering and visual-
ization, the resulting frequency spectrum must be shifted (using a function
np.fft.fftshift) to move the zero-frequency component from the corners to
the center of the spectrum (see Figure 2b). In this domain, low frequencies
correspond to slowly varying intensity regions (smooth areas), while high fre-
quencies correspond to rapid intensity changes - that is, edges and fine details.

After constructing and applying the high-pass filter as defined in Section 2,
the inverse FFT (np.fft.ifft2) was used to reconstruct the filtered image
back into the spatial domain. Since only high-frequency components remain,
the resulting image highlights regions with strong intensity gradients - the
edges.

This implementation demonstrates the connection between the Fourier
transform and edge detection: frequency-domain filtering emphasizes high-
frequency components globally, which mathematically correspond to the spatial
derivatives approximated by methods like Sobel or Canny edge detector.

Figure 2 shows the complete workflow of frequency-domain edge detection.

Figure 2: Edge detection: (a) original image in grayscale; (b) logarithmic magnitude
spectrum; (c) edge-detected image after high-pass filtering
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4. Modern Applications of the Fourier Transform

Beyond the classical applications of the Fourier transform (e.g., filtering for
edge detection), recent research has explored its integration with modern ma-
chine learning and image enhancement techniques. For example, in the study
[9] it was demonstrated that applying FFT-based frequency-domain conversion
prior to convolutional processing significantly improves classification accuracy.

In another line of work, super-resolution methods exploit the recovery of
high-frequency components via Fourier encodings to enhance image resolution.
As a practical example, the method from the work [5] was implemented in
Python, producing the upsampled image shown in Figure 3. The implementa-
tion was performed on a grayscale butterfly image, upsampled by a factor of four
in the frequency domain. The resulting red-tinted image highlights recovered
fine details and improved sharpness, while the extracted high-frequency com-
ponents emphasize edges, showing how Fourier-based enhancement preserves
structural boundaries and contrast.

Figure 3: Super-resolution result: (a) original image; (b) upsampled image

These developments underscore that the Fourier transform remains not only
a fundamental mathematical tool, but also a gateway to hybrid methods com-
bining signal processing and deep learning. While the present study focuses
on the use of the 2D DFT and high-pass filtering for edge detection, the above
works point to promising future directions such as frequency-domain neural
networks and super-resolution pipelines.

5. Conclusion

This paper has presented the mathematical foundations of the 2D Discrete
Fourier Transform and its practical applications in image analysis. This study
shows how frequency-domain filtering can be used to extract edges by isolating
high-frequency components, highlighting the connection between spatial inten-
sity variations and their spectral representation. Additionally, it discusses the
role of the Fourier transform in modern image enhancement, such as super-
resolution, demonstrating its continued relevance in both classical and contem-
porary applications. Overall, the presented work provides a clear mathematical
perspective that can serve as a basis for further exploration of frequency-domain
methods in image processing and hybrid approaches combining Fourier analysis
with modern computational techniques.
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Sažetak. Ovaj rad fokusiran je na metode vǐsekriterijumskog od-
lučivanja zasnovane na energijama fazi soft skupova. Prikazana je pri-
mena singularnih vrednosti matrica za definisanje energije i λ-energije
nekog fazi soft skupa, što omogućava efikasno donošenje odluka u uslo-
vima nesigurnosti. Analizirane su prednosti ovog pristupa u poredenju
sa drugim metodama vǐsekriterijumskog odlučivanja, a ilustracije i prak-
tične primene pokazuju njegovu primenljivost i pouzdanost.
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Ključne reči: fazi soft skupovi, energija, λ-energija, rangiranje alternati-
va, vǐsekriterijumsko odlučivanje.

1. Uvod

Donošenje odluka u prisustvu nesigurnosti i nepreciznosti predstavlja jedan
od ključnih izazova u mnogim naučnim i praktičnim oblastima, uključujući eko-
nomiju, inženjerstvo, medicinu i informacione tehnologije. Tradicionalni mate-
matički pristupi često nisu dovoljni za modelovanje nesigurnih i nepotpunih
informacija, što je motivisalo istraživače da razvijaju metode zasnovane na soft
skupovima i njihovim generalizacijama.

Fazi skupovi, uvedeni od strane Zadeha [12], predstavljaju jedan od prvih
formalnih pristupa za modelovanje nesigurnosti i nepreciznosti u podacima.
Ovi skupovi omogućavaju predstavljanje elemenata univerzuma sa pripadnošću
odredjenim stepenom, što pruža fleksibilnost u opisivanju situacija u kojima
klasična logika nije dovoljna. Primena fazi skupova je naročito značajna u pro-
blemima donošenja odluka, optimizacije i kontrole, gde se parametri često ne
mogu izraziti preciznim vrednostima.

Soft skupovi, uvedeni od strane Molodtsova [7], predstavljaju parametarski
definisane kolekcije podskupova univerzuma, na taj način omogućavajući flek-
sibilno i intuitivno predstavljanje nesigurnih podataka kroz atribute i njihove
vrednosti. Dalja generalizacija dovela je do fazi soft skupova, koji kombinuju
fleksibilnost fazi logike sa parametrizacijom soft skupova, omogućavajući pre-
ciznije modelovanje nesigurnih i subjektivnih informacija uz relativno manju
računsku složenost.
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U okviru fazi soft skupova razvijen je koncept energije i λ-energije [9], koji
se definǐse preko singularnih vrednosti matrica reprezentacija skupa. Ovi ener-
getski parametri omogućavaju kvantifikaciju doprinosa pojedinih elemenata si-
stema i predstavljaju osnovu za kreiranje efikasnih metoda vǐsekriterijumskog
odlučivanja. Korǐsćenjem energije fazi soft skupova moguće je sagledati i upo-
rediti različite alternative u složenim problemima donošenja odluka, posebno
kada se suočavamo sa vǐsestrukim kriterijumima i nesigurnim informacijama.

Cilj ovog preglednog rada je da predstavi teorijske osnove fazi soft sku-
pova, analizira koncept energije i λ-energije, i pruži pregled njihovih primena
u metodama vǐsekriterijumskog odlučivanja. Rad takode uporeduje prednosti
ovog pristupa sa drugim metodama donošenja odluka u uslovima nesigurnosti,
ističući njegovu fleksibilnost i efikasnost u praktičnim problemima.

2. Fazi soft skupovi i koncept energija u visekriterijum-
skom odlučivanju

Fazi soft skupovi predstavljaju proširenje klasičnih soft skupova i fazi soft
skupova, omogucavajući modelovanje nesigurnih i subjektivnih informacija u
okviru vǐse parametara. Svaki fazi soft skup može se prikazati u matričnom obli-
ku [2], gde redovi odgovaraju elementima univerzuma, a kolone parametrima.
Elementi matrice izražavaju stepen pripadnosti pojedinih elemenata odgovara-
jućim parametrima, čime se dobija numerička reprezentacija fazi soft skupa.

Pojam energije fazi soft skupa motivisan je analogijom sa energijom gra-
fa, koju je uveo Gutman [5](1978) kao zbir apsolutnih vrednosti sopstvenih
vrednosti matrice susedstva grafa. Slično tome, energija fazi soft skupa izraza-
va

”
ukupni doprinos“ elemenata sistema, kvantifikujući njegovu informativnu

snagu.
Pošto svaki fazi soft skup možemo predstaviti odgovarajućom pravougao-

nom matricom A [2], možemo odrediti sopstvene vrednosti kvadratne matrice
A ·AT , a time i singularne vrednosti na dobro poznat način. U analizi fazi soft
matrica ključnu ulogu imaju singularne vrednosti. One su kvadratni koreni ne-
nultih sopstvenih vrednosti matrice A · AT i pružaju informacije o strukturi
matrice, njenoj stabilnosti i raspodeli doprinosa elemenata sistema. Singularne
vrednosti omogućavaju kvantifikaciju značaja i informativnosti elemenata, što
predstavlja osnovu za definisanje energija fazi soft skupova. Ovo nas dovodi do
sledećih pojmova.

Definicija 2.1. [9] Energija fazi soft skupa ΓA, u oznaci E(ΓA), se definǐse
kao E(ΓA) =

∑m
i=1 σi, gde su σ1 > σ2 > . . . > σm > 0 singularne vrednosti

matrice A koja odgovara fazi soft skupu ΓA.

Definicija 2.2. [9] λ-energija fazi soft skupa ΓA, u oznaci LE(ΓA), se definǐse
kao LE(ΓA) =

∑m
i=1 σ

2
i , gde su σ1 > σ2 > . . . > σm > 0 singularne vrednosti

matrice A koja odgovara fazi soft skupu ΓA.

Ove veličine omogućavaju numeričku kvantifikaciju doprinosa elemenata si-
stema, i zbog svoje veze sa singularnim vrednostima predstavljaju efikasan alat
za analizu i poredenje alternativa u metodama vǐsekriterijumskog odlučivanja.
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3. Primena energija fazi soft skupova u donošenju odluka

U ovom odeljku prikazujemo kako se energija i λ-energija fazi soft skupo-
va mogu primeniti prilikom donošenja odluka. Bitan aspekt u sistemima sa
vǐse faktora jeste meduzavisnost svih elemenata: sistem funkcionǐse optimalno
kada svaki faktor doprinosi na svoj način. Pojedini faktori mogu da preuzmu
odgovornost u nekim segmentima sistema, dok drugi segmenti ostaju nepokri-
veni, što može dovesti do problema ako ne postoji faktor koji pokriva odredeni
segment svojim kvalifikacijama. Ilustracije ovih situacija mogu se pronaći u
radovima [2] i [11], pri čemu u radu [9] odluke donose na osnovu definisanih
energija fazi soft skupova.

Autori u svom radu [2] uvode pojmove kardinalnog skupa i agregiranog
fazi soft skupa zbog primene u algoritmu za donošenje odluka. Neka je ΓA

fazi soft skup nad univerzumom U = {u1, u2, . . . , um} i skupom parametara
E = {x1, x2, . . . , xn}.

Kardinalni skup cΓA je fazi skup nad E koji meri relativni doprinos svakog
parametra skupu U . Funkcija pripadnosti kardinalnog skupa definisana je kao

µcΓA
(x) =

|ΓA(x)|
|U |

, x ∈ E,

gde |ΓA(x)| označava skalarnu kardinalnost fazi skupa ΓA(x).
Fazi soft skup Γ∗A kombinuje informacije iz kardinalnog skupa cΓA i ori-

ginalnog fazi soft skupa ΓA, tako da se funkcija pripadnosti za svaki element
u ∈ U računa kao

µΓ∗
A

(u) =
1

|E|
∑
x∈E

µcΓA
(x) · µΓA(x)(u).

Ovaj skup omogućava sumiranje doprinosa svih parametara za svaki ele-
ment univerzuma i služi kao osnova za izbor najpovoljnijeg rešenja u algoritmu.

Metoda iz [2] sadrži algoritam za izbor najpovoljnije odluke u 4 koraka, koji
glasi:

1. Konstruǐsemo fazi soft skup ΓA nad U ;

2. Odredimo kardinalni skup cΓA od fazi soft skupa ΓA;

3. Odredimo Γ∗ na osnovu formiranog fazi soft skupa ΓA;

4. Izaberemo najprihvatljivije rešenje tako što odredimo maksimalnu vred-
nost maxµΓ∗

A
(u).

U radu [9] autori predstavljaju sličan algoritam, ali koristeći definisane poj-
move energije i λ-energije fazi soft skupova. Algoritam za donošenje odluka
zasnovan na energijama glasi:

1. Formiramo fazi soft skup ΓA nad U ;

2. Formiramo fazi soft skupove ΓAi
nad U \ {ui} za svako ui ∈ U ;
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3. Odredimo energije E(ΓAi) (ili λ-energije LE(ΓAi)) za svaki fazi soft skup
ΓAi

;

4. Odredimo minimalnu energiju od svih energija fazi soft skupova dobijenih
u koraku 3 i interpretiramo dobijeni rezultat.

4. Analiza i diskusija

Metode vǐsekriterijumskog odlučivanja zasnovane na energijama fazi soft
skupova pružaju sistematičan pristup u evaluaciji alternativa pri prisustvu
nesigurnosti i nepreciznih podataka. Energija i λ-energija fazi soft skupova,
omogućavaju kvantifikaciju doprinosa svake alternative i identifikaciju ključnih
faktora u sistemu.

Ovaj pristup je praktično primenjen, u radu [10] pri izboru cloud platfor-
mi u IT sektoru, gde rangiranje alternativa i kvantifikacija doprinosa atributa
omogućavaju precizno donošenje odluka i povećanje zadovoljstva korisnika.

Uporedujući različite metode, možemo izdvojiti sledeće karakteristike:

1. Metoda zasnovana na fs-agregaciji ([2]) omogućava agregaciju fazi soft
skupova i daje jedinstveno rešenje, ali zahteva upotrebu brojnih novih
termina i konceptualno je složenija.

2. Metoda zasnovana na vrednostima nivoa soft skupa ([4]) koristi relativno
grube kriterijume i ne garantuje jedinstveno rešenje, što može dovesti do
nepreciznosti pri donošenju odluka.

3. Metode zasnovane na energiji i λ-energiji fazi soft skupova [9] daju jedin-
stveno rešenje u većini slučajeva.

Pored toga, metode zasnovane na energijama fazi soft skupova mogu se
integrisati sa drugim metodama vǐsekriterijumskog odlučivanja, što dodatno
proširuje njihove mogućnosti u složenim problemima odlučivanja. Konkretno,
kombinovanje sa metodama poput IT2FTOPSIS [8] ili drugim pristupima za-
snovanim na tip-2 fazi skupovima [3], [6] omogućava dodatnu fleksibilnost i
preciznost u rangiranju alternativa. Poredjenje ovih pristupa sa standardnim
metodama izvršeno je u radu [10], gde je pokazano da primena energije i λ-
energije fazi soft skupova dovodi do konzistentnih i pouzdanih rezultata pri
izboru cloud platformi u IT sektoru.

Prednosti metoda zasnovanih na energijama fuzzy soft skupova uključuju:

1. Jedinstvenu identifikaciju najboljih alternativa u većini problema, uz mo-
gućnost rangiranja svih alternativa.

2. Jasnu interpretaciju doprinosa pojedinih atributa u ukupnom sistemu.

3. Konzistentnost sa postojećim metodama i mogućnost integracije sa stan-
dardnim tehnikama vǐsekriterijumskog odlučivanja.

4. Fleksibilnost u primeni na različite vrste problema, uključujući one sa
nesigurnim i nepreciznim podacima.
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Glavne ograničenja uključuju subjektivnost u definisanju kriterijuma, jed-
nako ponderisanje atributa u trenutnim modelima i relativno složen iz-
računavanje energija za velike skupove podataka. Medjutim, prednost ovih me-
toda u preciznom rangiranju i identifikaciji ključnih faktora čini ih značajnim
alatom u donošenju odluka u realnim scenarijima.

5. Zaključak

U ovom radu analizirane su metode vǐsekriterijumskog odlučivanja zasno-
vane na energijama i λ-energiji fazi soft skupova. Ključna zapažanja su:

• Uvodenje energije i λ-energije kao numeričkih karakteristika fazi soft sku-
pova omogućava kvantifikaciju doprinosa alternativa i atributa.

• Metode zasnovane na energijama omogućavaju jedinstveno rangiranje al-
ternativa, dok u izuzetnim slučajevima vǐse rešenja nastaje samo u spe-
cifičnim uslovima jednakosti matrica.

• Pristup zasnovan na korǐsćenju energija pruža jasnu i intuitivnu interpre-
taciju doprinosa atributa i alternativa u ukupnom sistemu.

• Poredenje sa postojećim metodama pokazuje da pristup zasnovan na ener-
gijama fazi soft skupova kombinovan sa singularnim vrednostima matrica
omogućava preciznija i konzistentnija rešenja.

• Metodologija je fleksibilna i primenljiva na različite probleme
vǐsekriterijumskog odlučivanja sa nesigurnim podacima.

Buduća istraživanja mogu se fokusirati na:

• Istraživanje maksimuma energije fazi soft skupa i konstrukciju fuzzy soft
skupova sa zadatom energijom.

• Primenu različitih tipova fazi brojeva i ponderisanja kriterijuma za po-
većanje fleksibilnosti metoda.

• Razvoj softverskih alata koji automatizuju izračunavanje energije i λ-
energije za velike skupove podataka.

• Generalizaciju metoda na (a, b)-fazi soft skupove uvedene u radu [1], kao
i dodatna istraživanja u vezi sa singularnom vrednošću matrica.

Integracija energije iz teorije grafova kao motivacije, uz upotrebu singularnih
vrednosti matrica, omogućava konceptualno novu perspektivu u analizi fazi soft
skupova i njihovoj primeni u vǐsekriterijumskom odlučivanju.
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1. Introduction

Tomography is a branch of image processing concerned with reconstructing
unknown images from given projection data. Mathematically, an image can
be represented as a function whose range may be continuous or discrete. In
Computerized Tomography (CT), this image function has a continuous range.
Discrete Tomography (DT) is a subfield of tomography in which the image
function takes values from a finite and discrete set. When this range includes
only a few predefined intensity levels, the method is called Multi-Level Tomog-
raphy. A special case of this is Binary Tomography, where the image contains
only two intensity values—usually 0 and 1.

Numerous methods have been proposed in the literature to solve the to-
mography reconstruction problem. Among the most well-known iterative al-
gorithms are the Algebraic Reconstruction Technique (ART)[[8]], the Simul-
taneous Iterative Reconstruction Technique (SIRT)[[7]], the Discrete Algebraic
Reconstruction Technique (DART)[[9]], the Spectral Projected Gradient (SPG)
method[[10]], and the Difference of Convex functions (DC) algorithm. A com-
mon characteristic of these approaches is that they iteratively adjust the pixel
intensities to reduce the projection error—i.e., they minimize the difference
between the measured and reconstructed projections during convergence.

This limitation motivated us to develop a new reconstruction technique in
which the projection error remains unchanged throughout the iterative process.
Since the projection data are typically the most reliable information about the
unknown image, maintaining a minimal projection error is crucial. The pro-
posed method addresses this issue by ensuring that, during reconstruction, the
projection error theoretically remains constant at zero or in practical applica-
tions, very close to zero.
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Figure 1: Transmision tomography reconstruction model from two different
projection angles. Left image represent i-th projection ray from the projection
angle α passing through the object, and it’s detected projection value bi. Right
image represent set of parallel projection rays from the projection angle θ.

2. Definitions

Mathematically, the problem of tomography reconstruction may be formu-
lated by the following system of linear equations

(2.1) Au = b, A ∈ Rm×n, u ∈ Rn, b ∈ Rm,

where u represents the unknown image that should be reconstructed. In the
case of binary tomography, the components of vector u have only two different
values, usually 0 and 1. Rows of matrix A (projection matrix) hold information
about the length of the projection ray that passes through the pixel. The as-
sumption is that each pixel is represented as a square with unit side length, see
Figure 1. The figure represents the projection value calculation for a given im-
age from one projection direction denoted by angle α. The another projection
direction is obtained by rotation source-detector system around of the center
of the circle. Each projection direction contributes a new parallel set of the
projection rays. Detected projection values are placed in the projection vector
b.

In the reconstruction problem, both the matrix A and the projection vector
b are given, as a calculated or measured data. The task is to determine the
unknown image u. The system (2.1) is often underdetermined (m << n), and
consequently, in general case, we can count on an infinite number of possible
solutions.

3. Tomography Reconstruction Based on Null Space
Search (NSST)

The main idea uses the fact that any solution of the projection linear system
of equations (2.1)

Au = b,
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can be represented as a sum of one particular solution up (Aup = b) and an
appropriate vector belongs to the null space of the matrix A, defined by

N (A) = {x ∈ Rn |Ax = 0}.

It is known the set of all solutions can be represented as

up + z, where z ∈ N (A).

We will denote a basis of the vector space N (A) by the set of vectors {b1,b2,
. . .bk}, where k = n−m. Each solution of the system (2.1) may be represented
in the following form

(3.1)
w(α) = up + α1b1 + α2b2 + . . .+ αkbk,

where α = (α1, α2, . . . , αk) ∈ Rk and bi ∈ Rn for all i = 1, . . . , k.

Further, it is necessary to choose coefficients α1, α2, . . . αk in α in a such way
that the obtained solution w(α) ∈ Rn lies in a predefined area, for example in
the hyper cube [0, 1]n. There, we get an optimization problem that has to be
solved. The whole procedure is described in detail in the paper [[1], [3]]. The
described NSST method is significantly practical and applicable for low-dose
and limited-angle computed tomography (CT). Because the method can recon-
struct images from a small number of projections, it is valuable in scenarios
where radiation exposure must be minimized (e.g., pediatric imaging). It can
also reconstruct images when full rotational access around the patient is not
possible, such as in mobile CT systems or dental imaging. In industrial non-
destructive testing, components are often too large or heavy to rotate freely,
leading to incomplete projection data. The approach is particularly beneficial
for composite materials or additive manufacturing quality control, where inter-
nal structures may be known to possess certain regularities or symmetries that
can be incorporated as prior information.

4. Orientation

In this section, we want to use orientation of the object to improve quality
of Tomography Reconstruction. First, we will give a short reminder of object
orientation. The most usual definition refers on axis of the least second moment
of inertia.This is the line which minimizes the integral of the squared distances
of the points (whose belong to the object) to the line. Mathematicaly, we want
to optimize the integral

(4.1)

∫∫
S

r2(x, y, α, ρ)dxdy

where r(x, y, α, ρ) is the distance from the point (x, y) to the line X sinα −
Y cosα = ρ. As a result of the optimization, it is obtained formula for the
shape orientation θ given by

(4.2) tg(2θ) =
2m1,1(S)

m2,0(S)−m0,2(S)
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where mi,j(S) is central geometric moment i, j [[2]] for the planar shape S. On
the other hand, we can observe orientation as a line u on which there is the
greatest dispersion of the projected points of the object, ie. this one who takes
a maximum of information of object:

max
u

∑
i

(
xTi · u

)2
uTu = 1,

where xi is point that belong to the object. Therefore, we have the opti-
mization problem with constraint whose solution satisfies a matrix equation.
The eigenvector of that matrix represents shape orientation. Also, it is the
principal component 1 (PC1) whose carry maximum of information of object.

We will use orientation as an angle of projection and also the angle which
is normal to orientation [[2]] to improve reconstruction.

We used original phantom images, Fig 2.

Original Original

PH1 PH2

Figure 2: Original phantom images used in our experimental work

Here, it is presented a short experimental work with previous phantoms. We
tested if using orientation will improve reconstruction process. The common
feature of these phantoms is object elongation, ie. object with high elongation
are suitable for this type of improving reconstruction process. In all cases,
regardless of the projective direction projection error (PE) has a very small
value, approximately 9.8 · 10−8. That is expected because it’s the main ad-

vantage of NSST. Reconstruction error ER(ur) =

n∑
i=1

|uri − u∗i |, is significantly

smaller in case we use shape orientation and angle normal to orientation. For
phantom PH1 reconstruction error is 537 in case using horizontal and vertical
projection direction, and 59 when using orientation, see Figure 3. First column
is for central reconstruction, second for binary reconstructions and third for
presentation of misclassified pixel. For phantom PH2, situation is 740 to 42
in favor of NSST, Figure 4. The best situation is absolute reconstruction, i.e.
when error is equal to zero, but we are satisfied when it is as much as possible
close to zero.
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(0, 90)

(φ, θ)

Figure 3: Comparison of central reconstruction, binary reconstruction and dif-
ference between original and binary reconstruction for PH1 in case using (0, 90)
or (φ, θ) where θ is angle of orientation and φ is normal to orientation.

(0, 90)

(φ, θ)

Figure 4: Comparison of central reconstruction, binary reconstruction and dif-
ference between original and binary reconstruction for PH2 in case using (0, 90)
or (φ, θ) where θ is angle of orientation and φ is normal to orientation.

5. Conclusion

The Tomography Reconstruction based on Null Space Search is briefly de-
scribed with the emphasis on application. Also, we used an orientation to
improve reconstruction. There are several ways to continue the research, both
by using a prior information and by changing the focus on multi-level images.
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[2] T.Palalić, T. Lukić, ”Izbor projektivnog pravca u tomografskoj rekon-
strukciji”, The 8th Conference on Mathematics in Engineering: Theory
and Applications Novi Sad, May 26-28th, 2023
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Sažetak.

U ovom radu predstavićemo usrednjene kvadraturne formule bazirane
na Gaussovim i anti-Gaussovim kvadraturnim formulama koje su defini-
sane na prostoru trigonometrijskih polinoma, kao i usrednjene Szegőve
kvadraturne formule. Daćemo kratak opis načina njihovog konstruisanja
i na kraju analizirati prednosti korǐsćenja jednog metoda u odnosu na
drugi.
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lacije, težinske funkcije

1. Uvod

Numerička integracija je oblast numeričke matematike koja se bavi pri-
bližnim izračunavanjem vrednosti odredenih integrala, koristeći vrednosti pod-
integralne funkcije na nekom skupu tačaka. Formule za aproksimaciju vredno-
sti jednostrukih integrala nazivamo kvadraturnim formulama ili kvadraturama.
Poznate Gaussove kvadraturne formule, uvedene 1814. godine [1], postižu mak-
simalni algebarski stepen tačnosti. Od tada su ove kvadraturne formule razma-
trane od strane mnogih naučnika i generalizovane u vǐse pravaca. Konstruisane
su formule Gaussovog tipa na drugim linearnim prostorima, kao što su pro-
stor trigonometrijskih polinoma, prostor racionalnih funkcija, itd. Prvi radovi
u oblasti kvadraturnih formula Gaussovog tipa za trigonometrijske polinome
publikovani su od strane ruskih matematičara Turetzkiiog i Mysovskikhog
[11, 12, 15], a u poslednje dve decenije su se ovom oblašću bavili i profesori
G. V. Milovanović, M. P. Stanić, A. S. Cvetković i T. V. Tomović Mladenović
[8, 9, 10, 14]. Njihova pažnja bila je usmerena na proučavanje trigonometrijskih
polinoma celobrojnog i polu-celobrojnog stepena, njihovu primenu na konstru-
isanje kvadraturnih formula, kao i ocene njihovih ostataka.

Označimo sa w težinsku funkciju, koja je integrabilna i nenegativna na
intervalu [−π, π). Za svaki nenegativan ceo broj n, Tn će predstavljati linearni
prostor svih trigonometrijskih polinoma stepena manjeg ili jednakog n.
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Posmatrajmo integral:

Îf =

∫ π

−π
f(x)w(x)dx.

U nastavku ćemo analizirati usrednjene kvadraturne formule za aproksima-
ciju ovog integrala.

2. Usrednjene Gaussove kvadraturne formule

Sa {Ak}k∈N0
, Ak ∈ Tn, označimo niz trigonometrijskih polinoma ortogonal-

nih na intervalu [−π, π) u odnosu na skalarni proizvod

(2.1) 〈f, g〉w = Î(fg).

Tada je odgovarajuća Gaussova kvadraturna formula

(2.2) Ĝñ+1f =

ñ∑
k=0

ωkf(xk), ñ = 2(n− 1/2),

tačna za sve trigonometrijske polinome t ∈ T2n−1 ako i samo ako su čvorovi xk,
k = 0, 1, . . . , ñ nule trigonometrijskog polinoma An ∈ Tn.

Vodeni idejom Dirk Laurieja [7], koji je 1996. godine uveo pojam anti-
Gaussovih kvadraturnih formula na prostoru algebarskih polinoma, sa osobi-
nom da daju grešku jednake veličine ali suprotnog znaka u odnosu na grešku na-
stalu primenom odgovarajuće Gaussove kvadrature, krećemo u konstruisanje
anti-Gaussovih kvadraturnih formula Ĥñ+3 na prostoru trigonometrijskih po-

linoma (videti [13]). Postavljajući navedeni uslov (Ĥñ+3− Î)f = −(Ĝñ+1− Î)f ,
dolazimo do posmatranja bilinearne forme:

(2.3) (f, g)w = (2Î − Ĝñ+1)(fg).

Sa {Bk}k∈N0
ćemo označavati niz trigonometrijskih polinoma ortogonalnih

u odnosu na bilinearnu formu (2.3). Odgovarajuća Gaussova kvadratura ima
ñ+1 čvor, dok će odgovarajuća anti-Gaussova kvadraturna formula imati ñ+3

čvora (zbog n 7→ n + 1), pa će ona biti oblika Ĥñ+3 =
ñ+3∑
k=0

ω̂kf(x̂k). Čvorovi

ove anti-Gaussove kvadraturne formule su zapravo nule trigonometrijskog po-
linoma

Bn+1(x) =

n+1∑
k=0

(pk cos (kx) + qk sin (kx)) , |pn+1|+ |qn+1| 6= 0.

Specijalno, izborom (pn+1, qn+1) = (1, 0) i (pn+1, qn+1) = (0, 1) dobijamo tri-
gonometrijske polinome sa vodećim kosinusnim, odnosno sinusnim, termom

BCn+1(x) = cos (n+ 1)x+

n∑
k=0

(
p

(n+1)
k cos (kx) + q

(n+1)
k sin (kx)

)
,

BSn+1(x) = sin (n+ 1)x+

n∑
k=0

(
r

(n+1)
k cos (kx) + s

(n+1)
k sin (kx)

)
,
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redom. Nadalje ćemo posmatrati samo parne težinske funkcije w na intervalu
(−π, π). Tada imamo:

BCn+1(x) =

n+1∑
k=0

p
(n+1)
k cos (kx), pri čemu je p

(n+1)
n+1 = 1,

BSn+1(x) =

n+1∑
k=0

s
(n+1)
k sin (kx), pri čemu je s

(n+1)
n+1 = 1.

Lako se dolazi do zaključka da polinomi BCn+1 i BSn+1 zadovoljavaju tročlane
rekurentne relacije:

BCn+1(x) =
(

2 cosx− a(1)
n+1

)
BCn (x)− a(2)

n+1B
C
n−1(x),(2.4)

BSn+1(x) =
(

2 cosx− d(1)
n+1

)
BSn (x)− d(2)

n+1B
S
n−1(x),(2.5)

pri čemu se koeficijenti računaju na osnovu vrednosti odgovarajućih bilinearnih
formi. Formule za odredivanje ovih koeficijenata mogu se naći u radu [13],
gde je takode pokazano da važi BCk (x) = ACk (x) i BSk (x) = ASk (x) za sve
k = 0, 1, . . . , n, pa je za odredivanje polinoma Bn+1(x) dovoljno samo jednom
primeniti navedenu rekurentnu relaciju.

U radu [13] pokazali smo kako na jednostavan način možemo konstruisati
anti-Gaussove kvadrature na prostoru trigonometrijskih polinoma, koristeći
čvorove i težinske koeficijente iz već poznatih anti-Gaussovih kvadratura na
prostoru algebarskih polinoma. U nastavku navodimo ove rezultate bez dokaza.

Lema 2.1 ([13]). Neka je w parna težinska funkcija na intervalu (−π, π) i neka
su τk i σk, k = 1, . . . , n+ 1, čvorovi i težinski koeficijenti anti-Gaussove kva-
draturne formule sa n+1 čvorom, konstruisane na prostoru algebarskih polino-
ma u odnosu na težinsku funkciju u1(x) = w(arccosx)/

√
1− x2 na (−1, 1). Ta-

da se težinski koeficijenti ω̂k i čvorovi x̂k, k = 0, 1, . . . , 2n+ 1, anti-Gaussove
kvadrature sa 2n+2 čvora, konstruisane u odnosu na težinsku funkciju w, mogu
odrediti pomoću formula:

ω̂k = ω̂2n+1−k = σk+1, k = 0, 1, . . . , n,

x̂k = −x̂2n+1−k = − arccos τk+1, k = 0, 1, . . . , n.

Lema 2.2 ([13]). Neka je w parna težinska funkcija na intervalu (−π, π) i neka
su τk i σk, k = 1, . . . , n+ 1, čvorovi i težinski koeficijenti anti-Gaussove kva-
draturne formule sa n+1 čvorom, konstruisane na prostoru algebarskih polino-
ma u odnosu na težinsku funkciju u2(x) =

√
1− x2 w(arccosx) na (−1, 1). Tada

se težinski koeficijenti ω̂k i čvorovi x̂k, k = 0, 1, . . . , 2n+ 1, anti-Gaussove kva-
draturne formule sa 2n+ 2 čvora, konstruisane u odnosu na težinsku funkciju
w, mogu odrediti na sledeći način:

ω̂k = ω̂2n+1−k =
σk+1

1− τ2
k+1

, k = 0, 1, . . . , n,

x̂k = −x̂2n+1−k = − arccos τk+1, k = 0, 1, . . . , n.
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Sada, kada imamo konstruisane Gaussove kvadraturne formule Ĝñ+1f i

anti-Gaussove kvadraturne formule Ĥñ+3f , možemo uvesti takozvane usred-
njene Gaussove kvadraturne formule na prostoru trigonometrijskih polinoma:

Â2ñ+4f =
1

2

(
Ĝñ+1 + Ĥñ+3

)
f.

Ove formule će imati tačnost ñ + 2, odnosno jednakost Ĩf = Â2ñ+4f će biti
ispunjena za sve f ∈ Tñ+2.

3. Usrednjene Szegőve kvadraturne formule

Poznato je da su Szegőve kvadraturne formule primenljive na integraciju
periodičnih funkcija na jediničnoj kružnici. Godine 2007. Kim i Reichel su u
radu [6] uveli anti-Szegőve kvadraturne formule koje karakterǐse osobina da je
greška nastala primenom ove kvadraturne formule na Laurentove polinome
stepena ne većeg od n jednaka proizvodu negativne konstante i greške dobijene
primenom Szegőve kvadraturne formule sa n čvorova, odnosno

(I −A(n)
µ,τ )p = −c(I − S(n)

µ,τ )p, za sve p ∈ Λ−n,n,

gde je sa S
(n)
µ,τ označena Szegőva kvadraturna formula sa n čvorova, a sa A

(n)
µ,τ

odgovarajuća anti-Szegőva kvadratura. Koristeći ove kvadraturne formule, Ja-
gels, Reichel i Tang su u radu [5] definisali uopštene usrednjene Szegőve
kvadrature koje su tačne za sve Laurentove polinome prostora Λ−n+1,n−1.

Bazirano na analizi odgovarajućih para-ortogonalnih polinoma, pokazano
je da se čvorovi uopštene usrednjene Szegőve kvadraturne formule računaju
kao sopstvene vrednosti unitarne gornje Hessenbergove matrice H̆2n−2(τ),
dimenzije (2n − 2) × (2n − 2). Ova matrica odredena je parametrom τ sa je-
dinične kružnice i takozvanim Schurovim parametrima γ1, . . . , γn−1, koji se
javljaju kao koeficijenti u rekurentnim relacijama ovih polinoma. Težinski koe-
ficijenti se tada mogu izračunati kao kvadrati prvih komponenti odgovarajućih
jediničnih sopstvenih vektora (videti [5], [6]). Takode, pokazano je da se po-

menuta gornja Hessenbergova matrica H̆2n−2(τ) može predstaviti u obliku

H̆2n−2(τ) = D̂
−1/2
2n−2Ĥ2n−2(τ)D̂

1/2
2n−2, gde je

Ĥ2n−2(τ) =


−γ̄0γ1 −γ̄0γ2 · · · −γ̄0γn−1 −γ̄0γn−2 · · · −γ̄0γ1 −γ̄0τ

1− |γ1|2 −γ̄1γ2 · · · −γ̄1γn−1 −γ̄1γn−2 · · · −γ̄1γ1 −γ̄1τ
0 1− |γ2|2 · · · −γ̄2γn−1 −γ̄2γn−2 · · · −γ̄2γ1 −γ̄2τ
.
.
.
0 0 · · · 0 1− |γ1|2 −γ̄1τ

 ,

kao i γ0 = 1, D̂2n−2 = diag[δ̂0, δ̂1, . . . , δ̂2n−3], δ̂0 = 1, δ̂j = δ̂j−1

(
1− |γ̂j |2

)
,

j = 1, . . . , 2n− 3, γ̂j = γj , j = 1, . . . , n − 1 i γ̂j = γ2n−2−j , j = n, . . . , 2n− 3.
Postoji nekoliko algoritama za dekompoziciju ovakvih matrica (videti [4], [3],
[2]), a izračunavanje sopstvenog sistema može se izvesti veoma efikasno ko-
rǐsćenjem kompaktne reprezentacije Hessenbergove matrice (videti npr. [4],
[2]).
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4. Poredenje metoda

Kao što smo u prethodnim poglavljima naveli, usrednjene Gaussove kva-
draturne formule definisane u radu [13] mogu se primenjivati na prostoru trigo-
nometrijskih polinoma samo u slučajevima kada je težinska funkcija parna, dok
uopštene usrednjene Szegőve kvadraturne formule [5] imaju širu oblast prime-
ne. Medutim, naš metod usrednjenih Gaussovih kvadraturnih formula koristi
rekurentne relacije za odredivanje potrebnih ortogonalnih sistema kako bi se iz-
begla numerička nestabilnost koja je karakteristična za Gram-Schmidtov po-
stupak. Takode, rekurentne relacije obezbeduju stabilan način za izračunavanje
vrednosti trigonometrijskih polinoma u odnosu na korǐsćenje proširenih formi.

Koristeći usrednjene Gaussove kvadraturne formule za trigonometrijske po-
linome uspeli smo da postignemo mnogo veću tačnost u poredenju sa usred-
njenim Szegővim kvadraturama na klasi simetričnih težinskih funkcija, koju
ćemo demonstrirati u narednom primeru.

Primer 4.1 ([13]). Posmatrajmo težinsku funkciju w(x) = 2 sin2
(
x
2

)
na

(−π, π) i integrand f(x) = 1
2 log (5 + 4 cosx). U tabeli 1 predstavljene su greške

nastale primenom Szegőve Sn1 (f), anti-Szegőve An1 (f), uopštene usrednjene

Szegőve kvadrature Ŝ
(2n−2)
1 (f), kao i Gaussove Ĝñ+1f , anti-Gaussove Ĥñ+3f

i usrednjene Gaussove kvadrature Â2ñ+4f , uz uslov ñ+1 = n. Možemo prime-
titi da su greške koje nastaju primenom Gaussovih i Szegővih, odnosno anti-
Gaussovih i anti-Szegővih kvadratura, približne. Medutim, očigledno je da
usrednjene Gaussove kvadrature za trigonometrijske polinome daju značajno
pobolǰsanje u odnosu na uopštene usrednjene Szegőve kvadrature, koje su
predstavljale najbolje rezultate u radu [5]. To pobolǰsanje je značajnije sa po-
rastom broja čvorova.

Tabela 1: GREŠKE U SZEGŐVOJ (Sn1 (f)), ANTI-SZEGŐVOJ (An1 (f)),

UOPŠTENOJ USREDNjENOJ SZEGŐVOJ (Ŝ
(2n−2)
1 (f)), GAUSSOVOJ

(Ĝñ+1f), ANTI-GAUSSOVOJ (Ĥñ+3f) I USREDNjENOJ GAUSSOVOJ

(Â2ñ+4f) KVADRATURI ZA w(x) = 2 sin2
(
x
2

)
, x ∈ (−π, π), I f(x) =

1
2 log (5 + 4 cosx)

Pravilo n = 12 n = 18
Sn1 (f) −2, 2 · 10−5 −2, 3 · 10−7

An1 (f) 2, 3 · 10−5 2, 4 · 10−7

Ŝ
(2n−2)
1 (f) −1, 5 · 10−7 −6, 7 · 10−10

Ĝñ+1f −1, 98 · 10−5 −2 · 10−7

Ĥñ+3f 1, 98 · 10−5 2 · 10−7

Â2ñ+4f −5, 31 · 10−10 −8, 75 · 10−14
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[8] G. V. Milovanović, A. S. Cvetković and M. P. Stanić, ”A special Gaussian
rule for trigonometric polynomials”, Banach J. Math. Anal., vol. 1 (1), pp.
85-90, 2007.
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1. Uvod

Planiranje putanje predstavlja jedan od ključnih zadataka u oblasti robo-
tike, sistema koji se autonomno kreću, veštačke inteligencije, kao i u razvoju
video igara. Njihov osnovni cilj je pronalaženje optimalnog puta izmedu početne
i ciljne tačke u zadatom okruženju koje može sadržati statične ili dinamične
prepreke. U zavisnosti od konteksta primene, kriterijum optimalnosti može biti
najkraće rastojanje, najmanji broj posećenih ćelija mreže, izbegavanje prepreka
ili kombinacija ovih faktora.

Prema količini dostupnih informacija tokom izvršavanja, algoritmi za pre-
tragu mogu se klasifikovati na neinformisane i informisane. Neinformisani algo-
ritmi, kao što su pretraga u širinu (eng. Breadth-First Search, BFS) i pretraga
u dubinu (eng. Depth-First Search, DFS), pretražuju mrežu sistematično, bez
znanja o poziciji cilja. Nasuprot njima, informisane pretrage, kao što je A*,
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koriste heurističke funkcije kako bi usmerili pretragu ka cilju, sa namerom da
se smanji broj posećenih ćelija mreže i ubrza proces pronalaženja putanje.

Za potrebe ovog rada, mreža se definǐse kao diskretna podela dvodimenzi-
onalnog prostora na konačan broj vrsta i kolona. Svaka ćelija mreže može se
posmatrati kao čvor neusmerenog grafa sa granama jedinične težine ka ćelijama
levo, desno, iznad i ispod. Putanja izmedu polazne i ciljne tačke predstavlja niz
susednih ćelija mreže, odnosno povezanih čvorova koji ne sadrže prepreke. U
ovakvim grafovima, najkraća putanja je ona koja sadrži najmanji broj čvorova
izmedu polazne i ciljne tačke [1].

U cilju boljeg razumevanja i poredenja pomenutih pristupa, u ovom radu je
implementiran interaktivni korisnički interfejs koji omogućava intuitivnu vizua-
lizaciju procesa pretrage i analizu rezultata na korisnički definisanim mrežama.
Na ovaj način korisnik može neposredno da prati tok pretrage, uporedi različite
pristupe i uoči razlike u brzini, efikasnosti i karakteristikama svakog algoritma.

2. Implementacija

Implementacija funkcionalnosti izvedena je u programskom jeziku Python,
uz korǐsćenje biblioteke NumPy za rad sa brojevnim strukturama podataka i
Matplotlib za vizualizaciju i interakciju sa korisnikom [2]. Time je omogućen
prikaz svakog koraka pretrage u realnom vremenu, uz prethodno podešavanje
parametara mreže na kojoj se pretraga izvršava.

2.1. Korisnički interfejs

Korisnički interfejs omogućava korisniku da u tri koraka definǐse sve parame-
tre potrebne za pokretanje algoritama pretrage (vidi sliku 1). U prvom koraku
definǐse se veličina mreže unosom broja vrsta i kolona, nakon čega se prikazuje
prazna mreža zadatih dimenzija. Zatim, naredni korak obuhvata odredivanje
pozicija prepreka. Selekcijom pomoću mǐsa prohodna ćelija postaje prepreka
i obrnuto, pri čemu se svaka promena istovremeno vizualizuje na mreži. U
završnoj fazi biraju se polazna i ciljna tačka pretrage, uz ograničenja koja
sprečavaju njihovo preklapanje i selektovanje ćelija koje su u prethodnom ko-
raku postale prepreke. Kada su svi parametri definisani, mreža je spremna za
pokretanje algoritama pretrage i uporedni prikaz njihovog izvršavanja u zada-
tim uslovima.

Slika 1: Kreiran korisnički interfejs za inicijalizaciju mreže



Upotreba računarske animacije kao metode obuke iz oblasti algoritama pretrage105

2.2. Implementirani algoritmi i heuristike za pretragu

Algoritmi pretrage implementirani su kao zasebne funkcije koje koriste
istu reprezentaciju mreže i principe vizualizacije [3]. Prateće metrike, poput
ukupnog broja posećenih ćelija, broja otvorenih i zatvorenih ćelija, kao i dužina
pronadene putanje, omogućavaju direktno poredenje njihove efikasnosti.

Pretraga u širinu je jedan od osnovnih algoritama za traženje najkraće
putanje. Ovaj algoritam istražuje ćelije mreže po nivou udaljenosti od početne
pozicije, tako što prvo obraduje sve ćelije na udaljenosti od jednog koraka, zatim
dva, i tako redom [4]. U našoj implementaciji opisani postupak je realizovan po-
moću strukture podataka red, koja omogućava obradu ćelija po principu First
In, First Out. Iterativnim iscrtavanjem mreže, uz bojenje i ispis udaljenosti
ćelije od polazne tačke, korisnik može da uoči osnovne osobine ovog algoritma,
uključujući širenje pretrage u svim pravcima. Glavna prednost BFS-a jeste to
što uvek pronalazi najkraći put. Medutim, s obzirom na to da tokom izvršava-
nja ne koristi informacije o položaju cilja, ovaj pristup može dovesti do velikog
broja posećenih ćelija, čime se povećava i vreme procesiranja.

Pretraga u dubinu ima suprotan pristup u odnosu na BFS: ona istražuje
jedno grananje što je dublje moguće pre povratka i prelaska na sledeće. Imple-
mentirani DFS se oslanja na strukturu podataka stek kako bi se izbegla
upotreba rekurzije i samim tim potencijalno preopterećenje sistema. Pri razli-
čitim konfiguracijama mreže, korisnik može zaključiti da DFS ne garantuje da
je pronadena putanja najkraća i da njen oblik zavisi od redosleda poteza po
kojem se obraduju susedne ćelije (u našem slučaju: gore, dole, levo, desno).

U sistemima gde se odreduje putanja u težinskim grafovima sa nenegativnim
težinama grana primenjuju se algoritmi koji tokom pretrage prate ukupni
trošak predenog puta g(n), pri čemu n označava ćeliju koja se trenutno obraduje
[5]. Jedan od najpoznatijih medu njima jeste Dijkstrin algoritam, koji predsta-
vlja osnovu mnogih savremenih rešenja za planiranje putanje. Za razliku od
BFS-a koji u grafu sa jednakim težinama pronalazi najkraću putanju od pola-
zne do ciljne tačke samo na osnovu broja čvorova koji čine putanju, Dijkstrin
algoritam odreduje putanju pomoću prioritetnog reda tako što u svakom koraku
bira čvor sa najmanjim poznatim troškom puta. Tokom izvršavanja algoritma
prate se dve grupe ćelija: otvorene i zatvorene. Otvorena lista obuhvata sve
trenutno dostupne kandidate za dalju ekspanziju pretrage. U njoj se nalaze
ćelije koje su otkrivene i za koje je izračunat trenutni trošak puta, na osnovu
čega prioritetni red odreduje koja ćelija će biti izabrana za narednu obradu.
Zatvorenu listu čine ćelije za koje je već potvrdeno da imaju najmanji mogući
trošak u odredenom trenutku izvršavanja algoritma, pa se zbog toga vǐse ne
razmatraju pri daljem širenju pretrage. U vizualizaciji implementiranoj u ovom
radu otvorene ćelije prikazane su tamnosivom, dok su zatvorene obeležene sve-
tlijom nijansom sive, čime se omogućava praćenje procesa izbora ćelija tokom
pretrage.

Na mrežama gde sve grane imaju istu težinu, Dijkstrin algoritam daje iste
rezultate kao BFS, ali uz veće vreme procesiranja usled upotrebe prioritetnog
reda. Ipak, njegovo uključivanje u analizu omogućava jasnije poredenje sa A*
koji predstavlja proširenje Dijkstrinog pristupa uvodenjem heuristike troška
puta do cilja [6].
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A* kombinuje stvarni trošak puta od polazne tačke do trenutne ćelije g(n) sa
heuristikom troška preostalog puta do cilja h(n), formirajući vrednost funkcije
evaluacije f(n) = g(n) + h(n), gde n označava trenutni čvor. U našoj imple-
mentaciji, heuristika se zasniva na Menhetn udaljenosti koja je pogodna u
slučajevima kada se kretanje po mreži vrši u četiri smera, dok se ćelije obraduju
pomoću strukture podataka prioritetni red koji omogućava efikasan izbor ćelija
sa najmanjom vrednošću funkcije evaluacije. U svakom koraku se vizualizuju
obradeni čvorovi sa istaknutim otvorenim i zatvorenim ćelijama, kao i ispisom
njihove g i h vrednosti (vidi sliku 2). Na ovaj način, korisnik može da prati
kako funkcija evaluacije utiče na tok pretrage i da uoči glavnu prednost A*
algoritma koja podrazumeva pronalaženje najkraće putanje uz značajno manji
broj obradenih ćelija [7, 8].

Slika 2: Prikaz nekoliko koraka pretrage pomoću A*

Da bi se olakšalo poredenje, koraci izvršavanja sva četiri algoritma vizua-
lizovani su istovremeno, jedan pored drugog, u okviru istog prozora (vidi sliku
3). Ovakav prikaz, uz ispis ključnih metrika poput ukupnog broja posećenih
ćelija, broja otvorenih i zatvorenih ćelija, kao i dužina putanje, omogućava ko-
risniku da lakše sagleda prednosti i ograničenja sva četiri pristupa u identičnim
uslovima.

Slika 3: Uporedni prikaz rezultata pretrage pomoću BFS-a, DFS-a, Dijkstrinog
algoritma i A*
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3. Zaključak

U radu je realizovan uporedni prikaz pretrage mreže u širinu, u dubinu,
Dijkstrinog algoritma i A*. Implementirane funkcionalnosti obuhvataju kori-
snički interfejs za definisanje dimenzija mreže, prepreka, kao i polazne i ciljne
tačke, uz prikaz toka pretrage sa odgovarajućim metrikama. Interaktivna priro-
da kreiranog rešenja čini ga pogodnim za obrazovne svrhe, jer korisniku pruža
mogućnost da inicijalizuje okruženje u kojem se pretraga odvija i da istovre-
meno prati svaki korak izvršavanja sva četiri algoritma. Moguća unapredenja
uključuju nove pristupe za traženje putanje, primenu dodatnih heuristika, omo-
gućavanje dijagonalnih poteza prilikom obilaska mreže i uvodenje dinamičnih
prepreka.
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Sažetak

U ovom radu proučavamo prolazno vezu izmedu rešenja sistema frak-
cionih diferencijalnih jednačina i Kreissove matrične teoreme. Iako se
asimptotska stabilnost matrice A odreduje položajem njenog spektra,
rešenja mogu pokazivati značajno tranzitivno ponašanje, analogno kla-
sičnom fenomenu opisanom Kreissovim teoremom. Mittag - Lefflerove
funkcije Eα,β(t) predstavljaju generalni oblik rešenja sistema frakcionih
diferencijalnih jednačina. Ovaj pregledni rad daje kratak pregled nave-
dene teme u slučaju obi;nih diferencijalnih jednačina α = β = 1 i uvodi
hipotezu o gornjoj granici norme Eα,1(Atα) putem frakcionog pseudo-
spektra za slučaj α < β = 1.

AMS klasifikacija (2020): 15A60, 37N35

Ključne reči: Frakcione diferencijalne jednačine, Kreissova matrična teo-
rema, Mittag - Lefflerove funkcije.

1 Uvod

Ovaj rad se bavi pregledom Kreissove matrične teoreme te njenim
proširenjem na novu klasu funkcija - Mittag Lefflerove funkcije. Prva Kreissova
matrična teoremu je dokazao Heinz-Otto Kreiss 1962. te tako postavio temelje
za ograničavanje norme stepena matrica. Ona je rezultat vǐsedecenijskog
proučavanja stabilnosti linearnih operatora i diskretnih semigrupa. Pri po-
smatranju asimptotski stabilnih linearnih sistema (onih u kojima rešenja teže
nuli kako vreme t teži beskonačnosti), primećeno je da njihovo tranzientno
ponašanje (recimo za neki konačni interval vremena t ∈ [A,B]) može biti
takvo da norma rešenja značajno raste. Kreissova matrična teorema i njena
eksplicitna forma, vid. [1], daje ograničenje na ponašanje sistema u tranzi-
entnoj fazi. Pri tome se razlikuju dva glavna slučaja - matrični stepenovi i
matrična eksponencijalna funkcija.

Novi oblik Kreissove matrične teoreme koji je glavna tema ovog rada
odnosi se primene teoreme na kompleksniji skup funkcija, konkretno Mittag
- Lefflerove funkcije [2]. Njihova praktična važnost ogleda se u tome što one
predstavljaju rešenje Frakcionog sistema diferencijalnih jednačina [3]. koji
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je privukao veliku pažnju tokom poslednjih godina zbog brojnih uspešnih
primena kada je u opisivanju dinamike fizičkih procesa koji ispoljavaju
ne-lokalne osobine, npr. kretanje objekta u viskoznom medijumu. Ovaj rad
uvodi generalizaciju Kreissove konstante za ocenu tranzicijskog rasta linearnih
sistema frakcionih diferencijalnih jednačina izraženog putem Mitteg-Lefflerovih
funkcija.

2 Frakcioni Diferencijalni Operatori

Definicija 2.1. Mittag–Lefflerova funkcija Eα(z), smatra se generalizaci-
jom eksponencijalne funkcije za jedan fiksan realan parametar α > 0 definisana
konvergentnim redom

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
.

Iz navedene formule, vidljivo je da važi E1(z) = ez.

Definicija 2.2. U generalnijem dvoparametarskom obliku za α, β > 0 defini-
sana je sa:

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)

Definicija 2.3. Riemann - Liouvilleov frakcioni integralni operator se de-
finǐse kao :

Jαf(t) =
1

Γ(α)

∫ t

0

f(τ)(t− τ)α−1 dτ, α > 0, τ > 0

Kombinacijom ove formule i celobrojnih izvoda, može se definisati frakcioni
izvod reda α > 0

Definicija 2.4. Kaputov (Caputo) frakcioni izvod funkcije f(t):

dαf(t)

dtα
=Dαf(t)=Jm−αDmf(t)=

1

Γ(m−α)

∫ t

0

f (m)(τ)

(t−τ)α−m+1
dτ, m−1<α≤m,

gde Γ(·) označava Gama funkciju.

Ukoliko je α prirodan broj, navedena definicija se svodi na standardan izvod.

Analogno celobrojnim izvodima, i u frakcionom slučaju mogu se definisani
dinamički sistemi koristeći frakcione diferencijalne jednačine.

Definicija 2.5. Linearni frakcioni dinamički sistem x(t) gde t označava vreme,
x je vektor stanja, a A ∈ Cn×n je matrica sistema definisan je sa:

dαx(t)

dtα
= Ax(t),x(0) = x0, x

(1)(0) = x10, ..., x
(n−1)(0) = xn−10
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U navedenom obliku vektor α = [α1, α2, . . . , αn]T označava redove frakcio-
nog izvoda, a diferencijalni operator

dα

dtα
=

[
dα1

dtα1
,
dα2

dtα2
, . . . ,

dαn

dtαn

]T
je definisan Kaputovim frakcionim izvodima dαk

dtαk reda αk > 0, za
k = 1, 2, . . . , n.

Identično kao i u standardnim diferencijalnim jednačinama, i u ovom
slučaju istraživanje stabilnosti ovakvih dinamičkih sistema od izuzetne je
važnosti u teoriji kontrole. Glavna pitanja se odnose na potrebne i dovoljne
uslove za stabilnost ovakvih sistema [4].

U specifičnom slučaju u kojem su svi redovi frakcionih izvoda jednaki,
tj:

α1 = α2 = ... = αk = α

i inicijalni uslovi :

x(1)(0) = x(2)(0) = ... = x(n−1)(0) = 0

važi da je rešenje ovog sistema :

x(t) = Eα(Atα) =

∞∑
k=0

(Atα)k

Γ(αk + 1)

gde je Eα(At) Mittag - Leflerova funkcija.

Neka je A ∈ Cn×n kvadratna matrica i neka ‖ · ‖ označava normu nad
matricama indukovanu kvadratnom normom na Cn. Onda su definisane dve
relevantne Kreissove konstane.Prva Kreissova konstanta se odnosi na diskretno
stepenovanje matrica i definisana je u odnosu na jedinični kompleksni krug.

Definicija 2.6. Diskretna Kreissova konstanta K(A) definisana je sa:

Kd(A) = sup
|z|>1

( |z| − 1 ) ‖(zI −A)−1‖.

Dok je Kreissova konstanta vezana za eksponencijalnu funkciju primenjenu na
matrici je definisana sa:

Kc(A) = supRe(z)>0Re(z)‖(zI −A)−1‖

U sledećoj teoremi navedena je Kreissova teorema za eksponencijalni slučaj.

Teorema 2.7. Neka je A ∈ Cn×n matrica čiji takva da je njen celi spektar
σ(A) u levoj kompleksnoj poluravni onda važi:

Kc(A) ≤ sup
t≥0
‖etA‖ ≤ enKc(A)

gde t označava neprekidno vreme.
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Važnost ovih teorema je ta što one daju konkretno gornje ograničenje na
normu matrice u tranzijentnom stanju dinamičkog sistema. Dakle, ako je i
poznato da dinamički sistem konvergira nuli asimptotski, često nije potpuno
jasno kako se sistem ponaša u tranzijentnoj fazi sistema tj za t ∈ [A,B] za neke
konačne A,B. Ova teorema jasno daje ograničenje norme u tim slučajevima
jer navedeno ograničenje zavisi samo od K i od dimenzije matrice n, a ne od
vremena t ili stepena k.

3 Generalizacija Kreissove Matrične teoreme

Logično pitanje je može li se navedena teorema primenjivati na široj klasi
funkcija, osim samo stepenovanja i eksponencijalne funkcije primenjene na ma-
tricu A. Kako bi se do tog pitanja došlo, neophodno je prvo ustanoviti uslove
pod kojima je navedeni sistem stabilan. U [3] je naveden uslov za asimptot-
sku stabilnost ovakvih sistema u zavisnosti od spektra matrice A i uvedeno je
uopštenje pseudospektra za linearne frakcione dinamičke sisteme.

Teorema 3.1. Frakcioni dinamički sistem definisan matricom A i stepenima
izvoda α1 = α2 = ... = αn = α je stabilan ako i samo ako je |arg(λ)| > απ

2 za
svako λ ∈ σ(A) tj ako je :

Λ(A) ⊆ Ωα := {z ∈ C :
απ

2
< arg(z) < 2π − απ

2
}

Definicija 3.2. Matrica koja ispunjava navedeni uslov stabilnosti se naziva α-
frakciono stabilna matrica.

Za ovakvu matricu se može definisati α - pseudospektar, slično klasičnoj
definiciji pseudospektra.

Definicija 3.3. Za matricu A ∈ Cn×n α - pseudospektar je definisan sa :

Λα,ε(A) := {z ∈ C : ‖[RαA(z)]−1‖−1 ≤ ε}

gde je RαA(z) rezolventa stepena α:

RαA(z) = ‖(zα −A)−1‖.

U slučaju eksponencijalne funkcije, t.j. α = 1, Kreissova konstanta za ekspo-
nencijalnu funkciju može se izraziti preko spektralne abscise matrice A, aε(A)
:

aε(A) := max{Re(λ) : λ ∈ Λε(A)}

gde Λε(A) predstavlja ε - pseudospektar matrice A:

Λε(A) = {z ∈ C : ‖(z −A)−1‖ < ε}

Onda se Kreissova konstanta Kc(A) može izraziti kao :

Kc(A) = supε>0
aε(A)

ε
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Ovaj oblik Kreissove konstante direktno povezuje pseudospektar matrice sa
njenim tranzitivnim ponašanjem. Dokaz teoreme 2.7. detaljno je prikazan
u poglavlju 18 [5] i svodi se na dva glavna elementa - Spijkerovu teoremu
i integraciju po konturi koja ograničava spektar matrice. Pri tome kontura
mora ograničavati spektar matrice Λ(A) za koji se pretpostavlja da je u levoj
kompleksnoj poluravni.

Smatramo da se ovaj dokaz može generalizovati na širu klasu Mittag-
Leflerovih funkcija. Pri stepenovanju sa α granica skupa koji ograničava
pseudospektar prelazi u ∂Ωα koja se sastoji od dve linije u desnoj poluravni -
jedna predstavlja arg(z) = απ

2 ,a druga −απ2 .

Ukoliko je x(t) rešenje sistema frakcionih diferencijalnih jednačina u slučaju
kad je α1 = α2 = ... = αn = α, A matrica koja zadaje taj sistem, onda važi
nejednakost predstavljena sledećom teoremom.

Hipoteza 3.1. Ukoliko je A matrica takva da ispunjava uslov Teoreme 3.1.
za parametar α, i ako važi Re(z) < 0 za sve z ∈ σ(A) onda postoji konstanta
c > 0 koja zavisi od n i α takoda važi:

(3.1) ‖x(t)‖ ≤ cKαf (A)

gde je

Kαf (A) := sup
ε>0

aαε
ε

za
aαε := max{Re(λα) : λ ∈ Λα,ε(A)}

Prvo, primetimo da uslov frakcione stabilnosti garantuje da je Kαf <∞, kao
i da je rešenje x(t) ograničeno za t > 0. Dakle, pitanje je zapravo koliko c > 0
može biti mala. U slučaju α = 1, znamo da je c = en.

Ideja vodilja u pravcu generalizacije dokaza optimalne konstante je sledeća
jednakost putem Laplasove transformacije koja važi za sektorijalne operatore
[4] dobijena putem Laplasove transformacije:

(3.2) Eα(tαA) =
1

2πi

∫
γ

estsα−1(sαI −A)−1ds,

gde je γ Bromwich-ova linija s : Re(s) = 1/t za neko t > 0, a u sα−1 koristimo
glavnu granu u C.

Primetimo da je slučaju α = 1 gornja karakterizacije postaje e(tA) =
1

2πi

∫
γ
est(sI−A)−1ds klasični razvoj matrične eksponencijalne funkcije e(tA) =

1
2πi

∫
γ
est(sI −A)−1ds.

Dalje, (3.2) je ekvivalentna sledećem integralu

(3.3) Eα(tαA) =
1

2πiα

∫
γ

et z
1/α

(zI −A)−1dz,
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gde je sada γ z-slika Bromwich-ove konture preslikavanjem s 7→ sα = z, i za
z1/α koristimo glavnu granu u C.

Koristeći prethodne karakterizacije zajedno da Spajkerovom teoremom i de-
finicijom frakcione Krajsove konstante, Ootvoren problem je pronaći minimalnu
konstantu c > 0 koristeći prethodne karakterizacije zajedno da Spajkerovom
teoremom i definicijom frakcione Krajsove konstante, tako da (3.1) važi..
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Abstract. Meta-analytic methods are essential for quantitative ev-
idence synthesis, offering a statistical framework for model comparison
and heterogeneity assessment. This paper revisits our previous work
through a concise methodological review and model-comparison meta-
analysis, illustrating adaptive model selection for binary outcomes. Thir-
teen studies (>6,000 patients) comparing monotherapy and combination
regimens in metastatic melanoma immunotherapy were analyzed. Binary
outcomes (benefit and risk rates) were pooled using fixed-effects (FEM),
random-effects (REM), and generalized linear mixed models (GLMM),
depending on heterogeneity. The results highlight how model choice in-
fluences pooled estimates and inference reliability, underscoring the im-
portance of flexible statistical modeling in complex datasets.
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1. Introduction

Meta-analysis is a key statistical framework for quantitative synthesis in
medical and technical sciences, particularly valuable in studies of rare condi-
tions with limited statistical power. Beyond summarizing results, it enables
formal model comparison and heterogeneity assessment through likelihood-
based methods. In modern oncology, where immune checkpoint inhibitors
yield complex and variable outcomes, such modeling ensures reliable inference.
We present a compact model-comparison meta-analysis that adaptively selects
among FEM, REM, and GLMM according to data variability. The analy-
sis includes 13 studies on metastatic melanoma immunotherapy, comprising 22
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study arms and over 6,000 patients ([4]-[16]) and summarizes our previous work
published in [1, 2, 3].

2. Methods

2.1. Statistical models

For binary outcomes we applied three modeling strategies depending on
heterogeneity (Cochran’s Q, I2): (i) FEM when I2 < 25%, (ii) REM for
moderate heterogeneity, and (iii) GLMM with logit link for extreme hetero-
geneity (I2 ≥ 90%). The GLMM was fitted on logit-transformed proportions
with a random intercept per study arm; inverse-logit transformations produced
pooled proportions and confidence intervals (CIs). Group comparisons used
two-proportion Z-tests on pooled estimates when appropriate.

2.2. Quantifying Heterogeneity

Heterogeneity across studies was evaluated using Cochran’s Q statistic and
the I2 index. Cochran’s Q tests whether observed variability among study out-
comes exceeds that expected by chance alone: Q =

∑k
i=1 wi(pi − p̄)2, where k

denotes the number of study arms, pi represents the observed event proportion
in the i-th arm study, p̄ is weighted pooled estimate of the event proportion
and wi = 1

σ2
i
is the inverse-variance weight, with σ2

i = pi(1−pi)
ni

, where ni is the
study sample size.

To interpret heterogeneity in percentage form, the I2 statistic was calculated
as:

I2 = max

(
0,
Q− (k − 1)

Q

)
× 100%.

The I2 value represents the proportion of total variation in observed outcomes
attributable to real differences between studies rather than random sampling er-
ror. In accordance with Cochrane guidelines, heterogeneity levels were classified
as low (I2 < 25%), moderate (25% ≤ I2 < 90%), and substantial (I2 ≥ 90%).

These thresholds determined the choice among three modeling frameworks:
FEM, REM, and GLMM.

2.3. Fixed-Effects Model

Under the FEM, it is assumed that all studies estimate a common underly-
ing true effect, and that any observed variation arises purely from within-study
error. The pooled proportion estimate under the FEM is given by:

p̄FEM =

∑k
i=1 wipi∑k
i=1 wi

,

where the weights wi correspond to the inverse of the within-study variance.
The variance and standard error of the pooled estimate are:

Var(p̄FEM ) =
1∑k
i=1 wi

, SEFEM =
√

Var(p̄FEM ).

The corresponding 95% confidence interval is expressed as:
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(p̄FEM − 1.96 · SEFEM , p̄FEM + 1.96 · SEFEM ) .

This model was applied to subgroups exhibiting low between-study heterogene-
ity (I2 < 25%), yielding narrow confidence intervals that reflect the homogene-
ity of treatment effects.

2.4. Random-Effects Model

When moderate heterogeneity was detected (25% ≤ I2 < 90%), the
REM was employed to account for both within- and between-study variability.
Between-study variance (τ2) was estimated as:

τ2 =
Q− (k − 1)

C
, where C =

k∑
i=1

wi −

(∑k
i=1 w

2
i

)
∑k
i=1 wi

.

The adjusted weights under the REM were computed as w∗i = 1
σ2
i+τ

2 . The
pooled estimate under the REM is given by:

p̄REM =

∑k
i=1 w

∗
i pi∑k

i=1 w
∗
i

.

This approach provided wider confidence intervals than FEM, capturing uncer-
tainty arising from cross-study differences such as patient demographics, dosing
schedules, and study design variability.

2.5. Generalized Linear Mixed Model

For datasets characterized by extreme heterogeneity (I2 ≥ 90%), a GLMM
was adopted. The GLMM extends traditional meta-analytic models by incor-
porating random effects directly into the link function. Event proportions were
transformed via the logit function yi = ln

(
pi

1−pi

)
, and modeled as:

yi = β0 + ui,

where β0 represents the fixed intercept and ui ∼ N (0, τ2) denotes a random
intercept capturing between-study variability. The fitted estimates were trans-
formed back to the proportion scale using the inverse-logit function.

The GLMM provided the most flexible framework, yielding stable and in-
terpretable results even under non-normal or highly dispersed data.

3. Results

Across all datasets, treatment outcomes were reported in accordance with
the RECIST criteria, classifying therapeutic responses into complete response
(CR), partial response (PR), overall response (OR) and stable disease (SD). In
addition to survival outcomes, the analysis evaluated the incidence of irAEs,
including pneumonitis, colitis, diarrhea, and thyroid-related disorders (hyper-
thyroidism and hypothyroidism). The dual focus on both treatment efficacy
and safety allowed for an integrated risk-benefit assessment of immunotherapy
regimens.
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The pooled incidence rates of irAEs for monotherapy and combination ther-
apy are summarized in Table 1. The results indicate a markedly higher fre-
quency of adverse events in the combination therapy group, where 93.2% of
patients experienced at least one irAE compared to 81.9% in the monotherapy
group. For instance, pneumonitis occurred in approximately 5.55% of patients
receiving combination therapy versus 1.95% for monotherapy; hypothyroidism
was reported in 18.78% versus 10.41%, and hyperthyroidism in 14.09% versus
3.39%.

Table 1: Pooled prevalence estimates of adverse events by therapy group, with
heterogeneity indicators.
Adverse event Therapy type Study arms Patients I2 (%)† Point estimate 95% CI

At least one AE* M 10 3222 99.53g 0.8194 (0.6562, 0.9152)
C 6 1801 61.50r 0.9322 (0.9111, 0.9534)

Pneumonitis* M 10 2650 31.99r 0.0195 (0.0126, 0.0265)
C 6 1801 70.88r 0.0555 (0.0335, 0.0775)

Hypothyroidism* M 10 2638 85.43r 0.1041 (0.0729, 0.1353)
C 6 1801 47.72r 0.1878 (0.1597, 0.2160)

Hyperthyroidism* M 7 2244 92.31g 0.0339 (0.0173, 0.0654)
C 5 1707 81.59r 0.1409 (0.0983, 0.1836)

Colitis* M 10 2558 80.44r 0.0300 (0.0161, 0.0439)
C 6 1801 81.22r 0.0753 (0.0450, 0.1056)

Diarrhea* M 9 2567 90.14g 0.1845 (0.1367, 0.2443)
C 6 1801 88.67r 0.3457 (0.2734, 0.4180)

Increased AST* M 3 1231 0.00f 0.0670 (0.0531, 0.0810)
C 5 1487 89.74r 0.1732 (0.1078, 0.2385)

Increased ALT* M 3 1231 0.00f 0.0738 (0.0592, 0.0884)
C 5 1487 88.64r 0.1881 (0.1226, 0.2536)

Table 2: Comparison of clinical benefit outcomes between monotherapy and
combination therapy, with pooled prevalence and heterogeneity indicators.
Outcome Therapy type Study arms Patients I2 (%)† Point estimate 95% CI

CR* M 7 2458 91.46g 0.1251 (0.0858, 0.1791)
C 5 885 59.29r 0.1749 (0.1348, 0.2151)

PR* M 8 2504 79.49r 0.2029 (0.1663, 0.2394)
C 5 885 0.00f 0.3448 (0.3135, 0.3761)

OR* M 8 2504 94.31g 0.3156 (0.2391, 0.4037)
C 5 885 64.94r 0.5224 (0.4652, 0.5796)

SD* M 8 2504 91.73g 0.1676 (0.1257, 0.2199)
C 5 885 78.09r 0.1007 (0.0589, 0.1425)

M - monotherapy; C - combination therapy
† Superscript indicates model type used: f FEM, r REM, g GLMM.
* Statistically significant difference between mono and combination groups at p < 0.001.

The pooled therapeutic response outcomes, including CR, PR, OR, and SD
rates for both therapy groups are presented in Table 2. The combination ther-
apy demonstrated a complete response rate of approximately 17.49%, compared
to 12.51% for monotherapy. The partial response rate was 34.48% for the com-
bination group versus 20.29% for monotherapy, resulting in an overall response
rate of 52.24% versus 31.56%. Conversely, the rate of stable disease was slightly
higher with monotherapy (16.76%), suggesting that tumor regression was less
frequent compared to the combination approach. These results highlight that
combination immunotherapy yields substantially improved clinical efficacy but
at the cost of an increased incidence of adverse events.
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4. Conclusion

The results confirm that combination immune checkpoint blockade offers
greater benefit than monotherapy but with higher immune-related toxicity,
requiring careful monitoring and individualized treatment. Methodologically,
integrating FEM, REM, and GLMM highlights the need to account for het-
erogeneity for accurate effect estimation. Flexible models like GLMM better
capture biological variability and support more precise therapeutic decisions.
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